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Abstract

Qute is a solver for Quantified Boolean Formulas (QBFs) based on Quantified Conflict-
Driven Constraint Learning (QCDCL). Its main distinguishing feature is dependency learn-
ing, a lazy technique for relaxing restrictions on the order of variable assignments imposed
by nested quantifiers. In this short note, we describe the configurations of Qute submitted
to QBFEval’18, along with the parameter tuning process that went into creating them.
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1. Introduction

Conflict-Driven Clause Learning (CDCL) is the dominant architecture of modern (complete)
SAT solvers [14]. Efficient implementations of CDCL combine fast unit propagation and
clever heuristics (such as VSIDS [15]) for branching with clause learning. The success of
CDCL for SAT has lead to a generalization of this algorithm to the satisfiability problem (or
evaluation problem) of Quantified Boolean Formulas (QBFs) under the name of Quantified
CDCL (QCDCL) [7, 19].

In spite of significant improvements over the years, it is fair to say that QCDCL has not
resulted in a breakthrough in QBF solving in the way that CDCL has lead to a breakthrough
in SAT solving. Two principal obstacles to lifting CDCL to QBF can be identified:

1. Prenex Conjunctive Normal Form (PCNF), the default encoding format for Quantified
Boolean Formulas, is biased towards proving unsatisfiability and does not do justice to
the symmetry of truth and falsity in QBF satisfiability, which can lead to unnecessarily
long proofs of satisfiability (and thus unnecessarily long solving times for satisfiable
formulas) [1].

2. Heuristics for branching must respect the order of quantification in the prefix (or the
nesting of quantifiers in non-prenex formulas) and therefore cannot unleash their full
potential. In the worst case, heuristics are forced into a fixed order of assignments.

∗ Supported by the Austrian Science Fund (FWF) under grant W1255-N23
† Supported by the Austrian Science Fund (FWF) under grant P 27721.

c©2019 IOS Press, SAT Association and the authors.



T. Peitl et al.

The first of these problems—which is not unique to QCDCL solving—has been addressed by
the introduction of a new encoding standard for QBFs called QCIR [11] and techniques for
dual propagation [12, 9]. A number of solutions have been proposed for the second problem,
most of which are subsumed by the application of dependency schemes [17]. While the use
of dependency schemes can speed up solving times [2] and has the potential to dramatically
decrease proof sizes in some cases [4], it has distinct disadvantages, such as the fact that it
changes the underlying proof system and thus complicates strategy extraction.

We recently proposed dependency learning as an alternative solution to the second prob-
lem [16]. QCDCL with dependency learning (for details see Section 2) maintains set of
dependencies (which is empty initially) and permits variable assignments in any order that
is consistent with these dependencies. A dependency is added whenever clause learning
fails due to an assignment that does not respect the quantifier prefix. This idea has been
implemented in Qute (https://github.com/perebor/qute).

The remainder of this note is structured as follows. In Section 2, we describe the core
algorithm underlying Qute as well as some implementation details, with an emphasis on the
changes required from “vanilla” QCDCL. Section 3 describes the submission to QBFEval’18
based on Qute. Section 3.1 details the preprocessing pipeline used for the submission to
the Prenex Conjunctive Normal Form (PCNF) track. Section 3.2 describes the automated
configuration process we used to tune the parameters of our submissions. The (non-default)
parameter settings for all submitted configurations are listed in Appendix A.

2. Qute in a Nutshell

We first present the nuts and bolts of QCDCL following the presentation of Peitl, Slivovsky,
and Szeider [16]. QCDCL simultaneously works on two dual sets of constraints: a set of
clauses and a set of terms. Each clause is a disjunction of literals and each term (or cube) is
a conjunction of literals. One can think of clauses as encoding obligations of the existential
player and of terms as encoding obligations of the universal player. For PCNF formulas,
the set of clauses initially consists of clauses in the matrix and the set of terms is populated
on the fly using the model generation rule [7]. For QCIR formulas, Qute uses Tseitin
conversion to obtain initial sets of clauses and terms.

Starting from this initial set of constraints, QCDCL generates (“learns”) new constraints
until it learns an empty constraint, outputting true if the empty term has been learned
and false if the empty clause has been learned. The algorithm is sound because every
clause learned by QCDCL can be derived from the input formula in the Q-resolution proof
system and every term learned by QCDCL can be derived by the dual proof system known
as Q-consensus [7, 6].

QCDCL solving can be seen as proceeding in rounds. The solver maintains a partial
truth assignment σ of the given formula’s variables (called the trail) which is extended in
each round by quantified Boolean constraint propagation (QBCP) and—possibly—branching.
QBCP consists of the exhaustive application of universal reduction in combination with unit
assignments. Universal reduction is an operation from Q-resolution that removes a univer-
sal variable u from a clause C if the clause C does not contain an existential variable e such
that e is quantified after u in the prefix.
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QBCP reports a clause C as falsified if it is not satisfied by the current trail σ and
universal reduction can be applied to C[σ] to obtain the empty clause. A clause C is unit
under σ if it is not satisfied and universal reduction applied to C[σ] yields a clause (`), for
some existential literal `. If (`) is a unit clause then the assignment σ has to be extended
by ` in order not to falsify (`). (The dual versions of these notions for propagation of
terms are defined in a straightforward way.) If several clauses or terms are unit under the
current trail assignment, QBCP nondeterministically picks one and extends the assignment
accordingly. This is repeated until a constraint is empty or no unit constraints remain.

If QBCP does not lead to an empty constraint, the assignment σ is extended by branch-
ing. That is, the solver chooses an unassigned variable x such that every variable y whereQ′y
precedes Qx in the quantifier prefix and Q′ 6= Q has already been assigned. The resulting
assignment can be partitioned into so-called decision levels. The decision level of an as-
signment σ is the number of literals in σ that were assigned by branching. Note that each
decision level greater than 0 can be associated with a unique variable assigned by branching.

Eventually, the assignment maintained by QCDCL must falsify a clause or satisfy a term.
When this happens (this is called a conflict), the solver proceeds to conflict analysis to derive
a learned constraint C. Initially, C is the falsified clause (we focus on clauses, the process
for terms is dual), called the conflict clause. The solver finds the existential literal in C that
was assigned last by QBCP, and the antecedent clause R responsible for this assignment.
A new constraint is derived by resolving C and R and applying universal reduction. This is
done repeatedly until the resulting constraint C is asserting. A clause (term) C is asserting
if there is a unique existential (universal) literal ` ∈ C with maximum decision level among
literals in C, its decision level is greater than 0, the corresponding decision variable is
existential (universal), and every universal (existential) variable y ∈ var(C) such that y
precedes var(`) in the quantifier prefix is assigned at a lower decision level (an asserting
constraint becomes unit after backtracking). Once an asserting constraint has been found,
it is added to the solver’s set of constraints. Finally, QCDCL backtracks, undoing variable
assignments until it reaches a decision level computed from the learned constraint.

We now describe how QCDCL is modified in Qute to support dependency learning.
The solver maintains a set D of dependencies consisting of pairs of variables that is used to
generalize both QBCP and the decision rule:

• QBCP performs universal and existential reduction relative to D. Universal reduction
relative to D removes each universal variable u from a clause C such that there is no
existential variable e ∈ var(C) with (u, e) ∈ D (existential reduction relative to D is
defined dually).

• Decisions may assign any variable y such that there is no unassigned variable x
with (x, y) ∈ D.

This is how DepQBF uses the dependency relation D computed by a dependency scheme in
propagation and decisions [2]. Unlike DepQBF, Qute does not use the generalized reduc-
tion rules during conflict analysis and instead sticks to the prefix order. As a consequence, it
cannot always construct a learned constraint. Such cases are dealt with in lines 9 through 12
of analyzeConflict (Algorithm 1): existsResolvent(constraint , reason, pivot) deter-
mines whether constraint and reason can be resolved. If this is not the case, there has to
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Algorithm 1 Conflict Analysis with Dependency Learning

1: procedure analyzeConflict(conflict)
2: constraint = getConflictConstraint(conflict)
3: while not asserting(constraint) do
4: pivot = getPivot(constraint)
5: reason = getAntecedent(pivot)
6: if existsResolvent(constraint , reason, pivot) then
7: constraint = resolve(constraint , reason, pivot)
8: constraint = reduce(constraint)
9: else

10: illegal merges = illegalMerges(constraint , reason, pivot)
11: D = D ∪ { (v, pivot) : v ∈ illegal merges }
12: return none, decisionLevel(pivot)
13: end if
14: end while
15: btlevel = getBacktrackLevel(constraint)
16: return constraint , btlevel
17: end procedure

be a variable v (universal for clauses, existential for terms) satisfying the following condi-
tion: v precedes pivot in the quantifier prefix and there exists a literal ` ∈ constraint with
var(`) = v and ` ∈ reason. The set of such variables is computed by illegalMerges. For
each such variable, a new dependency is added to D. No learned constraint is returned by
conflict analysis, and the backtrack level (btlevel) is set so as to cancel the decision level at
which pivot was assigned (by QBCP).

The criteria for a constraint to be asserting must also be slightly adapted: a clause
(term) S is asserting with respect to D if there is a unique existential (universal) literal ` ∈ S
with maximum decision level among literals in S, its decision level is greater than 0, the
corresponding decision variable is existential (universal), and every universal (existential)
variable y ∈ var(S) such that (y, var(`)) ∈ D is assigned (again, this corresponds to the
definition of asserting constraints used in DepQBF [13, p.119]). Finally, in the main
QCDCL loop, we have to implement a case distinction to account for the fact that conflict
analysis may not return a constraint.

Representation of Learned Dependencies. Qute represents the set D of learned
dependencies as follows. For each variable y, we record the set D(y) = {x : (x, y) ∈ D } of
variables it depends on. These dependencies are relevant for propagation and determining
variables for branching:

• If a clause C contains an unassigned existential variable e and an unassigned universal
variable u such that (u, e) ∈ D, then generalized universal reduction cannot simplify C
to a unit clause (or the empty clause) under the current trail assignment and literals
over u and e can be used as watched literals for the clause C.

• A variable y is eligible for branching as soon as every variable x ∈ D(y) has been
assigned. In order to determine whether that is the case, we adopt a simple watcher
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scheme. We pick some unassigned variable x ∈ D(y) that becomes the “watched
dependency” of y. When x is assigned, we try to find a new watched dependency
for y. If we cannot find a suitable variable, x remains the watcher of y. Testing
whether a variable is eligible for branching thus boils down to checking whether its
watched dependency (if there is one) is assigned.

For the purposes of searching for a watched dependency, each set D(y) is internally
represented as an array. Since maintenance of watched literals requires efficient membership
tests for D(y), we additionally store D(y) as a hash set. This improves performance in cases
where individual sets D(y) grow large. At the same time, it does not significantly increase
memory consumption since the size of D tends to remain small overall.

3. The Submissions

We submitted to two tracks of QBFEval’18: the Prenex CNF (PCNF) track and the Prenex
non-CNF (QCIR) track. The corresponding configurations are unchanged from our sub-
missions to QBFEval’17. For the QCIR track, we use Qute as a standalone solver. One
of the configurations (hybrid) is a sequential portfolio that splits solving time between the
four best performing configurations found by automated parameter configuration (see Ap-
pendix A.2). The setup for the PCNF track is a bit more complicated and involves several
preprocessing steps.

3.1 Preprocessing for PCNF

It has been observed that CNF is inherently biased towards proving unsatisfiability and can
thus be detrimental to proving satisfiability of QBFs [1]. In certain cases, a more symmetric
circuit representation of a PCNF formula can be obtained by detecting clauses and variables
introduced by Tseitin transformation [8]. We use qcir-conv1. to perform partial circuit
reconstruction of this kind. When this approach works well, it results in a more compact
representation of the input formula in QCIR that can be passed to Qute. When it fails
to detect a significant number of gate definitions, the output of qcir-conv essentially
corresponds to the original PCNF and the set of initial terms generated by Qute’s QCIR
interface tends to slow down propagation.

Clausal preprocessing techniques for QBF as implemented in Bloqqer and HQSPre
are very effective and can solve many instances on their own or significantly reduce their
size [3, 18]. On the downside, they may remove clauses or variables that partial circuit
reconstruction relies on to identify gate definitions.

Our submission combines clausal preprocessing and partial circuit reconstruction in the
following way (the values of the variables mentioned below were determined by automated
parameter configuration and are listed in Appendix A.1):

1. We first run HQSPre [18] (with command-line options --hidden 2 --univ exp 2)
for hqspre-timeout seconds to preprocess PCNF formulas.

2. Next, we run QCIR-conv on the preprocessed formula (or on the original formula in
case HQSPre did not terminate) for qcir-conv-timeout seconds.

1. http://www.cs.cmu.edu/~wklieber/qcir-conv/qcir-conv.py
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3. If QCIR-conv terminates and the ratio of input variables of the CNF to input gates
of the resulting QCIR instance is above qcir-input-reduction, Qute is run on the
QCIR instance. Otherwise, we run it on the (preprocessed) PCNF instance.

HQSPre has an option for preserving gate definitions during preprocessing so as to not
interfere with circuit reconstruction, but we found that our pipeline worked better with this
option turned off.

3.2 Automated Parameter Configuration

Qute comes with a number of command-line parameters that can significantly affect per-
formance. Since these parameters interact in ways that are difficult to understand, finding
good settings is a challenge. The situation is exacerbated by the fact that the performance
of a configuration may vary wildly depending on the instance family. We tried to deal
with this challenge by using SMAC2. [10] to automatically configure most command-line
parameters of Qute. More specifically, the following parameters were up to configuration:

• The initial limit on the number of learned clauses (terms) (--initial-clause-DB-size
and --initial-term-DB-size).

• The number of constraints the maximum size of the clause (term) database is increased
by every time we reach the limit (--clause-DB-increment and --term-DB-increment).

• The percentage of clauses (terms) deleted upon hitting the limit of the learned clause
(term) database (--clause-removal-ratio and --term-removal-ratio).

• The decay factor for constraint activity values (--constraint-activity-decay) used
in constraint cleaning and the increment (--constraint-activity-inc) activity val-
ues are bumped by whenever a constraint is used in propagation or learning. In
addition to deleting a fraction of learned constraint with lowest activity scores, Qute
has an option for deleting all constraints with activities below a certain threshold
(--use-activity-threshold).3.

• The decision heuristic (--decision-heuristic) limited to variants of VSIDS or
Variable-Move-To-Front (VMTF), as well as some additional parameters for VSIDS
(--var-activity-decay, --var-activity-inc).

• The phase heuristic that decides which value a decision variable is assigned first
(--phase-heuristic), and whether or not to use phase saving (--no-phase-saving).

• A parameter deciding whether to use dependency learning (--dependency-learning).

• Parameters related to an inner-outer restart scheme (--inner-restart-distance,
--outer-restart-distance, --restart-multiplier) and a parameter that deter-
mines whether to use restarts at all (--no--restarts).

2. https://github.com/automl/SMAC3
3. This idea is taken from MiniSAT [5].
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• A parameter (only relevant for PCNF input) that determines whether (weighted)
model generation is used (--model-generation), as well as options for model genera-
tion (such as --variable-weight-exponent, --variable-weight-scaling-factor,
--variable-weight-universal-penalty).

We separately configured Qute for PCNF and QCIR input. For PCNF we additionally
configured the values of the three variables hqspre-timeout, qcir-conv-timeout, and
qcir-input-reduction mentioned above. In both cases, we used the benchmark sets from
QBFEval’16 with a timeout of 900 seconds and PAR10 as the target metric. PAR10 is
the cumulative runtime with a penalty factor of 10 for unsolved instances (in our case, an
unsolved instance would increase PAR10 by 9000). The parameter settings obtained by
SMAC are listed in Appendix A.
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Appendix A. Parameter Settings for Each Configuration

Below, we list the parameter settings for each configuration. Whenever a parameter is not
mentioned explicitly, the default was used.

A.1 Prenex CNF Track

• (default) This configuration used the following parameters for preprocessing:

hqspre-timeout 400
qcir-conv-timeout 90
qcir-input-reduction 2

Default parameters were used for Qute with the exception of --model-generation
weighted.

• (opt500) This is the best configuration found by SMAC:

hqspre-timeout 400
qcir-conv-timeout 30
qcir-input-reduction 1.356
--initial-clause-DB-size 4000
--initial-term-DB-size 4000
--term-DB-increment 500
--term-removal-ratio 0.706
--clause-DB-increment 1500
--clause-removal-ratio 0.187
--constraint-activity-decay 0.95
--constraint-activity-inc -9.07
--decision-heuristic 0
--dependency-learning off
--inner-restart-distance 200
--outer-restart-distance 800
--restart-multiplier 4.38
--model-generation weighted
--variable-weight-exponent 1.692
--variable-weight-scaling-factor 0.721
--variable-weight-universal-penalty 0.526
--phase-heuristic false

• (random) This configuration was obtained by manually tweaking opt500 and increasing
hqspre-timeout to 450 seconds.
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A.2 Prenex non-CNF Track

• (opt617)

--term-DB-increment 1500
--term-removal-ratio 0.467
--clause-DB-increment 1500
--clause-removal-ratio 0.652
--constraint-activity-decay 0.99
--constraint-activity-inc 5.38
--decision-heuristic 2
--dependency-learning all
--no-restarts true
--no-phase-saving true
--phase-heuristic watcher
--var-activity-decay 0.827
--var-activity-inc 6.61

• (opt993)

--initial-clause-DB-size 4000
--initial-term-DB-size 4000
--term-DB-increment 500
--term-removal-ratio 0.806
--clause-DB-increment 1500
--clause-removal-ratio 0.188
--constraint-activity-decay 0.872
--constraint-activity-inc 0.443
--decision-heuristic 1
--dependency-learning outer
--no-restarts true
--phase-heuristic qtype
--var-activity-decay 0.786
--var-activity-inc 7.746
--use-activity-threshold true

• (hybrid) This submission implements a sequential portfolio that runs each of four
configurations for a limited amount of time. Two of these are the configurations
opt617 and opt993 described above. The remaining two are the configurations seq1
and seq2 listed below. The configuration hybrid first runs seq1 for 23 seconds, then
opt617 for 119 seconds, afterwards seq2 for 385 seconds, and finally opt993 for the
time remaining until timeout.
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• (seq1)

--initial-clause-DB-size 4000
--initial-term-DB-size 4000
--term-DB-increment 1500
--term-removal-ratio 0.745
--clause-DB-increment 500
--clause-removal-ratio 0.550
--constraint-activity-decay 0.929
--constraint-activity-inc 5.053
--decision-heuristic 4
--dependency-learning outer
--restart--multiplier 3.280
--inner-restart-distance 400
--outer-restart-distance 800
--phase-heuristic qtype
--no-phase-saving true
--var-activity-decay 0.465
--var-activity-inc 2.080

• (seq2)

--term-DB-increment 500
--term-removal-ratio 0.147
--clause-DB-increment 250
--clause-removal-ratio 0.766
--constraint-activity-decay 0.878
--constraint-activity-inc 4.361
--decision-heuristic 4
--dependency-learning all
--restart--multiplier 4.164
--inner-restart-distance 400
--outer-restart-distance 100
--phase-heuristic watcher
--no-phase-saving true
--var-activity-decay 0.766
--var-activity-inc 3.548
--use-activity-threshold true
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