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Abstract. Stem cell-derived tissues that recap endogenous physiology are key for regenerative medicine. Yet, most methods
yield products that function like fetal, not adult tissues. Organoids are typically grown in constant environments, while our
tissues mature along with behavioral cycles. Here, we show that inducing circadian rhythms in pancreatic islet organoids,
by entraining them to daily feeding-fasting cycles, elicits their metabolic maturation. Our results show that rhythms can be
harnessed to further functional maturation of organoids destined for human therapeutics.
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INTRODUCTION

Islet transplantation can cure insulin-dependent
diabetes, but is curbed by scarcity of acceptable islets
[1]. Stem cell-derived islet organoids offer an unlim-
ited islet supply, yet an immature physiology limits
their therapeutic use [2]. To find maturation-driving
mechanisms, we studied regulatory dynamics dur-
ing their stepwise formation from human pluripotent
stem cells [3].

MATERIALS AND METHODS

Human cell lines, primary samples, and rodent
strains are detailed in [3]. We devised flow sorting
strategies to purify cells at successive stages of dif-

*Correspondence to: Juan R. Alvarez-Dominguez, E-mail:
juanralvarez @fas.harvard.edu.

ferentiation into the islet lineage [4]. These included
stem cell-derived B (SC-B), insulin™ glucagon™
polyhormonal (PH) cells, and their progenitors. Cells
were subject to whole-genome bisulfite sequencing
(WGBS), assay for transposase-accessible chromatin
by sequencing (ATAC-seq), chromatin immuno-
precipitation sequencing for two histone marks
(H3K27ac and H3K4mel), and directional total RNA
sequencing (RNA-seq), as detailed in [3]. Compu-
tational methods are described elsewhere [3, 5-7].
Animal studies were conducted as described in
[8]. Cell culture methods and assays are detailed
in [3].

RESULTS

Our studies reveal mechanisms controlling cell
fate during islet organoid development and show that
organoids are amenable to functional improvement
by circadian modulation.
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Fig. 1. (Continued)
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Fig. 1. Regulatory dynamics during organoid formation. (A) Islet organoid formation recapitulates human islet
development [3]. Pluripotent stem cells are sequentially differentiated into endoderm, pancreatic and endocrine
progenitors, which generate islet cells (insulin™ B or insulin™ glucagon™ polyhormonal counterparts). (B) We
devised tools for purification of live islet lineage intermediates [4]. Sorting SC-3 from PH cells by flow cytometry,
based on staining for the indicated markers. Typical population purities, assessed by fixing sorted cells followed
by staining for C-peptide and GLP2 (byproducts of proinsulin and proglucagon processing), are shown to the
right. This enabled comprehensive molecular profiling during stepwise organoid differentiation. (C) We used
H3K27ac enrichment to define enhancer domains, and examined their chromatin accessibility, modification,
methylation and transcription dynamics during organoid formation. Tracks show normalized ATAC, H3K4mel,
H3K27ac, RNA, and WGBS signal over a region 1.5x greater than the enhancer domain shown below. Heatmaps
display relative signal over the enhancer domain. The data link enhancers to the control of stage-specific gene
expression.
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Fig. 2. Epigenetic priming predicts lineage potential. (A-B) The competence to execute specific cell fates can
be linked to a gain of H3K4mel before H3K27ac deposition at lineage-specific enhancers [9]. We find that a-
specific enhancers are selectively H3K4mel-marked in PH cells (A). Following transplantation under the kidney
capsule of immunocompromised mice, PH indeed resolve toward a cells, as evidenced by graft staining for
insulin (green)/glucagon (red). SC-f cells (B) show the opposite trend, as expected. Thus, epigenetic priming
steers PH toward an o cell fate.
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Fig. 3. Organoid maturation pioneers & regulatory circuits. (A) Developmental competence is endowed by
chromatin-opening pioneer factors [10]. To find maturation pioneers, we examined chromatin openness over a 4-
week time course when organoids develop glucose-coupled insulin secretion (center). Recognition motifs within
newly opened chromatin sites (left) identify CLOCK and ARNTL/BMAL1 among the top-enriched TFs (right),
casting them as pioneers during the onset and refinement of 3 cell function. (B) Stable cell states are set by TFs via
autoregulatory loops involving joint formation of extended or super enhancers (SEs) [7]. A cell’s core regulatory
circuit (CRC) can thus be modeled by finding SE-driven TFs in interconnected autoregulatory loops (left). Using
this logic, we generated CRC models that effectively capture known master 3 cell regulators (center). Nodes
represent stage-specific TFs that partake (pink) or not (gray) in the 3 cell CRC. Edges represent predicted tran-
scriptional regulatory relationships between TFs within the same CRC. TFs unique to 3 cells are highlighted in red.
Ranking CRCdTFs by their connectivity (right) highlights the circadian regulator DEC1/BHLHEA40 as the most
Interconnected.
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Fig. 4. Circadian entrainment triggers organoid maturation. (A) We asked whether clock entrainment can foster
in vitro organoid maturation. Entrainment to daily feeding/fasting rhythms using various stimuli (glucose, argi-
nine, forskolin, or insulin) was followed by glucose-stimulated insulin secretion (GSIS) assays over 72 h (top).
Following entrainment (middle), organoids gain rhythmic GSIS (red) with significantly expanded stimulation
capacity relative to parallel mock-treated counterparts (gray). Oxygen levels in the medium of unstimulated
cultures following entrainment also cycle (bottom), as measured by partial O, pressure (blue). This links GSIS
oscillations to metabolic rhythms. (B) Circadian entrainment enhances single-cell glucose responsiveness. Cal-
cium staining using Fluo4-AM reveals that entrained cells (red) flux significantly more calcium in response
to 1sltilmulation than most ( 75%) mock-treated counterparts (gray). Thus, enhanced responsiveness reflects new
cellular states.
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Fig. 5. Maturity-driven genomic rhythms & in vivo function. (A) We investigated how circadian entrainment
promotes organoid maturation. RNA-seq reveals >10,000 genes (31% of all detected) that oscillate (p <0.05, har-
monic regression test for rhythmicity) specifically upon entrainment (left). These enrich for functions in energy
metabolism (right), consistent with metabolic rhythms. We also detect antiphasic insulin/ glucagon expression
(top), recalling in vivo priming of their secretion in anticipation of diurnal/nocturnal demand. This provides
a molecular basis for circadian variation in insulin responses, via rhythmic control of its synthesis, transport,
and secretion. (B) Differential gene expression analysis reveals upregulation of core clock TFs (blue triangles)
in entrained vs. parallel mock-treated counterparts, indicating that entrainment not only synchronizes but also
activates islet organoid clocks. Entrainment also induces maturity-linked factors (green triangles) and machinery
involved in energy metabolism and insulin secretion (rest of triangles), consistent with enhanced GSIS capac-
ity. (C) To study how genomic/function rhythms persist following entrainment, we used ATAC-seq to detect
thousands of newly opened chromatin sites 12 h post-entrainment, most of which remain after 72 h. These are
overrepresented at maturity-linked genes such as IAPP (shown) and direct GSIS effectors, suggesting that cir-
cadian control of genes enabling mature GSIS persists as a result of stable chromatin changes. (D) We tested
whether maturation in vitro leads to better function in vivo. Entrained organoids were transplanted under the kid-
ney capsule of immunocompromised mice, and serum human insulin was assayed before/30 min after a glucose
injection. Robust GSIS (>2 mIU/ml,>1.5-fold stimulation) was evident as early as 3 days post-transplant, and

remained 24 days after.
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DISCUSSION

This work provides a proof-of-principle that cir-
cadian control can drive functional maturation of
stem cell-derived organoids destined for human ther-
apeutics. Islet maturity develops between birth and
weaning, along with onset of circadian behavioral
(sleep, feeding) cycles. We show that recreating
fasting/feeding cycles recapitulates metabolic matu-
ration in islet organoids. Entrained organoids develop
a capacity to anticipate diurnal changes in insulin
demand, and are functional within days—rather than
weeks—of transplantation. Circadian entrainment
may be harnessed to further functional maturation
of other stem cell-derived products, consistent with
the ability of clock regulators to bind distinct targets
in distinct tissues. Thus, our general approach may
inform attempts to control the fate and function of
any human cell type.

CONCLUSIONS

e Epigenome dynamics show how epigenetic
priming steers endocrine cell fates.

e Modeling maturation regulatory circuits uncov-
ers roles for circadian controllers.

e Circadian entrainment triggers organoid matu-
ration via clock-controlled metabolic cycles.

e Entrained organoids gain stable genomic
changes and function within days of transplant.
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