
Journal on Satisfiability, Boolean Modeling, and Computation 11 (2019) 155-210

CAQE and QuAbS: Abstraction Based QBF Solvers

Leander Tentrup∗ tentrup@react.uni-saarland.de

Reactive Systems Group, Saarland University

Abstract

We present a detailed description, analysis, and evaluation of the clausal abstraction
approach for solving quantified Boolean formulas (QBF). The clausal abstraction algorithm
started as a solving algorithm for QBFs in prenex conjunctive normal form (PCNF) incor-
porating an efficient Skolem and Herbrand function extraction. Extracting witnesses from
solving is especially important as it enables the certification of the solver’s verdict and
it is the foundation for applications built on QBF, like verification and synthesis. Later,
the algorithmic ideas were extended to non-prenex and negation normal form formulas,
leading the way for improved performance in solving and function extraction. The imple-
mentations of the algorithms in the solvers CAQE and QuAbS won the QBF competition
(QBFEVAL’18) in their respective categories, prenex CNF and prenex non-CNF.

Keywords: QBF solver, certification, conjunctive normal form, negation normal form

Submitted November 2018; revised April 2019; published September 2019

1. Introduction

Efficient solving techniques for quantified logics are a prerequisite towards scalable synthe-
sis algorithms. In contrast to verification, where the implementation is given, synthesis
constructs correct-by-design implementations from a formal specification. While verifica-
tion amounts to solving a one-player game (“does there exist a counterexample”), synthesis
algorithms can be usually formulated as a variation of a two-player game: one player try-
ing to satisfy the specification and an opponent player trying to falsify it. The degree
of freedom and the hierarchy of information in such games—the players may choose their
action based on their own memory structure and the actions of the opponents—leads to
propositional problems of enormous size. Quantified Boolean formulas (QBF) have been
repeatedly considered as a solving target for synthesis algorithms [9,15,16,23,26–29,58,77]
and there exists evidence that quantified logics can be used to improve scalability of such
synthesis methods [23]. A quantified Boolean formula is an extension of propositional logic
with quantification over Boolean variables. Thus, the satisfiability problem becomes a game
between two players as well: the existential player, trying to satisfy the formula, and the
universal player, trying to falsify it.

Clausal Abstraction is a solving method for quantified Boolean formulas that was in-
dependently developed by Janota & Marques-Silva [46]1. and Rabe & Tentrup [66]. While

∗ This work was partially supported by the German Research Foundation (DFG) as part of the Collab-
orative Research Center “Foundations of Perspicuous Software Systems’ (TRR 248, 389792660) and by
the European Research Council (ERC) Grant OSARES (No. 683300).

1. which they called clause selection

c©2019 IOS Press, SAT Association and the authors.

L. Tentrup

initially only applicable to QBFs in prenex conjunctive normal form, there have been ex-
tensions to QBFs in negation normal form [36], parallelization [71], satisfiability modulo
theories [13], quantified stochastic Boolean satisfiability [51], and dependency quantified
Boolean formulas [73]. The underlying idea of clausal abstraction is to assign variables,
where the assignment order is determined by the quantifier prefix, until either all clauses
are satisfied or there is a set of clauses that cannot be satisfied at the same time. The
effect of assignments, i.e., whether they satisfy a clause, is abstracted into one bit of in-
formation per clause and this information is communicated through the quantifier prefix.
The fundamental data structure of the algorithm is an abstraction, a propositional formula
for each maximal block of quantifiers, that, given the valuation of outer variables, gener-
ates candidate assignments for the variables bound at this quantifier block. In case this
candidate is refuted by inner quantifiers, the returned counterexample is excluded in the
abstraction. Thus, the clausal abstraction algorithm uses ideas of search-based solving [30]
and counterexample guided abstraction refinement (CEGAR) algorithms [20]. A proof the-
oretic analysis of the clausal abstraction approach [72] has shown that the refutation proofs
correspond to the (level-ordered) Q-resolution calculus [49]. The implementation of the
clausal abstraction algorithm in the solver CAQE won the prenex CNF track in the annual
QBF competition QBFEVAL [59,63] 2017, 2018, and 2019. Further, it was awarded a medal
in the FLoC Olympic Games 20182..

Beyond conjunctive normal form (CNF), there have been many attempts to improve
solving performance by going to more general formula representations, such as circuits [22,
32, 34, 50]. Those approaches close the gap in expressive power between universal and
existential players in CNF [47] and often outperform CNF-based solvers on practical bench-
marks. We present an extension of the clausal abstraction algorithm to QBFs in negation
normal form (NNF). The implementation in the solver QuAbS is used in the reactive syn-
thesis tool BoSy [24], the Petri game solver Adam [26] and the HyperLTL satisfiability
solver MGHyper [27]. Also, QuAbS won the prenex non-CNF track of QBFEVAL 2018
as well as 2019 and was awarded a medal in the FLoC Olympic Games 2018.

This article gives a complete overview over the clausal abstraction approach for QBF
and is partially based on prior published work [36, 66, 72]. The remainder of this article
is structured as follows. After presenting the necessary preliminaries in Section 2, we give
the algorithmic details for the clausal abstraction algorithm, first for the one-alternation
fragment of QBF in Section 3 followed by the generalization to quantified Boolean formulas
with arbitrary many quantifiers in Section 4. In Section 5 we show how function extraction is
realized and in Section 6 we integrate partial expansion reasoning in the clausal abstraction
approach. The negation normal form algorithm is presented in Section 7, followed by
an experimental evaluation of the CNF and NNF algorithms, implemented in the solvers
CAQE and QuAbS, respectively, in Section 8. We conclude with Section 9.

Related Work. QBF solving techniques can be roughly characterized into search-based
and expansion-based methods. Solvers based on search assign variables in the order given
by the quantifier prefix and progress by learning clauses and cubes for conflicts and so-
lutions, respectively. Expansion-based solving methods eliminate quantifiers by rewriting
the formula into propositional form. On the algorithmic side, many recent solving meth-

2. http://www.floc2018.org/floc-olympic-games/

156

http://www.floc2018.org/floc-olympic-games/

CAQE and QuAbS: Abstraction Based QBF Solvers

ods [14, 41, 42, 44, 46, 66] employ a variant of the CEGAR [20] style of reasoning to avoid
exponential blowup.

Search-based Solving. Search-based solvers typically extend algorithms for the proposi-
tional satisfiability (SAT) problem to the richer logic. An early example for such an exten-
sion are the algorithms implemented in the solvers Quaffle [76] and QUBE++ [31]. The
proof system underlying search-based solvers is Q-resolution [49], which extends proposi-
tional resolution with universal reduction. A more recent solver is DepQBF [54,56], which
features a variety of other extensions such as Skolem and Herbrand function extraction [61],
incremental solving [55], and inprocessing [52]. Qute [62] is a search-based solver that
learns dependencies between variables during the execution. The clausal abstraction ap-
proach [66], respectively, clause selection [46], can be characterized as search-based as they
assign variables contained in quantifier blocks simultaneously using a SAT oracle. While
the difference between the basic algorithms of clausal abstraction and clause selection is
minor [46, 66], there are a number of algorithmic improvements described for clausal ab-
straction [66, 71] that make the implementation CAQE outperform the clause selection
solver Qesto as shown in the evaluation in Section 8.1.

There are further extensions of search-based methods to quantified Boolean formulas
beyond conjunctive normal form [22, 34, 50, 62]. These methods typically exploit the dual-
ity of propositional formulas in negation normal form. Further approaches include using
antichains as the underlying data structure [17] and using the duality of negation normal
form to enhance CNF solving [35]. The clausal abstraction approach has been generalized
to QBFs in negation normal form [36] and to non-prenex formulas [71]. cQESTO [41] is a
recently introduced circuit solver based on a similar algorithm as presented in this article.
The algorithm, however, differs in the way abstractions are built: we produce a “static” ab-
straction upfront and learn subformula valuations during solving, while cQESTO evaluates
the circuit under the current variable assignments and re-encodes the resulting partial cir-
cuit using the Tseitin transformation in each refinement step. To our knowledge, cQESTO
cannot produce certificates.

Recently, incremental determinization [65, 67] has been proposed as a search-based al-
gorithm whose propagation mechanism is based on Boolean functions instead of variable
assignments.

Expansion-based Solving. For expansion-based methods, one can further distinguish into
complete and partial expansion. Complete expansion eliminates all universal quantifiers
and rewrites the QBF to an equisatisfiable propositional formula. Design choices include
the order of elimination, rewriting, and the representation of propositional formulas. Ex-
amples for complete expansion solvers are Qubos [1], Quantor [11], Nenofex [53], and
AIGSolve [68]. dynQBF [19] is a recent solver that traverses a tree decomposition of
a QBF instance and uses dynamic programming in conjunction with BDDs to solve sub-
problems.

Partial expansion tries to expand only a subset of the possible universal assignments in
order to show unsatisfiability (and dually, satisfiability). RAReQS [44] is a solver based on
partial expansion that has later been extended to include refinements with strategies [42].
The underlying proof system, ∀Exp+Res [45], first builds a partial expansion of the QBF
and then uses propositional resolution on the expanded matrix. Recently, an algorithm

157

L. Tentrup

based on partial expansion called Ijtihad [14] was proposed that uses only two competing
SAT solvers, whereas RAReQS uses one per quantifier block in the prefix.

Hybrid Approaches. Hybrid approaches combine both, search-based and expansion-based
reasoning, with different levels of integration. The search-based solver GhostQ [50] in-
corporates partial expansion reasoning [44]. Heretic [14] is a lightweight integration of
Ijtihad and DepQBF. The clausal abstraction solver CAQE has been extended to in-
clude partial expansion reasoning [72]. What makes the hybrid approaches theoretically
appealing and in practice performant is the fact that the proof systems underlying search,
Q-resolution, and partial expansion, ∀Exp+Res, are incomparable with respect to poly-
nomial simulation [10, 45], that is, neither does Q-resolution subsume ∀Exp+Res nor vice
versa. Hence, a solver that combines both types of reasoning has a potential advantage over
both, expansion and search-based solvers [72].

Preprocessing. Whereas this article is only concerned with complete solving techniques for
quantified Boolean formulas, there is a rich body of literature regarding QBF preprocessing
techniques. Further, our experiments in Section 8.1 show that preprocessing is an integral
part of the performance characteristics of modern clausal QBF solvers and this applies to
clausal abstraction as well.

Blocked clause elimination is a common preprocessing technique, implemented (among
other preprocessing techniques) in the tool Bloqqer [12]. HQSPre [75] is a preprocessor
for both, QBF and DQBF. Both also use (incomplete) universal expansion as well as variable
elimination using resolution as preprocessing techniques. Recently, a new preprocessor
QRATPre+ [57] was introduced, that is based on the QRAT calculus [37].

Certification and Function Extraction. The need for providing solving witnesses beyond
binary answers is a research question that started with the very first QBF solving algorithms.
The solver sKizzo [6] is one of the earliest QBF solver that included certification [8].
An early certification format was proposed by Jussila et al. [48] and implemented for the
solvers Quaffle and Squolem. Balabanov and Jiang [2] showed how to extract Skolem
and Herbrand functions from term-resolution and Q-resolution proofs, respectively. The
QBFCert framework [61] is an implementation of this approach for the search-based solver
DepQBF [56]. There have been further improvements to the extraction algorithm [5] and
extensions to handle long-distance resolution [3, 21]. As long as there were solvers with
certification capabilities, there are attempts to provide a unified framework [7, 48, 70] with
the most recent one, QRAT [37], being the most promising as it was already successfully
applied to preprocessing [38]. To overcome the problem of missing preprocessing in the
context of certification, there has been work that combines certificates produced by solver
and preprocessor [25,43]. For non-CNF solvers, there have also been methods for extracting
Skolem and Herbrand functions [17,33].

2. Quantified Boolean Formulas

2.1 Syntax

A quantified Boolean formula (QBF) [18] is a propositional formula over a finite set of
variables V with Boolean domain B = {F,T} and quantification over variables. The syntax

158

CAQE and QuAbS: Abstraction Based QBF Solvers

is given by the grammar
ϕ := v | ¬ϕ | ϕ ∨ ϕ | ∃v. ϕ,

where v ∈ V. Let B(V) be the set of quantified Boolean formulas over variables V . We
use the usual Boolean connectives conjunction ϕ∧ψ := ¬(¬ϕ∨¬ψ), implication ϕ→ ψ :=
¬ϕ ∨ ψ, equivalence ϕ ↔ ψ := (ϕ → ψ) ∧ (ψ → ϕ), and exclusion ϕ ⊕ ψ := ¬(ϕ ↔ ψ).
Universal quantification ∀v. ϕ is defined as ¬∃v.¬ϕ.

We denote the universally and existentially quantified variables as universals and exis-
tentials, respectively. To improve readability, we lift the consecutive quantification over vari-
ables of the same type to the quantification over sets of variables and denote Qv1 . . .Qvn. ϕ
by QV. ϕ for V = {v1, . . . , vn} and Q ∈ {∀, ∃}. We assume w.l.o.g. that every variable
v ∈ V is quantified at most once. A quantifier block Qv. ϕ for Q ∈ {∃,∀} binds the variable
v in the scope ϕ. Variables that are not bound by a quantifier are called free. We refer
to the set of free variables of formula ϕ as free(ϕ). A closed QBF is a formula without
free variables. Closed QBFs are either true or false. Every QBF can be transformed into
a closed QBF while maintaining satisfiability by prepending the formula with existential
quantifiers that bind the free variables. A formula is in prenex form, if the formula consists
of a quantifier prefix followed by a propositional, i.e., quantifier-free, formula. Every QBF
can be transformed into prenex form while maintaining satisfiability. For a k > 0, a formula
ϕ is in the kQBF fragment if it is closed, in prenex form, and has exactly k− 1 alternations
between ∃ and ∀ quantifiers.

A literal l is either a variable v ∈ V , or its negation ¬v. The complement of a literal
l, written l, is defined as l = ¬v if l = v, and l = v if l = ¬v. Given a literal l = v or
l = ¬v, we define var(l) = v. Given a set of literals {l1, . . . , ln}, the disjunctive combination
(l1 ∨ . . . ∨ ln) is called a clause and the conjunctive combination (l1 ∧ . . . ∧ ln) is called a
cube.

A QBF is in prenex conjunctive normal form (PCNF) if its propositional formula is a
conjunction over clauses, i.e., in conjunctive normal form (CNF). We call the propositional
part of a QBF in PCNF the matrix and we use Ci to refer to clause i of the matrix where
unambiguous. For convenience, we treat clauses and matrices as a sets of literals and clauses,
respectively, and use the usual set operations for their manipulation. When given matrices,
we typically omit the ∧ operator between clauses. Every QBF in prenex form can be
transformed into an equisatisfiable formula in PCNF using the Tseitin transformation [74]
with a linear increase in the size of the formula and number of existential variables.

Example 1. The following quantified Boolean formula

∃v, w.∀x.∃y, z. (w ∨ x ∨ y)(v ∨ w)(x ∨ y)(v ∨ z)(z ∨ x)

is in the 3QBF fragment and its propositional part is in conjunctive normal form.

A QBF is in negation normal form (NNF) if negation is only applied to variables, that
is, a formula in NNF contains only conjunctions, disjunctions, and literals. Every QBF
can be transformed into NNF by at most doubling the size of the formula and without
introducing new variables as it is the case for the Tseitin transformation.

Example 2. The following quantified Boolean formula

∃x.∀v, w. ∃y. (x ∨ v ∨ (y ∧ w)) ∧ (x ∨ (v ∧ w) ∨ y) ∧ (v ∨ w ∨ y)

159

L. Tentrup

has two quantifier alternations and its propositional formula is in negation normal form.

2.2 Boolean Assignments and Functions

Given a subset of variables V ⊆ V, a Boolean assignment of V is a function α : V → B that
maps each variable v ∈ V to either true (T) or false (F). We write αV when the domain of
α, written dom(α), is not clear from the context. A partial assignment β : V → B⊥, where
B⊥ := B ∪ {⊥}, may additionally set variables v ∈ V to an undefined value ⊥. We use the
notation α+ and α− to denote the partial assignment that retains positive and negative
variable assignments, respectively. It is defined as

α+(v) =

{
α(v) if α(v) = T

⊥ otherwise
and α−(v) =

{
α(v) if α(v) = F

⊥ otherwise

for every v ∈ dom(α). We use the replacement operator βV [⊥ 7→ b] for b ∈ B to denote the
assignment where undefined is replaced by a default value b. It is defined as

βV [⊥ 7→ b](v) :=

{
βV (v) if βV (v) 6= ⊥
b otherwise

for every v ∈ V . To restrict the domain of an assignment α to a set of variables V , we
write α|V . For two assignments α and α′ with domains V = dom(α) and V ′ = dom(α′), we
define the combination α t α′ : V ∪ V ′ → B as

(α t α′)(v) =

{
α′(v) if v ∈ V ′

α(v) otherwise
.

Note that α′ overrides α for every element v ∈ V ∩ V ′ in the intersection of their domains.
If the domains of α and α′ are disjoint, that is, dom(α) ∩ dom(α′) = ∅, we denote the
combination by α ṫ α′. For two partial assignments βV and β′V , we define the intersection
operation βV u β′V : V → B⊥ as

(βV u β′V)(v) =

{
βV (v) if βV (v) = β′V (v)

⊥ otherwise
.

We define the complement α to be α(v) = ¬α(v) for all v ∈ dom(α). The complement of a
partial assignment is defined analogously with ¬⊥ = ⊥. We use the notation ϕ[α] to replace
variables v ∈ dom(α) with their assignments α(v). We denote by αbV := {v ∈ V | αV (v) = b}
the subset of variables that are assigned to b ∈ B, i.e., the preimage of αV with respect to
b. The set of assignments and the set of partial assignments of V is denoted by A(V) and
A⊥(V), respectively.

A Boolean function f : A(V)→ B maps assignments of V to true or false. An assignment
αV over variables V can be represented by the conjunctive formula

∧
v∈αT

V
v ∧

∧
v∈αF

V
¬v,

that is, the only assignment over variables V that satisfy this formula is the assignment
αV . Similarly, Boolean functions can be represented by propositional formulas over the

160

CAQE and QuAbS: Abstraction Based QBF Solvers

variables in their domain. Let ϕ[fv] be the formula where occurrences of v are replaced by
the propositional representation of fv. It is defined as

x[fv] =

{
fv if v = x

x otherwise

(¬ϕ)[fv] = ¬(ϕ[fv])

(ϕ ∨ ψ)[fv] = (ϕ[fv]) ∨ (ψ[fv])

(∃x. ϕ)[fv] =

{
ϕ[fv] if v = x

∃x. (ϕ[fv]) otherwise

For example, let ϕ = ∀x.∃y. (x∨¬y)∧(¬x∨y) and let fy(x) = x, then ϕ[fy] = ∀x. (x∨¬x)∧
(¬x ∨ x). We use a function g : A(X)→ A(Y) that maps assignments of X to assignments
of Y to represent multiple Boolean functions and define the replacement operator ϕ[g] ac-
cordingly. For example, given another Boolean function fy′ : A({x})→ B, the combination
with fy is gy,y′ : A({x})→ A({y, y′}) such that gy,y′(x) = {y 7→ fy(x), y′ 7→ fy′(x)}.

2.3 Semantics

We fix a set of variables V ⊆ V. The satisfaction relation � ⊂ A(V)× B(V) is defined as

α � v if α(v) = T,
α � ¬ϕ if α 2 ϕ,
α � ϕ ∨ ψ if α � ϕ or α � ψ, and
α � ∃v. ϕ if there exists some α′ : A({v})→ B such that α ṫ α′ � ϕ.

QBF satisfiability is the problem to determine, for a given QBF Φ, the existence of an
assignment α for the free variables free(Φ) such that the relation � holds. In this case,
we call α a satisfying assignment and say that α satisfies Φ. If α 2 Φ, we say that α
falsifies Φ. For a closed form QBF Φ, the QBF satisfiability problem is equivalent to the
validity problem, which asks if all assignments satisfy Φ, as the problem reduces to checking
whether {} � Φ where {} denotes the empty assignment. For formulas in prenex form with
propositional formula ϕ, the QBF satisfiability problem can be interpreted as a two-player
game: Based on the order of quantifiers given by the quantifier prefix, the existential player
∃ chooses assignments of existential variables with the aim to satisfy ϕ, while the universal
player ∀ chooses assignment of universal variables in order to falsify ϕ. The satisfiability
game is determined, that is, for every QBF, either the existential player or the universal
player has a winning strategy.

For satisfiable QBFs the winning strategy for the existential player is called a Skolem
function f : A(V∀) → A(V∃) which maps assignments of universal variables V∀ to assign-
ments of existential variables V∃, such that ϕ[f] is valid. For unsatisfiable QBFs, the winning
strategies are defined dually, i.e., f : A(V∃) → A(V∀) such that ϕ[f] is unsatisfiable, and
are called Herbrand functions. Intuitively, Skolem and Hebrand functions are well-formed
if every assigned variable depends solely on its dependencies as given by the quantifier
prefix. We formalize this intuition in the following using the concept of dependencies and
consistency.

161

L. Tentrup

An existentially quantified variable v depends on all universally quantified variables
that are bound prior to v. A universally quantified variable v depends on all existentially
quantified variables bound prior to v as well as the free variables. A free variable v has
no dependencies, i.e., can only be instantiated by constants. The set of dependencies of a
variable v ∈ V is denoted by dep(v). For a set of variables V , we define dep(V) as the union
over the dependencies

⋃
v∈V dep(v).

A function fX is well-formed if the assignments are consistent with respect to the
dependencies of X, i.e., for every x ∈ X and every pair of assignments αV and α′V with
V = dep(X) and αV |dep(x) = α′V |dep(x) it holds that fX(αV)(x) = fX(α′V)(x). In other
words, fX has to produce the same output for x ∈ X if the dependencies of x are the same.

3. Solving QBF with One Quantifier Alternation

We start the description of the clausal abstraction algorithm by considering only the one-
alternation fragment of QBF, called 2QBF. In this fragment, the existential variables have
complete information, i.e., they depend on the complete set of universal variables. The
reasons for choosing 2QBF as a starting point are manifold; it is in some sense the sim-
plest extension of propositional logic that includes quantification and allows us to introduce
the core ideas, notation, and terminology behind the clausal abstraction algorithm. After
discussing the restricted fragment, we generalize the algorithm to arbitrary quantifier alter-
nations in Section 4. For this section, we fix some 2QBF ∀X.∃Y. ϕ with universal variables
X, existential variables Y , and matrix ϕ.

3.1 Algorithm

Preliminaries. We use a generic solving function sat(θ, α) for propositional formula θ
and assignment α, that returns whether θ ∧ α is satisfiable. In the positive case, it returns
Sat(α′), where α′ is a satisfying assignment of θ with α v α′. In the negative case, it returns
Unsat(β), where β v α is a partial assignment such that θ ∧ β is unsatisfiable.

In the following algorithms, we make use of pattern matching on well-structured objects,
such as the result of the call to sat and the quantifier prefix of quantified Boolean formulas.
For example, to determine the leading quantifier of some QBF Φ, we write

match Φ as
∃X.Ψ ⇒ [. . .] . leading existential quantifier

∀X.Ψ ⇒ [. . .] . leading universal quantifier

Additionally, we allow wildcards, denoted by “ ”, in match arms.

Overview. The clausal abstraction algorithm is based on the idea of using two competing
SAT solvers, one for the universal quantifier that tries to falsify clauses and one for the
existential quantifier that has to satisfy the remaining clauses in the matrix. The algorithm
solve∀∃ is shown in Algorithm 1. After initializing the abstractions, which is detailed
below, the algorithm repeatedly solves θX using a SAT solver. θX contains variables X
and satisfaction variables S, one variable si ∈ S for every clause Ci ∈ ϕ that represents
whether this clause is satisfied by an assignment αX of variables X. Every assignment α
with α � θX is a combination of an assignment α|X of variables X and an assignment α|S

162

CAQE and QuAbS: Abstraction Based QBF Solvers

Algorithm 1 Clausal Abstraction Algorithm for 2QBF

1: procedure solve∀∃(∀X.∃Y. ϕ)
2: initialize abstractions θX and θY with shared variables S = {si | Ci ∈ ϕ}
3: loop
4: match sat(θX , {}) as
5: Unsat() ⇒ return Sat

6: Sat(α) ⇒
7: match sat(θY , α|S) as
8: Unsat() ⇒ return Unsat(α|X) . α|X 2 ∃Y. ϕ
9: Sat() ⇒ θX ← θX ∧

∨
s∈(α|S)T

s . refine θX

10: end loop
11: end procedure

of variables S. In the following SAT call to θY , the assignment α|S representing satisfied
clauses is assumed. In case θY [α|S] is satisfiable, we found a matching Y assignment to the
given X assignment, thus, the abstraction θX is refined and the algorithm proceeds with
the next iteration. The algorithm terminates, returning satisfiable and unsatisfiable, if the
SAT call to θX and θY is unsatisfiable, respectively. In the former case, we have depleted
all universal assignments and in the latter case there is an assignment αX such that there
is no matching Y assignment.

Abstractions θX and θY . The abstraction is the core data structure of the algorithm,
representing, for each player, an over-approximation of the winning assignments and the
resulting effect those assignments have on the satisfaction of clauses. The abstraction θY
represents the winning assignments αY of the existential player under the condition that a
certain set of clauses is already satisfied by the prior universal assignment αX . Thus, θY
is satisfiable if, and only if, every clause in the matrix is satisfied, either by an assignment
to Y or by an assignment of the outer universal variables. For universal quantifier ∀X, the
abstraction θX represents which clauses are satisfied with respect to an assignment to X.
During the execution of the algorithm, we learn that the universal player cannot falsify ϕ
when a certain set of clauses is satisfied by αX , thus, we refine θX to make sure that one of
the previously satisfied clauses is falsified, which eliminates losing assignments αX .

The interaction between θX and θY is established by a common set of clause satisfaction
variables S, one variable si ∈ S for every clause Ci ∈ ϕ. Given an assignment αX and some
clause Ci ∈ ϕ, we guarantee that si is assigned to true if αX � Ci|X . Thus, if si is assigned
to false, the existential quantifier has to satisfy clause Ci. We define the abstraction that
implements those requirements for a clause Ci ∈ ϕ as

clabs∀X(Ci) := si ∨ ¬Ci|X =
∧

l∈Ci|X

l ∨ si and (1)

clabs∃Y (Ci) := si ∨ Ci|Y (2)

163

L. Tentrup

for universal and existential quantifier, respectively. The clausal abstraction for the univer-
sal quantifier block ∀X and the existential quantifier block ∃Y is defined as

θX :=
∧
Ci∈ϕ

clabs∀X(Ci) and θY :=
∧
Ci∈ϕ

clabs∃Y (Ci) . (3)

Lastly, a refinement for θX ensures that from a set of clauses that was previously satisfied
(si set to true) one is falsified, thus we add the clause∨

s∈αT
S

s (4)

to the abstraction θX . We conclude the description of the algorithm by a detailed example.
In the following section, we show that the algorithm correctly determines the result of the
satisfiability problem for 2QBF.

Example 3. Consider the following 2QBF

∀x. ∃y, z. (x ∨ z)(x ∨ y)(x ∨ y ∨ z)(z ∨ x).

By the definitions above, the resulting abstractions are

θ{x} = (s1 ∨ x)(s2 ∨ x)(s3 ∨ x)(s4 ∨ x) and

θ{y,z} = (s1 ∨ z)(s2 ∨ y)(s3 ∨ y ∨ z)(s4 ∨ z) .

We show a possible execution of solve∀∃ on the example formula:

• sat(θ{x}, {}) = Sat({x 7→ F, s1 7→ F, s2 7→ T, s3 7→ T, s4 7→ T})

• sat(θ{y,z}, {s1 7→ F, s2 7→ T, s3 7→ T, s4 7→ T}) = Sat({z 7→ T, y 7→ F})

• θ′{x} = θ{x} ∧ (s2 ∨ s3 ∨ s4)

• sat(θ′{x}, {}) = Sat({x 7→ T, s1 7→ T, s2 7→ F, s3 7→ F, s4 7→ F})

• sat(θ{y,z}, {s1 7→ T, s2 7→ F, s3 7→ F, s4 7→ F}) = Unsat

• solve∀∃ returns Unsat({x 7→ T})

3.2 Correctness

The correctness argument relates variable assignments to assignments of the satisfaction
variables S. We start by stating two properties over the abstractions θX and θY that
immediately follow from their definitions.

Lemma 1. Let α be a satisfying assignment of θX and let αS be some arbitrary assignment
over variables S. It holds that

1. α(si) = F⇒ α|X 2 Ci|X for every clause Ci ∈ ϕ and

2. θY [αS] =
∧

si∈αF
S

Ci|Y .

164

CAQE and QuAbS: Abstraction Based QBF Solvers

For termination, we need to argue that the main loop in Algorithm 1 cannot be executed
infinitely often. We give an implicit ranking function, based on the following observations.
First, the number of different refinements, i.e., clauses over S, is bounded by the number
of variables in S. Second, during the execution of the algorithm, every refinement clause
(line 9) is different, that is, it is impossible that two refinements are the same.

Lemma 2. There are only finitely many different refinement clauses and the refinements
during the execution of Algorithm 1 are pairwise different.

Proof. The number of different refinement clauses is bounded by the number of subsets of S
by the definition in Equation 4, i.e., are at most 2|S| different refinement clauses. Assume for
contradiction that there is an execution of the algorithm that produces the same refinement
clause R, thus, according to line 9 of Algorithm 1 there are two assignments α and α′ such
that (α|S)1 = (α′|S)1. It holds that R =

∨
s∈(α|S)T s and thus α′ 2 R. As θX contains the

clause R after the refinement with α and α′ satisfies θX , we derive a contradiction.

Given those lemmas, we can prove the correct termination for true formulas.

Theorem 1. If ∀X.∃Y. ϕ is true, Algorithm 1 returns Sat.

Proof. Let ∀X.∃Y. ϕ be true. By the QBF semantics, there is a Skolem function fY : A(X)→
A(Y) such that ϕ[fY] is valid. Let αX and αS be arbitrary assignments satisfying θX (line 4).
By Lemma 1, it holds that

θY [αS] =
∧

si∈αF
S

Ci|Y ⊆
∧
Ci∈ϕ

αX2Ci|X

Ci|Y = ϕ[αX] .

Hence, αY := fY (αX) is a satisfying assignment for θY [αS] as it satisfies ϕ[αX]. The
formula θY [αS] in line 7 is, thus, always satisfiable and the return in line 8 is unreachable.
Termination is guaranteed by Lemma 2.

For the reverse direction, we need additional properties regarding the refinement oper-
ation that we state in the following. Let αX be an assignment and let θX and θ′X be the
abstraction before and after the refinement with some assignment αS , respectively. We say
that αX is excluded from θX if θ′X [αX] is unsatisfiable whereas θX [αX] is satisfiable.

Lemma 3. If an assignment αX is excluded from θX by a refinement with αS, it holds that
αS(si) = T implies that αX � Ci|X for every Ci ∈ ϕ.

Proof. Let αX and αS be assignments such that αX is excluded from θX by a refinement
with αS , that is, θX [αX] is satisfiable and the refinement clause ψ =

∨
s∈αT

S
s (line 9 of

Algorithm 1) excludes αX , i.e., θ′X = θX ∧ ψ and θ′X [αX] is unsatisfiable. θ′X entails
ψ′ :=

∨
si∈αT

S
¬Ci|X (see the definition of the universal abstraction in Equation 1) and it

holds that αX 2 ψ′ (assuming otherwise would contradict that θ′X [αX] is unsatisfiable).
Thus, it holds that αX �

∧
si∈α1

S
Ci|X .

Theorem 2. If ∀X.∃Y. ϕ is false, Algorithm 1 returns Unsat(αX) where ϕ[αX] is unsatis-
fiable.

165

L. Tentrup

Proof. Let ∀X.∃Y. ϕ be false. By the QBF semantics, there exists some assignment αX
such that ϕ[αX] is unsatisfiable. Let αS be the assignment such that αS(si) = T if, and
only if, αX � Ci|X for every Ci ∈ ϕ. The combined assignment αS ṫ αX is a satisfying
assignment for θX in line 4. It holds that θY [αS] =

∧
si∈αF

S
Ci|Y = ϕ[αX] by the definition of

the existential abstraction. As ϕ[αX] is unsatisfiable, θY [αS] is unsatisfiable as well, leading
to the return in line 8.

To conclude the proof, it remains to show that this αX is not excluded by some refine-
ment in line 9. Assume for contradiction that it is excluded by some assignment αS , i.e.,
by Lemma 3 for every Ci ∈ ϕ it holds that αS(si) = T⇒ αX � Ci|X which is equivalent to
αX 2 Ci|X ⇒ αS(si) = F. It holds that

ϕ[αX] =
∧
Ci∈ϕ

αX2Ci|X

Ci|Y ⊆
∧

si∈αF
S

Ci|Y = θY [αS] ,

thus, from the unsatisfiability of ϕ[αX] follows that θY [αS] is unsatisfiable as well, contra-
dicting the refinement of αS . As there are only finitely many different refinements, the query
in line 4 eventually returns the assignment αX or some other unsatisfying assignment.

3.3 Optimizations

In this section, we investigate improvements to the algorithm stated in Algorithm 1. Those
improvements fall in two categories. The first category is concerned with simplifying the
propositional abstractions with the intention to improve the satisfiability check and the
second category is concerned with potentially reducing the number of iterations of the
algorithm.

Abstraction Improvements. In the case that a clause Ci ∈ ϕ contains only existential
quantified variables, si can be assumed to be false. Thus, we can modify the definitions of
clabsQ , given in Equation 1 and Equation 2 to clabs∀(X,Ci) = T and clabs∃(Y,Ci) = Ci if
Ci|Y = Ci. Note that in this case, the variable si does not appear in the abstraction.

Balabanov et al. [4] describe two further simplifications for the universal abstraction:

• If some clause Ci ∈ ϕ is a universal unit clause, i.e., C|X = {l} for some literal l with
var(l) ∈ X, then the shared variable si can be replaced by the negation l of the literal.

• If there is a pair of clauses Ci, Cj ∈ ϕ with i 6= j such that those clauses are equal
with respect to universal literals, i.e., Ci|X = Cj |X , then the same shared variable si
can be used for both clauses.

Lastly, one can use the knowledge of the objective of the universal quantifier to improve
assignments αS . As the variables S occur pure in the abstraction θX , the SAT solver may
set all of them to false initially. For SAT solver that support setting a default polarity on
decisions, this can be used to improve the initial assignment. Alternatively, the problem
could be reformulated as a maximum satisfiability (MaxSAT) optimization problem.

Algorithmic Improvements. Given assignments αS and αX from the SAT solver in
line 4, αS may not be optimal in the following sense: there can be some clause Ci ∈ ϕ

166

CAQE and QuAbS: Abstraction Based QBF Solvers

where αS(si) = T but the assignment αX does not satisfy Ci|X , i.e., αX � ¬Ci|X . This
is due to the implication in the definition of clabs∀ in Equation 1. We circumvent this by
applying a step after line 4 that optimizes αS with respect to αX , i.e., we set αS(si) = F for
every clause Ci ∈ ϕ where αX � ¬Ci|X . This change is also compatible with the correctness
proof in the previous section, especially Lemma 1 still holds after the αS optimization.

Given satisfying assignments αS and αY from the SAT solver in line 7, the assignment
αY may satisfy clauses that are not required by the assignment αS , that is, the clause is
already satisfied by the universal variable assignment represented by αS . This is the case
if there is some clause Ci ∈ ϕ with αY � Ci|Y and αS(si) = T. We use this information to
improve the refinement clause in Equation 4: For every such clause Ci, we set αS(si) = F,
thus, reducing the number of literals in the refinement clause.

Another enhancement greedily flips variable assignments in αY if the resulting assign-
ment satisfies strictly more clauses. Let y ∈ Y be some existential variable. We can flip the
value of y if ϕ[αY t {y 7→ ¬αY (y)}] ⊆ ϕ[αY]. This greedy flipping may further improve the
effect of the previous optimization.

Balabanov et al. [4] noticed that under certain conditions, one can remove literals from
the refinement clause in Equation 4. If there are two clauses Ci and Cj with Ci|X ⊆ Cj |X and
αS(si) = αS(sj) = T, then we can set αS(sj) = F, which removes sj from the refinement
clause. This is due to the implications si → ¬Ci|X and sj → ¬Cj |X in the universal
abstraction, clabs∀ in Equation 1, and the implication ¬Cj |X =

∧
l∈Cj |X ¬l⇒

∧
l∈Ci|X ¬l =

¬Ci|X due to the fact that the literals in Cj |X are a superset of the literals in Ci|X .

The algorithmic optimizations are crucial for the performance of the algorithm as they
circumvent non-optimal assignments to satisfaction variables resulting from using impli-
cations in the definition of the abstraction (compared to the equivalences used in clause
selection [46]).

4. Solving QBF with Arbitrary Quantifier Alternations

We now generalize the 2QBF algorithm to QBFs with an arbitrary number of alternations
by providing an algorithm that does recursion on the quantifier prefix. The main insight in
this generalization is that the existential player now has a choice to either directly satisfy
a clause or assume that an inner quantifier block will satisfy it. For this section, we fix
some quantified Boolean formula Φ in closed prenex conjunctive normal form (PCNF) with
matrix ϕ. We assume that Φ is universally reduced, that is, for every clause Ci ∈ ϕ and
every universal literal l∀ ∈ Ci, there is an existential literal l∃ ∈ Ci that depends on l∀,
formally var(l∀) ∈ dep(var(l∃)). If this property is violated for some clause Ci and literal
l∀ ∈ Ci, then l∀ can be removed from Ci, which is called universal reduction [49].

4.1 Algorithm

Overview. The overall approach of the algorithm is to construct a propositional formula
θX for every quantifier block QX that represents an over-approximation of the winning
assignments αX and the effect of those assignments on the matrix, that is, which clauses
are satisfied and falsified for existential and universal quantifiers, respectively. The main
algorithm solve is depicted in Algorithm 2. It takes as an input a quantified Boolean

167

L. Tentrup

Algorithm 2 Clausal Abstraction Algorithm for QBF

1: procedure solve(Φ)
2: initialize abstraction θX for every quantifier block QX in Φ
3: match Φ as
4: ∃X.Ψ ⇒ return solve∃(X, Ψ, {si 7→ F | Ci ∈ ϕ})
5: ∀X.Ψ ⇒ return solve∀(X, Ψ, {si 7→ F | Ci ∈ ϕ})
6: end procedure

formula Φ, initializes the abstraction for every quantifier block of Φ, and then returns the
result of the call to solve∃ or solve∀, shown in Algorithm 3 and 4, depending on the
type of the leading quantifier block. The algorithm solveQ(X, Ψ, αS) determines whether
the quantified subformula QX.Ψ is satisfiable under the condition that some clauses are
already satisfied by assignments to variables bound at outer quantifiers (represented by αS
as discussed below).

The algorithms for quantified subformulas, solveQ , determine candidate assignments
to the variables bound at that quantifier that meet the quantifier’s objective (to satisfy and
falsify the formula for ∃ and ∀ quantifier, respectively), or give a reason why there is no
such assignment. If a quantifier is able to provide a candidate assignment, it is recursively
verified by proceeding to the inner quantified subformula. A conflict occurs when the current
assignment of variables definitely violates some clause (existential conflict) or satisfies all
clauses (universal conflict). In case of such a conflict, the reason for this conflict is excluded
at an outer quantifier level by refining the corresponding abstraction.

Abstraction θ. The formula θ represents, for every quantifier block, how the quantifier
blocks’s variables interact with the assignments of variables of other quantifier blocks. The
algorithm guarantees that whenever a candidate assignment is generated, all variables bound
at outer quantifier levels have a fixed assignment, and thus some (possibly empty) set of
clauses is already satisfied. At an existential quantifier, the corresponding player then tries
to satisfy more clauses with an assignment to the variables bound at this quantifier, while
the universal player tries to find an assignment that make it harder to satisfy all clauses.

As in the case for 2QBF in the previous section, the interaction of abstractions is estab-
lished by the clause satisfaction variables S with the same semantics as before, i.e., given
some quantifier block QX and assignment αV of outer variables V (w.r.t. QX), for every
clause Ci ∈ ϕ the satisfaction variable si ∈ S represents whether Ci is satisfied by αV . This,
however, is not enough for existential quantifiers as the existential player has the choice to
either satisfy the clause or assume that the clause will be satisfied by an assignment of
an inner quantifier. Thus, we add an additional set of variables A for every existential
quantifier block ∃X, called assumption variables, with the intended semantics that variable
ai is set to false implies that the clause Ci is satisfied at this quantifier level (either by an
assignment to X or an outer assignment αV abstracted by αS).

We are now going to define the abstraction that implements this intuition. Fix some
quantifier block QX. To define the abstraction for QX, we split a clause Ci into three

168

CAQE and QuAbS: Abstraction Based QBF Solvers

parts,

C<i := {l ∈ Ci | l bound before QX},
C=
i := {l ∈ Ci | var(l) ∈ X}, and

C>i := {l ∈ Ci | l bound after QX} .

By definition, it holds that Ci = C<i ∪̇ C=
i ∪̇ C>i .

For existential quantifiers, a clause Ci is encoded by a variable si that represents whether
the clause Ci is satisfied by an assignment to variables outer to Y , the literals of the
quantifiers’s variables, and a variable ai that indicates whether the clause is assumed to be
satisfied by an inner assignment. For existential quantifier ∃X, the clausal abstraction for
clause Ci ∈ ϕ is defined as

clabs∃X(Ci) =

{
si ∨ C=

i if ∃X is the innermost quantifier

si ∨ C=
i ∨ ai otherwise

(5)

During the execution of the algorithm, the algorithm potentially visits each quantifier
multiple times to generate candidate assignments and assumptions. If those assumptions
turn out to be wrong, that is, the corresponding assignment is losing for the existential
player, the abstraction is refined. Such a refinement is a clause that contains only assump-
tion variables A and represents sets of clauses that together cannot be satisfied by the inner
quantifier.

The abstraction for universal quantifiers ∀X is unchanged from the 2QBF algorithm,
that is, we define

clabs∀X(Ci) = si ∨ ¬C=
i =

∧
l∈C=

i

l ∨ si . (6)

In contrast to existential quantifiers, universal quantifiers do not have separate sets of
variables S and A; to define the abstraction we use only satisfaction variables S. This is
merely a minor simplification that exploits the formula structure of universal quantifiers.
The universal quantifier cannot make assumptions on the inner quantifiers: either a clause
is falsified by some assignment to X or it is not. Refinements are represented as clauses
over literals from variables S.

The clausal abstraction θX for some quantifier block QX is defined as the conjunction
over the abstractions of clauses

θX :=
∧
Ci∈ϕ

clabsQX(Ci) . (7)

Algorithm for Existential Quantifiers. The algorithm solve∃ is shown in Algo-
rithm 3. It decides whether the QBF ∃X.Φ is satisfiable under the assumption that the
matrix ϕ is restricted according to the assignment αS . The algorithm repeatedly generates
candidate assignments by means of the abstraction θX (line 3). If the abstraction returns
Unsat, there is no winning assignment for this quantifier, thus, the algorithm returns Unsat
as well (line 10). Further, the reason for the negative result is given, represented by the
assignment βS , that indicates which clauses could not be satisfied simultaneously. If the ab-
straction returns Sat with assignment α we distinguish two cases. The first case is the base

169

L. Tentrup

Algorithm 3 Algorithm for existentially quantified formulas

1: procedure solve∃(X, Φ, αS)
2: loop
3: match 〈sat(θX , αS), Φ〉 as . assume satisfied and falsified clauses
4: 〈Sat(α), ∀Y.Ψ〉 ⇒ . Φ = ∀Y.Ψ
5: α′S ← αS t {si 7→ T | ai ∈ α|0A} . update satisfied clauses
6: match solve∀(Y , Ψ, α′S) as . recursive verification
7: Sat(βS) ⇒ return Sat(βS u α+

S)

8: Unsat(βS) ⇒ θX ← θX ∧
∨
si∈β0

S
ai . refine θX

9: 〈Sat(), 〉 ⇒ return Sat(α+
S) . Φ is propositional

10: 〈Unsat(βS), 〉 ⇒ return Unsat(βS)

11: end loop
12: end procedure

case of the recursion, that is, the inner formula is quantifier-free. The algorithm returns
Sat together with the partial assignment α+

S indicating which clauses have to be satisfied
by outer quantifier such that the assignment αX satisfies the matrix ϕ.

If the inner subformula is quantified, we split α into two parts αA = α|A and αX = α|X .
Then in line 5 we update αS by marking those clauses as satisfied (set si to T) that αX
satisfies and continue with the recursive verification using solve∀ (line 6) which, again,
could either be Sat or Unsat. In the first case, the partial assignment βS (line 7) indicates
the clauses that are required to be satisfied. Before returning, we adapt this witness by the
operation βSuα+

S in line 7 which removes those clauses that are already satisfied by αX , i.e.,
clauses Ci where αS(si) = F and αA(ai) = F. In the second case where the verification is
unsuccessful, the abstraction θX is refined by enforcing that some clause from the previously
unsatisfied clauses is satisfied, before continuing with the next iteration.

Algorithm for Universal Quantifiers. The algorithm solve∀, shown in Algorithm 4,
shares the same underlying concept and structure as solve∃ and differs only in minor

Algorithm 4 Algorithm for universally quantified formulas

1: procedure solve∀(X, Φ, αS)
2: loop
3: match 〈sat(θX , α

+
S), Φ〉 as . assume satisfied clauses only

4: 〈Sat(α), ∃Y.Ψ〉 ⇒ . Φ = ∃Y.Ψ
5: match solve∃(Y , Ψ, α|S) as . recursive verification
6: Unsat(βS) ⇒ return Unsat(βS)

7: Sat(βS) ⇒ θX ← θX ∧
∨
si∈β1

S
si . refine θX

8: 〈Unsat(βS), 〉 ⇒ return Sat(βS)

9: end loop
10: end procedure

170

CAQE and QuAbS: Abstraction Based QBF Solvers

details that we discuss in the following. Due to the different abstractions, the algorithm
only assumes already satisfied clauses (by assignments of outer variables), represented by
α+
S , when generating the candidate assignment in line 3. This also means that there is no

need to update αS after line 4, as α|S already represents all satisfied clauses due to the
definition of the universal abstraction. Further, the base case is missing as it is guaranteed
that every universal quantifier is followed by an existential quantifier (otherwise it can be
removed by universal reduction). The refinement in line 7 states that one of the previously
satisfied clauses has to be falsified, starting with the next iteration.

Example 4. Consider again the formula given in Example 1:

∃v, w. ∀x.∃y, z. (w ∨ x ∨ y)(v ∨ w)(x ∨ y)(v ∨ z)(z ∨ x)

We build the abstractions

θ{v,w} = (s1 ∨ w ∨ a1)(s2 ∨ v ∨ w ∨ a2)(s3 ∨ a3)(s4 ∨ v ∨ a4)(s5 ∨ a5),

θ{x} = (s1 ∨ x)(s3 ∨ x)(s5 ∨ x), and

θ{y,z} = (s1 ∨ y)(s2)(s3 ∨ y)(s4 ∨ z)(s5 ∨ z) .

We give a possible execution of algorithm solve. To improve readability, we use the propo-
sitional representation for assignments as cubes. Note that clause C2 contains only variables
of the outermost quantifier, thus, setting a2 to true is a useless assumption. In Section 4.3
we discuss this (and other) improvements for the basic algorithm presented here, for now
we just assume that the initial abstraction θ{v,w} is θ{v,w} ∧ a2.

• solve∃({v, w}, ∀x.∃y, z. ϕ, s1s2s3s4s5)

• sat(θ{v,w}, s1s2s3s4s5) = Sat(vwa1a2a3a4a5)

• α′S = s1s2s3s4s5

• solve∀({x}, ∃y, z. ϕ, α′S)

– sat(θ{x}, s2s4) = Sat(xs1s2s3s4s5)

– solve∃({y, z}, ϕ, s1s2s3s4s5)

∗ sat(θ{y,z}, s1s2s3s4s5) = Sat(y z)

∗ return Sat(s1s2s3s4)

– θ′{x} = θ{x} ∧ (s1 ∨ s2 ∨ s3 ∨ s4)

– sat(θ{x}, s2s4) = Sat(xs1s2s3s4s5)

– solve∃({y, z}, ϕ, s1s2s3s4s5)

∗ sat(θ{y,z}, s1s2s3s4s5) = Unsat(s1s3)

∗ return Unsat(s1s3)

– return Unsat(s1s3)

• θ′{v,w} = θv,w ∧ (a1 ∨ a3)

171

L. Tentrup

• sat(θ′{v,w}, s1s2s3s4s5) = Sat(vwa1a2a3a4a5)

• α′S = s1s2s3s4s5

• solve∀({x}, ∃y, z. ϕ, α′S)

– sat(θ{x}, s1s2) = Sat(xs1s2s3s4s5)

– solve∃({y, z}, ϕ, s1s2s3s4s5)

∗ sat(θ{y,z}, s1s2s3s4s5) = Unsat(s4s5)

∗ return Unsat(s4s5)

– return Unsat(s4s5)

• θ′′{v,w} = θ′v,w ∧ (a4 ∨ a5)

• sat(θ′′{v,w}, s1s2s3s4s5) = Unsat(s1s2s3s4s5)

• return Unsat(s1s2s3s4s5)

4.2 Correctness

The proof of correctness generalizes the arguments made in Section 3.2 to formulas with
arbitrary prefixes. Thus, the correctness argument presented in this section is an inductive
argument over the quantifier prefix.

A substantial part of the formal arguments relies on the relation between the abstractions
and the quantified Boolean formula that we formalize in the following. Let QX and αS be
some quantifier and an assignment of satisfaction variables, respectively. In combination,
we can interpret them as a new QBF that starts with the quantifier block QX, removes all
literals that are bound prior to QX, and has only the clauses that are marked as unsatisfied
by αS . To formalize this intuition, we define an operator Φ|QX

αS
that restricts the matrix ϕ in

a QBF Φ to those clauses Ci ∈ ϕ such that αS(si) = F and removes all leading quantifiers
up to QX. In detail, the resulting QBF has the same quantifier prefix starting with QX
and the matrix {C≥i | Ci ∈ ϕ ∧ αS(si) = F} where C≥i refers to quantifier block QX. Note
that variables bound by outer quantifiers are removed from the matrix. As an example,
consider the formula Φex = ∃v, w. ∀x.∃y, z. (w ∨ x ∨ y)(v ∨w)(x ∨ y)(v ∨ z)(z ∨ x) from the
previous example: The formula Φex |∀xs1s2s3s4s5 is equal to ∀x.∃y, z. (x ∨ y)(x ∨ y)(z ∨ x).

We start by stating simple properties about the abstractions after assuming some as-
signment αS . Those are used in the induction proofs below.

Lemma 4. Let Φ be a QBF with matrix ϕ and let αS be an assignment over variables S.

1. Let ∃X be the innermost quantifier block. It holds that θX [αS] =
∧
si∈α0

S
C=
i which is

equisatisfiable to Φ|∃XαS
.

2. Let ∃X be a (non-innermost) quantifier block of Φ. It holds that θX [αS] =
∧
si∈α0

S
(C=

i ∨ ai).

3. Let ∀X be a quantifier block of Φ. It holds that θX [α+
S] =

∧
si∈α0

S
(si ∨ ¬C=

i).

Proof. Follows immediately from the definition of the abstraction θX .

172

CAQE and QuAbS: Abstraction Based QBF Solvers

Let QX.QY be a quantifier alternation of Φ. In the following proofs, we have to trans-
form an assignment αS of satisfaction variables (w.r.t. QX) to an assignment of satisfaction
variables with respect to QY by applying the effect of an assignment αX to the variables X.
Often, we will argue over the “optimal” assignment α∗S of the satisfaction variables S in the
abstraction θX to relate Φ|QY

α∗S
with (Φ|QX

αS
)[αX]. The following lemma states this connection

formally.

Lemma 5. Let QX.QY be a quantifier alternation of Φ and let αX and αS be assignments
as defined before. Further, let α∗S be defined such that α∗S(si) = T if, and only if, αS(si) = T
or αX � Ci|X . It holds that (Φ|QX

αS
)[αX] = Φ|QY

α∗S
.

Proof. The quantified formulas (Φ|QX
αS

)[αX] and Φ|QY

α∗S
have the same prefix (both starting

with QY) and the same matrix ∧
Ci∈ϕ

αS(si)=F∧αX2Ci|X

C>i

︸ ︷︷ ︸
> w.r.t. QX

=
∧
Ci∈ϕ

α∗S(si)=F

C≥i

︸ ︷︷ ︸
≥ w.r.t. QY

.

We now have the necessary preconditions to state the inductive arguments formally. The
following lemma states that solveQ returns Sat if the given QBF is satisfiable. Further,
the returned witness represents the necessary condition for satisfiability in form of a partial
assignment βS . Recall that for some partial assignment β, the notation β[⊥ 7→ b] describes
the complete assignment where undefined values are set to b ∈ B.

Lemma 6. Let QX.Ψ be a quantified subformula of a QBF Φ with matrix ϕ and let αS
be an assignment of variables S. If Φ|QX

αS
is true solveQ(X, Ψ, αS) returns Sat(βS) where

βS v α+
S and Φ|QX

βS [⊥7→F] is true.

Proof. We prove the statement by structural induction over the quantifier prefix. The base
case follows immediately by Lemma 4.1. For the induction step, we consider existential and
universal quantification separately. For existential quantifier ∃X, there has to be a satisfying
assignment αX by the QBF semantics and we show that this assignment is a satisfying
assignment for the abstraction θX . Together with the optimal set of assumptions, we can
use the induction hypothesis to build a witnessing partial assignment. Completeness follows
from the fact that there are only finitely many different refinement clauses and the property
that assignment αX cannot be excluded by some refinement. For universal quantifier ∀X,
every assignment αX is satisfying, thus, we show that every satisfying assignment of the
abstraction leads to a subsequent refinement. Thus, the abstraction becomes unsatisfiable
(under the given assumption αS) eventually, and the algorithm returns Sat with a witness
satisfying the requirement. The detailed proof follows.

Induction Base. Let ∃X.ϕ be the innermost quantifier of Φ and let αS be such that Φ|∃XαS

is true. By Lemma 4.1, the truth of Φ|∃XαS
witnesses the satisfiability of θX [αS]. Further,

the algorithm solve∃ returns Sat(α+
S) (line 9) and α+

S [⊥ 7→ F] is equivalent to αS .

173

L. Tentrup

Induction Step (Q = ∃). Let ∃X.∀Y be an arbitrary quantifier alternation of Φ and let
αS be such that Φ|∃XαS

is true. By Lemma 4.2 it holds that

θX [αS] =
∧

si∈α0
S

(C=
i ∨ ai) .

Since Φ|∃XαS
is true, there is a satisfying assignment αX for the variables X such that

(Φ|∃XαS
)[αX] (a QBF starting with quantifier ∀Y) is true. Define α∗A as α∗A(ai) = F if,

and only if, αX � C=
i . Thus, α∗A is the assignment with the smallest number of assump-

tions (α∗A(ai) = T) for the given assignment αX . The combined assignment αX ṫ α∗A is a
satisfying assignment of the initial abstraction θX [αS] by construction. We perform a case
distinction on the returned assignment of the SAT solver in line 3.

• We assume that the SAT call in line 3 returns αX ṫ α∗A. Let α∗S be the assignment
constructed from αS and α∗A in line 5. By Lemma 5, it holds that (Φ|∃XαS

)[αX] = Φ|∀Yα∗S is

true. By induction hypothesis we deduce that solve∀ returns Sat(βS) where Φ|∀YβS [⊥7→0]

is true. Subsequently, solve∃ returns Sat(β′S) (line 7), where β′S = βS u α+
S .

As the algorithm returns Sat(β′S), it remains to show that Φ|∃Xβ′S [⊥7→F] is true. For every

clause that is removed from βS by the intersection with α+
S , it holds that this clause is

satisfied by the assignment αX : Assume si ∈ S is removed by the intersection, that is,
βS(si) = T and αS(si) = F. We know that βS v α∗S

+ = (αS t {si 7→ 1 | ai ∈ α∗A
0})+

by induction hypothesis and the construction of α∗S in line 5. Hence, α∗A(ai) = F and
together with αS(si) = F we conclude that αX � C=

i due to the definition of clabs∃X
in Equation 5.

• Assume that the SAT call in line 3 returns an assumptio α′A different to α∗A. Either
α′A corresponds to αX and is non-minimal, i.e., α∗A

+ v α′A
+, or it corresponds to a

different assignment α′X . The call to solve∀ may either return Sat or a counterexam-
ple Unsat(βS). We consider the latter case as in the former case solve∃ also returns
Sat and the same argumentation as in the previous case applies.

The subsequent refinement in line 8 requires that one of the unsatisfied clauses Ci
with βS(si) = F has to be satisfied in the next iteration and the corresponding re-
finement clause is ψ :=

∨
si∈β0

S
ai. By construction of α∗A as the optimal assignment

corresponding to αX , α∗A 2 ψ contradicts that αX is a satisfying assignment of Φ|∃XαS
.

Hence, αX ṫα∗A is still a satisfying assignment for the refined abstraction θ′X [αS]. The
refinement also reduces the number of A assignments by at least 1 and, thus, brings
us one step closer to termination.

Induction Step (Q = ∀). Let ∀X.∃Y be a quantifier alternation of Φ and let αS be such
that Φ|∀XαS

is true. For every assignment αX , it holds that (Φ|∀XαS
)[αX] (a QBF starting with

quantifier ∃Y) is true. By Lemma 4.3 it holds that

θX [α+
S] =

∧
si∈α0

S

(si ∨ ¬C=
i) .

Thus, in order to set si to false for some i, every literal l ∈ C=
i has to be assigned negatively.

Fix some arbitrary assignment αX . Let α∗S be the assignment with α∗S(si) = T if, and only

174

CAQE and QuAbS: Abstraction Based QBF Solvers

if, αS(si) = T or αX � C=
i . Note that α∗S is minimal with respect to the number of

positively assigned si corresponding to αX . For every α′S returned from the SAT solver
in line 3 (assuming αX is fixed) it holds that α∗S

+ v α′S
+ by the minimality of α∗S . By

Lemma 5, it holds that (Φ|∀XαS
)[αX] = Φ|∃Yα∗S is true and thereby Φ|∃Yα′S is true as its matrix

contains a subset of the clauses of Φ|∃Yα∗S . By induction hypothesis we deduce that solve∃

returns Sat(β′S) where β′S v α′S and Φ|∃Yβ′s[⊥7→0] is true. The subsequent refinement in line 7

reduces the number of S assignments, so the abstraction θX becomes unsatisfiable (under
the assumption αS) eventually and the loop terminates with Sat(βS) in line 8. Let θ′X
be the abstraction after the termination of the loop. βS v α+

S holds as βS are the failed
assumptions of the SAT call sat(θ′X , α+

S).

It remains to show that Φ|∀XβS [⊥7→F] is true. Assume for contradiction that there is some

αX such that (Φ|∀XβS [⊥7→F])[αX] is false. We know that θ′X [αX ṫ βS] is unsatisfiable. Either

the initial abstraction θX [αX ṫ βS] was unsatisfiable, which leads to a contradiction due
to Lemma 5, or the assignment αX was excluded due to refinements. As the refinement
only excludes S assignments β′′S such that Φ|∃Yβ′′S [⊥7→F] is true, this leads to a contradiction

as well.

The following lemma states the reverse direction, that the algorithm terminates with
the correct result on false formulas. The arguments used in the proof are very similar to
the one for true formulas, but the differences are enough to justify their inclusion.

Lemma 7. Let QX.Ψ be a quantified subformula of a QBF Φ with matrix ϕ and let αS be
an assignment of variables S. If Φ|QX

αS
is false solveQ(X, Ψ, αS) returns Unsat(βS) where

βS v α−S and Φ|QX

βS [⊥7→T] is false.

Proof. The structure of the proof is similar to the proof of Lemma 6, that is, a structural
induction over the quantifier prefix. For existential quantifier ∃X, every assignment αX
leads to a false QBF. We can use the induction hypothesis for every assignment produced
by the abstraction θX as the abstraction computes an under-approximation of the satisfied
clauses with respect to αX . We show that the subsequent refinement excludes at least
the given assignment, thus, the abstraction becomes unsatisfiable eventually (under the
given assumption αS). It remains to show that the returned partial assignment satisfies
is a witness for the falsity of the subformula. For universal quantifier ∀X, there is some
assignment αX that leads to a false QBF. We show that the algorithm eventually reaches
this assignment (or another assignment that leads to unsatisfiability). Applying induction
hypothesis leads to a witnessing partial assignment. The detailed proof follows.

Induction Base. Let ∃X.ϕ be the innermost quantifier of Φ and let αS be such that Φ|∃XαS

is false. By Lemma 4.1, θX [αS] is unsatisfiable. Let β′S be the failed assumptions from the
call to sat(θX , αS), i.e., β′S v α

−
S and θX [β′S] is unsatisfiable. Again by Lemma 4.1 it holds

that Φ|∃Xβ′S [⊥7→T] is false which concludes the induction base as Unsat(β′S) is returned from
solve∃.

Induction Step (Q = ∃). Let ∃X.∀Y be a quantifier alternation of Φ and let αS be such
that Φ|∃XαS

is false. For every assignment αX , it holds that (Φ|∃XαS
)[αX] is false. By Lemma 4.2

175

L. Tentrup

it holds that

θX [αS] =
∧

si∈α0
S

(C=
i ∨ ai) .

The abstraction θX is initially satisfiable for every choice of αS (every ai can be set to true)3..
Let α be such a satisfying assignment of θX [αS]. We define αX := α|X and αA := α|A. By
Lemma 4.2, αX 2 C=

i implies that αA(ai) = T. We define the assignment with optimal
assumptions α∗A as α∗A(ai) = F if, and only if, αX � C=

i . Note that αX ṫ α∗A is a satisfying
assignment of θX [αS]. We show that even with optimal assumptions α∗A, the quantified
subformula is unsatisfiable and the subsequent refinement step excludes at least assignment
αS ṫ αA from the abstraction θX .

Let α′S and α∗S be the assignments after line 5 with respect to αA and α∗A, respectively.
From the construction, we know that αA

− v α∗A
−, by the optimality of α∗A, and thereby

α′S
+ v α∗S

+. We deduce that Φ|∀Yα′S is false, as the clauses in the matrix Φ|∀Yα′S are a superset

of those in the matrix of Φ|∀Yα∗S which is equal to (Φ|∃XαS
)[αX] by Lemma 5. By induction hy-

pothesis, solve∀ with assignment α′S returns Unsat(βS) such that βS v α′S
− and Φ|∀YβS [⊥7→T]

is false. As β0
S ⊆ α′S

0 = {si ∈ S | αS(si) = F ∧ αA(ai) = T}, the following refinement with
clause

∨
si∈β0

S
ai excludes assignment αS ṫ αA from θX . As there are only finitely many

refinement clauses, the SAT call in line 3 eventually becomes unsatisfiable when assuming
αS . Let θ′X be the abstraction at this point and let β′S be the failed assumptions, i.e.,
β′S v α

−
S .

Let α′′S = β′S [⊥ 7→ T]. It remains to show that Φ|∃Xα′′S is false. Assume for contradiction

that there is some αX such that (Φ|∃Xα′′S)[αX] is true. It holds that θ′X [αX ṫα′′S] is unsatisfiable,

whereas initially, θX [αX ṫ α′′S] is satisfiable. Thus, the assignment αX was excluded due
to refinements. As the refinement only excludes assignments corresponding to some S
assignment β′′S such that Φ|∀Yβ′′S [⊥7→T] is false, this contradicts our assumption.

Induction Step (Q = ∀). Let ∀X.∃Y be a quantifier alternation of Φ and let αS be such
that Φ|∀XαS

is false, that is, there is an assignment αX such that (Φ|∀XαS
)[αX] is false. By

Lemma 4.3 it holds that

θX [α+
S] =

∧
si∈α0

S

(si ∨ ¬C=
i) .

θX [α+
S] is initially satisfiable. Let α be a satisfying assignment of θX [α+

S] and define α′X :=
α|X and α′S = α|S . Given αX from above, we define the optimal corresponding assignment
α∗S as α∗S(si) = T if, and only if, αS(si) = T or αX � C=

i . Note that αS and α∗S correspond
to quantifier ∀X and ∃Y , respectively. If α′S = α∗S , the call to solve∃ returns Unsat(βS)
where βS v α∗S

− and Φ|∃YβS [⊥7→T] is false by induction hypothesis as (Φ|∀XαS
)[αX] = Φ|∃Yα∗S

(Lemma 5) is false. Subsequently, solve∀ returns Unsat(βS) (line 6). βS v α−S follows from
α∗S
− v α−S due to the monotonicity of the abstraction: if α∗S(si) = F, then αS(si) = F.

Let α′S 6= α∗S and assume that solve∃ returns Sat(βS). Subsequently, θX is refined by
adding the the clause ψ :=

∨
s∈β1

S
si. Assume for contradiction that α∗S 2 ψ, i.e., that α∗S is

excluded by the refinement. Remember that α∗S was constructed as the optimal assignment

3. In Section 4.3 we describe improvements of the abstraction.

176

CAQE and QuAbS: Abstraction Based QBF Solvers

corresponding to αX . Hence, the exclusion contradicts that αX is a witness that Φ|∀XαS

is false. Thus, αX ṫ α∗S remains a satisfying assignment of the refined abstraction. The
refinement reduced the number of S assignments and, thus, some falsifying assignment αX
is reached eventually.

Since the main algorithm solve directly calls into solveQ , the following theorem follows
immediately from Lemma 6 and 7.

Theorem 3. solve returns Sat if, and only if, Φ is true.

4.3 Optimizations

In this section, we introduce optimizations for the basic algorithm presented in Section 4.1.
We start with two optimizations already described in the initial paper describing clausal
abstraction [66]. We then proceed to improvements of the abstraction followed by algorith-
mic improvements. Some of these optimizations are generalized from the 2QBF fragment
in Section 3.3.

Stronger Refinements. An existential conflict for quantifier alternation ∃X.∀Y of QBF
Φ is a partial assignment βS such that Φ|∀YβS [⊥7→T] is false. Intuitively, βS represents a set of

clauses C = {Ci | si ∈ β0
S} that could not be satisfied by the inner quantifier, i.e., replacing

the matrix of Φ by C> = {C>i | si ∈ β0
S} results in a false QBF (Lemma 7). Refinements

for such a partial assignment (line 8 of Algorithm 3), thus, assert that one of these clauses
has to be satisfied at quantifier ∃X to prevent this situation.

In certain cases, we can strengthen the refinement by excluding a conjunction of “equiv-
alent” clauses, that are clauses that can replace the original clause and would let to the
same result. Let C be the representation of some existential conflict, let Ci ∈ C and let C′
be C \Ci. If there is some Cj ∈ ϕ, such that C>j ⊆ C

>
i , then C′∪Cj is an existential conflict

as well. Thus, we change the refinement to exclude all equivalent existential conflicts by
modifying it to ∨

si∈β0
S

∧
Cj∈ϕ

C>
j ⊆C

>
i

aj . (8)

In [72], we have shown that this improved refinement makes the underlying proof system
exponentially more succinct.

Tree-shaped Quantifier Prefix. As a preprocessing, we apply the well known mini-
scoping rule

∀X.∃Y ∃Z.ϕ(X,Y) ∧ ψ(X,Z) ≡ (∀X.∃Y. ϕ(X,Y)) ∧ (∀X.∃Z.ψ(X,Z)),

that is, at every existential quantifier block we search for a partitioning of the matrix into
independent formulas. By applying this rule bottom-up, we get a tree-shaped quantifier
prefix. Note, that this tree only branches after an existential quantifier, hence, we modify
the algorithm to split the current entry according to the partitioning and solve every child
individually. This can be used to solve independent branches in parallel [71].

177

L. Tentrup

Abstraction Improvements. We describe improvements to the way the abstractions
are built, that is, reducing the number of satisfaction and assumption variables. These
optimizations are similar to the ones described in Section 3.3. Fix some QBF Φ. Let ∃X.Ψ
be a quantified subformula of Φ and let Ci some clause. If C<i is empty, i.e., the clause
contains no variable bound at some outer quantifier, then the assumption variable si at
this quantifier can be always assumed to be false. Further, if C>i is empty, then ai can
be assumed to be false and, thus, be removed. This requires a change to Algorithm 3,
though: in the return Sat(βS u α+

S) in line 7 we have to add those clauses without as-
sumption variable that are not satisfied by the current assignment, i.e., it has to change to
Sat((βS t {si 7→ T | C>i = ∅ ∧ αX 2 C=

i }) u α
+
S). Independent of the quantifier type, it is

possible to omit building the abstraction for clauses with C=
i = ∅ where the given quantifier

has no influence on the satisfaction of the clause. Especially, we do not need to add the
satisfaction and assumption variables initially. This is possible, since the updates to the
satisfaction assignment αS are monotone: if a clause is satisfied at some outer quantifier,
it is guaranteed to be satisfied by every inner quantifier (see line 5 of Algorithm 3 and
lines 3–4 of Algorithm 4). However, we may need to add them during solving in case there
is some refinement involving those variables.

We generalize the simplifications for the universal abstraction introduced for 2QBF in
Section 3.3:

• If some clause Ci ∈ ϕ is a universal unit clause, i.e., C|X = {l} for some literal l with
var(l) ∈ X, and there are no outer variables (C<i = ∅) then the shared variable si can
be replaced by the negation l of the literal.

• If there is a pair of clauses Ci, Cj ∈ ϕ with i 6= j such that those clauses are equal

with respect to the variables bound at this quantifier, i.e., C≤i = C≤j , then the same
shared variable si can be used for both clauses.

Algorithmic Improvements. We recap generalizations of the algorithmic improvements
described for the 2QBF algorithm in Section 3.3. Given some assignment αX from the
abstraction, we construct the corresponding “optimal” assignment of αA (Algorithm 3) and
αS (Algorithm 4) as described by Lemma 5, respectively. For the propositional case of
existential quantifier ∃X, the same optimizations as discussed in Section 3.3 can be applied:
We set αS(si) = F before line 9 if αS(si) = T and αX � C=

i . Further, we may change the
assignment αX if such a change satisfies strictly more clauses.

We also generalize the optimization of refinement clauses due to subsumed literals de-
scribed in Section 3.3. Given a partial assignment βS representing a conflict in line 8 of
solve∃ (Algorithm 3). If there are two clauses Ci and Cj with C≤i ⊆ C≤j and βS(si) =
βS(sj) = F, then we can set βS(si) = ⊥, which removes ai from the refinement clause.
Given a partial assignment βS representing a conflict in line 7 of solve∀ (Algorithm 4). If
there are two clauses Ci and Cj with C≤i ⊆ C≤j and βS(si) = βS(sj) = T, then we can set
βS(sj) = ⊥, which removes sj from the refinement clause.

The presented algorithms refine conflicts at the earliest point possible, e.g., if a universal
quantifier returns Unsat(βS) (line 8 of Algorithm 3), the abstraction at the existential quan-
tifier is refined immediately. In some cases, this refinement is not needed as the existential
quantifier does not control any of the refined clauses, that is, for all Ci ∈ ϕ with si ∈ β0

S

178

CAQE and QuAbS: Abstraction Based QBF Solvers

it holds that C=
i = ∅. The following SAT call in line 3 is unsatisfiable and βS is a possible

failed assumption. Thus, the conflict is just propagated. As an example, consider the prefix
∃x∀v∃y∀w∃z and a clauses (x ∨ v ∨ w ∨ z)(x ∨ v ∨ w ∨ z). Given the assignment xvw, the
quantifier ∃z cannot satisfy both clauses simultaneously. The refinement at quantifier ∃y
produces the same conflict again as y has no impact. We add a check to Algorithm 3 and
Algorithm 4 whether a conflict βS can be propagated, thus, saving the cost of the refinement
and the subsequent SAT call. This optimization was first described as part of the clause
selection algorithm [46].

5. Function Extraction

For quantified Boolean formulas, the solving result goes beyond the binary decision problem
discussed in the previous sections. Especially when using QBF as a target for applications,
the witnessing Boolean functions are of great importance. Using Skolem functions, one can
directly construct realizing implementations for synthesis problems encoded to QBF [15,16,
23,24]. And even in the negative case, the Herbrand functions may give valuable information
about the underlying reason [36]. Another benefit of function extraction is the certification
of the solving result, i.e., having a verifiable witness for the solving result. In this section,
we present the function extraction approach for the clausal abstraction algorithm.

The function extraction is based on the correctness proof given in Section 4.2. Given a
QBF Φ, some quantifier block QX of Φ, and some assignment of satisfaction variables αS .
Lemma 6 shows that there is an assignment to αX such that the subformula (Φ|∃XαS

)[αX]
is true if Φ|∃XαS

is true. Dually, Lemma 7 states that an assignment to αX exists such
that the subformula (Φ|∀XαS

)[αX] is false if Φ|∀XαS
is false. Thus, the function extraction

amounts to logging the relevant results during the execution of the algorithm, that is after
the successful verification of the candidate assignment. In the following, we determine the
relevant information that is needed for the extraction, the data structure in which the
information is stored, and an extraction algorithm that returns the Skolem and Herbrand
functions, respectively.

Recursion Tree. The execution of the clausal abstraction algorithm can be represented
as a tree, where the nodes represent quantifiersQX and the edges determines the truth value
and witnessing assignments αX . Formally, a node in the recursion tree is a pair 〈QX,αS〉
and there is an edge from 〈QX,αS〉 to 〈QY, α′S〉 labeled with the candidate assignment αX
and the result res(βS) returned from solveQ if, and only if, (1) QY is the quantifier block
following QX, (2) (Φ|QX

αS
)[αX] =4. Φ|QY

α′S
, and (3) res is the result of Φ|QY

α′S
where Φ|QY

βS [⊥7→F]

is true if res = Sat and Φ|QY

βS [⊥7→T] is false otherwise. The leaf nodes 〈∃X,αS〉 are labeled

with the result of the propositional formula Φ|∃XαS
, that is, either Unsat or Sat(αX). The

root node for some formula Φ = QX.Ψ is the designated node 〈QX, {si 7→ F | Ci ∈ ϕ}〉.
We depict such a recursion tree in Figure 1.

After the algorithm terminates, we use the recursion tree to extract the relevant infor-
mation to build Skolem and Herbrand functions, respectively. Note that for true QBFs
and existential nodes as well as false QBFs and universal nodes, the respective nodes have

4. The equality holds if we assume optimal assumptions w.r.t. αX as discussed in Section 4.3 about algo-
rithmic improvements.

179

L. Tentrup

∃v, w
s1s2s3s4s5

∀x
s1s2s3s4s5

∀x
s1s2s3s4s5

∃y, z
s1s2s3s4s5

∃y, z
s1s2s3s4s5

∃y, z
s1s2s3s4s5

Sat(y z) Unsat Unsat

↑ Unsat

v w ↙

↗ Unsat(s1s3)

vw ↘
↖ Unsat(s4s5)

x↙

↗ Sat(s1s2s3s4)

x↘
↖ Unsat(s1s3)

x↘
↖ Unsat(s4s5)

Figure 1: Recursion tree corresponding to the execution of solveQ on the formula
∃v, w. ∀x.∃y, z. (w ∨ x ∨ y)(v ∨ w)(x ∨ y)(v ∨ z)(z ∨ x) as shown in Example 4.

exactly one outgoing edge where the candidate assignment was verified recursively. Due to
the correctness lemmata Lemma 6 and Lemma 7, only the labeling of the edges, i.e., the
assignment αX and the returned partial assignment βS are relevant. Thus, we store a list
of these verified candidates as a sequence of pairs 〈βS , αX〉 ∈ (A⊥(S) × A(X)) for every
quantifier block QX.

Function Extraction. We define a function invQX : A⊥(S) → B(V) which, for a given
quantifier block QX, maps an assignment βS to a propositional formula over variables V
bound by outer quantifiers (with respect to QX). Intuitively, invQX(βS) describes those
assignments that lead to βS in the abstraction of quantifier block QX. We define invQX
as

invQX(βS) :=

∧

si∈β1
S

C<i if Q = ∃∧
si∈β0

S

¬C<i otherwise
. (9)

Let 〈β1
S , α

1
X〉 . . . 〈βnS , αnX〉 be the pairs of verified candidates corresponding to quantifier block

QX and let x ∈ X be some variable, the function fx : A(V)→ B is defined as

fx :=

n∨
i=1

(αiX(x) = 1) ∧ invQX(βiS) ∧
∧
j<i

¬invQX(βjS)

 . (10)

The definition of invQX allows that fx may depend on all variables bound at outer quanti-
fiers, even those that are of the same quantifier type. By replacing those variables with their
extracted functions, one can make sure that fx depends only on its dependencies dep(x).
The size of fx, measured in terms of distinct subformulas, is linear in the number of pairs.
The function fX : A(V) → A(X) is defined as the union over all fx for x ∈ X, formally
fX(αV) :=

⊔
x∈X {x 7→ fx(αV)}. The Skolem and Herband function are then defined as the

union over the functions fX for every QX where Q = ∃ for Skolem functions and Q = ∀
for Herbrand functions.

180

CAQE and QuAbS: Abstraction Based QBF Solvers

Example 5. We show the function extraction for our running example ∃v, w.∀x.∃y, z. (w∨
x∨y)(v∨w)(x∨y)(v∨z)(z∨x). From the recursion tree in Figure 1, we extract the sequence
〈s1s3, x〉〈s4s5, x〉 as described above. Applying the definition of inv∀x, we get

inv∀x(s1s3) = ¬C<1 ∧ ¬C<3 = ¬w and

inv∀x(s4s5) = ¬C<4 ∧ ¬C<5 = v .

Thus, the Herbrand function fx is defined as

fx(v, w) = inv∀x(s4s5) ∧ ¬inv∀x(s1s3) = v ∧ w .

fx depends solely on its dependencies and is functionally correct as ϕ[fx] is equal to

(w ∨ (v ∧ w) ∨ y)(v ∨ w)((v ∧ w) ∨ y)(v ∨ z)(z ∨ v ∨ w)

= (v)(w)(v ∨ w)(v ∨ z)(z ∨ v ∨ w)

= (v)(w)(z)(z ∨ v ∨ w) = F .

Theorem 4. Skolem and Herbrand functions generated by the clausal abstraction algorithm
are correct.

Proof. Let Φ be a true QBF over existential and universals variables V∃ and V∀, respectively,
and let f be the Skolem function as described above. It holds that f =

⊔
v∈V∃ fv is well-

formed by construction. Assume that f is not functionally correct. Thus, there is an
assignment α∀ of the universal variables V∀ such that α∀ � ¬ϕ[f]. We show that f and α∀
together lead to a root-to-leaf path in recursion tree such that all clauses in the matrix are
satisfied. In detail, we build this path by a traversal of the recursion tree where at every
node we take the leftmost choice such that

• at an existential node 〈∃X,αS〉, we take the unique edge labeled with Sat and

• at an universal node 〈∀X,αS〉, we take the leftmost edge labeled with Sat(βS) such that
the set of clauses in Φ|∀XβS [⊥7→F] is a superset of the clauses in (Φ|∀XαS

)[α∀|X]. Intuitively,

the assignment α∀|X satisfies more clauses than needed to show that the remaining
subformula is true. This partial assignment βS would have excluded α∀|X under the
assumption αS in the refinement step of solve∀(.) Note, that such an edge has to
exist and all outgoing edges are labeled with Sat as otherwise, the universal node
would not return Sat itself.

By construction, such a path exists and it is consistent with the Skolem function f due to
Equation 10. Thus, f produces an assignment corresponding to α∀ that satisfies the matrix,
contradicting α∀ � ¬ϕ[f]. Analogously for false QBFs.

6. Integrating Partial Expansion

In this section, we continue our quest started in Section 4.3 for improved refinements for
existential quantifiers. Expansion-based solving methods are based on the idea that a
universal quantifier ∀x. ϕ can be rewritten as the conjunction ϕ[x 7→ F] ∧ ϕ′[x 7→ T] where

181

L. Tentrup

ϕ[vw]

w

ϕ[vw]

w

v

ϕ[vw]

w

ϕ[vw]

w

v

(a) A full expansion tree

ϕ[vw]

w

ϕ[vw]

w

v

ϕ[vw]

w

ϕ[vw]

w

v

(b) A partial expansion tree

Figure 2: A representation of full and partial expansion trees for formula ∀v, w. ∃x, y. ϕ,
where ϕ = (v → x)∧ (w → y)∧ (x∨ y). The root-to-leaf paths represent a universal assign-
ment α{v,w} and the corresponding leaf node contains the propositional formula ϕ[α{v,w}]
expanded with α{v,w}. Both trees witness the unsatisfiability of ∀v, w. ∃x, y. ϕ.

x is eliminated by replacing it with F and T in the left and right conjunct, respectively,
and by creating a copy of every variable in the right conjunct. By repeated application, a
QBF can be transformed to a propositional formula. This type of complete expansion is
for example implemented by the solvers Qubos [1], Quantor [11], and AIGSolve [68].
Consider, for example, the false QBF ∀v, w.∃x, y. (v → x) ∧ (w → y) ∧ (x ∨ y). Expanding
v and w results into the unsatisfiable propositional formula (xvw)(xvw)(yvw)(yvw)(xvw ∨
yvw)(xvw∨yvw)(xvw∨yvw)(xvw∨yvw). Here, we annotated variables a with the assignment
α of the universal variables, written aα. In Figure 2a we give a visual representation of the
full expansion tree, that is, a tree whose root-to-leaf nodes represent all assignments α to
universal variables.

Having to expand each and every universal variable and the resulting blow-up can be,
however, avoided in many cases by a method called partial expansion. The idea is that
already a subset of universal assignments can rule out the existence of any Skolem function.
Instantiating the universal assignment {v 7→ T, w 7→ T} in our example above leads an
unsatisfiable formula (xvw)(yvw)(xvw ∨ yvw). Thus, there can be no Skolem function for x
and y if there is no assignment satisfying the matrix on a single universal assignment. In
Figure 2b we give a visual representation of the partial expansion tree, that is, an expansion
tree that does not necessarily contain all assignments. The solvers RAReQS [44] and
Ijtihad [14] base their reasoning on partial expansion.

We are now going to show how to integrate partial expansion into the clausal abstraction
algorithm. This integration combines the results of the correctness proof given in Section 4.2
and the function extraction presented in the previous section. The key insight is, that if
solve∃ in Algorithm 3 determines that a quantified subformula Φ[α′S] is unsatisfiable, the
witnessing Herbrand function corresponds to a partial expansion tree that can be used to
strengthen the abstraction θX .

Notation. We start by providing necessary preliminaries and make the intuitive descrip-
tion given above more precise. For more details, we refer the reader to [45]. A partial
expansion tree for QBF Φ with u universal quantifier blocks and matrix ϕ is a rooted tree
T such that every path p0

α1−→ p1 · · ·
αu−→ pu in T from the root p0 to some leaf pu has

exactly u edges and each edge pi−1
αi−→ pi is labeled with an assignment αi to the universal

182

CAQE and QuAbS: Abstraction Based QBF Solvers

variables at universal level i. Each path in T is uniquely defined by its labeling. Let T be
a partial expansion tree and P = p0

α1−→ p1 · · ·
αu−→ pu be a path from the root p0 to some

leaf pu. For an existential variable x we define expand -var(P, x) = xα where xα is a fresh

variable and α =
(⊔

1≤i≤u αi

)
|dep(x) is the universal assignment of the dependencies of x.

For a propositional formula ϕ define expand(P,ϕ) as instantiating ϕ with α1, . . . , αu and
replacing every existential variable x by expand -var(P, x). We define expand(T ,Φ) as the
conjunction of all expand(P,ϕ) for each root-to-leaf path P in T .

Expansion Refinement. When the candidate verification algorithm returns Unsat(βS)
in line 8 in Algorithm 3, we extract the partial expansion tree T that witnesses the un-
satisfiability result. Extracting partial expansion trees during solving is closely related to
function extraction. Given an existential node 〈∃X,αS〉 in the recursion tree (see Section 5),
we build the partial expansion tree by traversing the subtree of 〈∃X,αS〉 and record every
universal assignment α at an edge labeled with Unsat. In the recursion tree depicted in
Figure 1 and root node 〈∃{v, w}, {si 7→ 0 | 1 ≤ i ≤ 5}〉, the extracted partial expansion tree

T contains the paths p0
{x 7→F}−−−−→ p1 and p0

{x 7→T}−−−−→ p′1 from root p0 to the leaves p1 and p′1.

Finally, given the partial expansion tree T , we build the clausal abstraction for every
clause in the expansion formula expand(T ,Φ). The resulting clauses are added to the
abstraction θX . Formally, after the clausal abstraction refinement in line 8, we update the
abstraction by

θX ← θX ∧
∧

C∈expand(T ,Φ)

clabs∃X(C) .

Correctness of this refinement follows from the soundness of the partial expansion, i.e.,
replacing the matrix ϕ of some QBF Φ by ϕ∧expand(T ,Φ) preserves satisfiability for every
expansion tree T , and the correctness of the clausal abstraction. In the implementation, we
can re-use the existent satisfaction variables si of some clause Ci for every corresponding
expanded clause Cαi as the literals bound by outer quantifier are equal, that is, C<i = (Cαi)<.

7. Circuit Abstraction

A fundamental property of the PCNF game is that it is not dual for the two players:
the existential player has to satisfy all clauses while the universal player tries to falsify
some clause. This is especially visible in the underlying proof system: the refutation proof
system is exponentially more succinct than the satisfaction proof system [47]. We propose
a generalization of the clausal abstraction algorithm to propositional formulas in negation
normal form (NNF), making the game effectively dual.

For this section, we assume an arbitrary (closed, prenex) QBF Φ = QX1 · · · QXn. ϕ
with quantifier prefix QX1 · · · QXn and propositional body ϕ in NNF.

7.1 Algorithm

Overview. The algorithm for solving QBF in negation normal form is in large parts a
staightforward extension of the existential CNF algorithm shown in Section 4. The algo-
rithm solve, depicted in Algorithm 5, initializes the abstractions and returns the result
of solve-nnf, shown in Algorithm 6. solve-nnf determines candidate assignments to

183

L. Tentrup

Algorithm 5 Abstraction Algorithm for QBF in negation normal form.

1: procedure solve(Φ = QX.Ψ)
2: initialize abstraction θY and dual abstraction θY for every quantifier QY in Φ
3: return solve-nnf(QX, Ψ, {si 7→ F | si ∈ SX})
4: end procedure

the variables bound at that quantifier, which is then verified recursively, or gives a reason
why there is no such assignment. In the negative case, this reason is excluded at an outer
quantifier.

Going from CNF to NNF makes the algorithm more uniform and—at the same time—
more complex, where the uniformity comes from the quantifiers’ duality and the complexity
arises from the less restrictive normal form. Taking both into account leads us to the most
significant algorithmic contribution, the use of a dual abstraction θX in conjunction with
the abstraction θX seen in previous algorithms. The dual abstraction, whose name indicates
that it is the abstraction for negation of the current quantifier, elegantly solves two issues
that already arose in the previous algorithms but were much easier to handle for CNF. First,
consider again the optimization discussed in Section 4.3 that improves the returned witness
in the propositional case. In CNF, this was done by setting satisfaction variables to false
whenever the current assignment (of existential variables) satisfies a clause. In NNF, we
use the dual abstraction to generate those partial assignments from complete assignments
of the satisfaction variables using a technique inspired by dual propagation [32, 35, 60].
Second, in the CNF algorithm Algorithm 3, we needed to project the partial assignment
returned from the inner quantifier in case of a successful verification (line 8) as some of the
clauses may be satisfied by the current assignment (of existential variables). In NNF, this
is not merely a projection, but a transformation from one set of satisfaction variables to
a (possibly) different set of satisfaction variables which can be efficiently implemented by
the dual abstraction. Before going into details of algorithm solve-nnf, we introduce the
abstractions first.

Example 6. Consider again the QBF from Example 2 where the propositional formula ϕ
is in negation normal form:

∃x. ∀v, w. ∃y. (x ∨ v ∨
ψ3︷ ︸︸ ︷

(y ∧ w))︸ ︷︷ ︸
ψ2

∧ (x ∨
ψ5︷ ︸︸ ︷

(v ∧ w)∨y)︸ ︷︷ ︸
ψ4

∧ (v ∨ w ∨ y)︸ ︷︷ ︸
ψ6

(11)

Throughout this section, we use the naming of the subformulas as indicated in above and
name ψ1 = ϕ. Note, that the formula is true as witnessed by the Skolem functions x = T
and y(v, w) = v ∨ w.

Abstraction θ. The abstraction θX is a propositional formula that represents, for every
quantifier block QX, an over-approximation of the winning assignments αX as well as the
effect of the assignment αX on the valuation of subformulas. The algorithm guarantees that
whenever a candidate assignment αX is generated using θX , all variables bound at outer
quantifiers have a fixed assignment, and, thus, the propositional formula ϕ is partially
evaluated.

184

CAQE and QuAbS: Abstraction Based QBF Solvers

∧
1

∨
2

x v ∧
3

y w

∨
4

x ∧
5

v w

y

∨
6

v w y

Figure 3: Visualization of the graph representation Gϕ representation of ϕ = (x ∨ v ∨ (y ∧
w))∧ (x∨ (v ∧w)∨ y)∧ (v ∨w ∨ y). The numbers on the non-terminal nodes represent the
index i for the corresponding subformula ψi as shown in Example 6. To improve readability,
some terminal nodes like y and w are drawn multiple times.

To facilitate working with arbitrary Boolean formulas, we start with introducing addi-
tional notation. Let B be the set of Boolean formulas and let sf (ψ) ⊂ B and dsf (ψ) ⊂ B
be the set of all subformulas of ψ and the set of direct (or immediate) subformulas of ψ, re-
spectively. Note that ψ ∈ sf (ψ) but ψ /∈ dsf (ψ). For a propositional formula ψ, type(ψ) ∈
{lit ,∨,∧} returns the Boolean connector if ψ is not a literal. For example, given ψ =
(x∨ v∨ (y∧w)), the set of all subformulas is sf (ψ) = {(x ∨ v ∨ (y ∧ w)), x, v, (y ∧ w), y, w},
the set of direct subformulas is dsf (ψ) = {x, v, (y ∧ w)}, and the Boolean connector is
type(ψ) = ∨. For every subformula ψ, we denote by ψ the dual subformula, that is, the
formula where every quantifier, Boolean connector, and literal is negated. It holds that ψ
is in NNF and that ¬ψ is equivalent to ψ.

We will explain the abstraction for quantifier ∃X as a transformation of the graph
representation of propositional formulas. A propositional formula ψ can be represented as a
graph, where the nodes represent the Boolean connectives and the edges connect a formula
with its direct subformulas. The leaves, i.e., terminal nodes, are the literals contained in
ψ. Formally, the graph Gϕ corresponding to some propositional formula ϕ is a pair 〈V,E〉,
where V = sf (ϕ) is the set of vertices and E = V × V is the edge relation such that
(ψi, ψj) ∈ E if, and only if, ψj ∈ dsf (ψi). Figure 3 depicts the graph corresponding to the
propositional part of the QBF presented in Example 6.

We define ψ◦ for ◦ ∈ {<,≤,=,≥, >} as the projection of ψ onto variables bound by
outer (<), current (=), or inner (>) quantifiers with respect to QX, respectively. If the
projected formula does not contain a literal, we return undefined ⊥. Formally, we define ψ◦

185

L. Tentrup

recursively (where we only recurse if the projection of a subformula is defined) as follows

ψ◦ :=

∧
ψi∈dsf (ψ)
ψ◦i 6=⊥

ψ◦i if type(ψ) = ∧

∨
ψi∈dsf (ψ)
ψ◦i 6=⊥

ψ◦i if type(ψ) = ∨

ψ if ψ is a literal l and var(l) is bound at a quantifier level satisfying ◦
⊥ otherwise

Applying this definition on our running example in Equation 11, we get, for example,
ψ=

2 = x, ψ=
4 = x for quantifier ∃x; ψ≤2 = x ∨ v ∨ w, ψ≤4 = x ∨ (v ∧ w) for quantifier ∀v, w;

and ψ≤1 = ϕ for quantifier ∃y.

We use the same kind of variables as in clausal abstraction to establish the interaction
between abstractions: the variables X bound by the current quantifier and, additionally,
the assumption and satisfaction variables A and S, respectively. The satisfaction variable
si for some subformula ψi ∈ sf (ϕ) represents the effect of variables V bound at outer
quantifier on ψi. To quantify this effect, we have to distinguish whether ψi is a disjunctive
(type(ψi) = ∨) or conjunctive (type(ψi) = ∧) formula. In the disjunctive case, assigning si
to true implies that ψi evaluates to true given the outer variable assignment αV . This is a
straightforward generalization of the existential abstraction for clauses (see Section 4). In
case ψi is conjunctive, a positive assignment of si means that the conjunct is not yet falsified,
that is, ψi does not evaluate to false given the outer variable assignment αV . We combine
both cases by saying that ψi is assigned positively with respect to the current quantifier.
Since the valuation of the variables X bound by the current quantifier has an influence
on the valuation of subformulas as well, we use an assumption variable ai to represent the
effect of the combined assignments αX and αS . The intended semantics is that ai is set to
false only if ψi is assigned positively at this quantifier (by assignment αX ṫ αV).

Before formally defining the abstraction, we discuss the underlying derivation steps on
Example 6.

Example 7. The abstraction θX quantifies the effect of valuations of variables X on the
satisfaction of subformulas. We derive the abstraction by transforming the graph represen-
tation of ϕ and ϕ for existential and universal quantifiers, respectively. This transformation
is visualized in Figure 4. As a first step, we remove all subformulas ψ which are only influ-
enced by inner quantifiers, i.e., every ψ that is not contained in ϕ≤. For example, ψ6 does
not contain x, thus, the whole subformula is removed from ϕ for quantifier ∃x.

Then, we replace all maximal subformulas with the property ψ< = ψ by satisfaction
variables si in a top-down way. Consider the innermost quantifier ∃y and subformula ψ4

with dsf (ψ4) = {x, ψ5, y}. For the former two, x and ψ5, it holds that x< = x and ψ<5 = ψ5,
thus, both are replaced with the satisfaction variable s4.

In the innermost quantifier ∃y, this already adequately describes the abstraction, for
every other quantifier we have to define the assumption variables. For example at quantifier
∃x, an assignment to x can either satisfy ψ2 or ψ4, but not both, thus, the other formula
is assumed to be satisfied by an inner quantifier. We define an assumption variable for

186

CAQE and QuAbS: Abstraction Based QBF Solvers

∧

∨
2

x v ∧

y w

∨
4

x ∧

v w

y

∨

v w y

∨

∧
2

s2 v ∨
3

y w

∧
4

s4 ∨

v w

y

∧
6

v w y

∧

∨

s2 ∧

y s3

∨

s4 y

∨

s6 y

Figure 4: Abstraction for quantifiers ∃x, ∀v, w, and ∃y. The grayed out subformulas are
only influenced by inner variables. The colored parts indicate continuous subformulas with
ψ = ψ≤. The dashed subformulas indicate placement of assumption variables.

every subformula ψi ∈ sf (ϕ) such that there exist direct subformulas ψj and ψk such that

ψj = ψ≤j and ψk 6= ψ≤k . Intuitively, for these subformulas ψi, there is a direct influence by

ψj = ψ≤j and the value of ψi is not guaranteed to be determined after the current quantifier

as there is some influence by inner variables ψk 6= ψ≤k . This can be seen at our example at
quantifier ∀v, w: we need to add an assumption variable to ψ3 as y ∈ dsf (ψ3) but not to
ψ5 as ψ=

5 = ψ5. Lastly, given some quantifier alternation QX.QY , there is a one-to-one
correspondence between the assumption variables AX of quantifier QX and the satisfaction
variables SY of quantifier Y .

Using the intuition of the interface variables and the determinacy of subformulas, we
are now going to define the abstraction formally. In this definition, we take advantage of
the duality by only defining the abstraction for existential quantifiers. The abstraction for
universal quantifiers is then the abstraction for the negated formula Φ. Let us fix some
existential quantifier ∃X and some subformula ψi of ϕ. The abstraction θX is defined as

θX =

enc(ϕ) ∃X is the innermost quantifier∧

ψi∈sf (ϕ)

∃ψj ,ψk∈dsf (ψi) with ψj=ψ≤j ∧ψk 6=ψ≤k

ai ∨ enc(ψi) otherwise (12)

For the innermost quantifier ∃X.ϕ, we encode ϕ using enc defined below. In all other cases,
we define the implication that setting an assumption variable ai to false is only possible
if the formula enc(ψi) is satisfied. enc(ψi) considers only subformulas of ψi which do not
contain inner variables and where outer variables are replaced by their respective satisfaction

187

L. Tentrup

literals. Formally, the abstraction for ψi is defined as

enc(ψi) =

∧
ψj∈dsf (ψi)

ψj=ψ≤j

encψi
(ψj) if type(ψi) = ∧

∨
ψj∈dsf (ψi)

ψj=ψ≤j

encψi
(ψj) if type(ψi) = ∨

(13)

where the direct subformulas ψj of ψi are transformed as follows

encψi
(ψj) =

ψj if ψj = ψ=

j

si if ψj = ψ<j
enc(ψj) otherwise, i.e., ψj = ψ≤j

(14)

We carefully dissect the definitions in order to map them to the intuitions mentioned above.
The function enc(ψi) builds the abstraction for subformula ψi depending on the Boolean
connector type(ψi) ∈ {∧,∨}. Further, enc considers only those direct subformulas ψj of ψi,

which are solely influenced by the current or outer variables, i.e., ψj = ψ≤j . The encoding
of direct subformulas encψi

(ψj) distinguishes three cases. If ψj contains only variables X,
that is, ψj = ψ=

j , then the result of encψi
(ψj) = ψj is the formula ψj itself. If ψj contains

only outer variables, that is, ψj = ψ<j , then the result of encψi
(ψj) = si is the satisfaction

variable si. Finally, if ψj contains both types of variables, we apply enc on ψj .
The abstraction for a universal quantifier ∀X and the dual abstraction θX of quantifier

∃X are both defined as the abstraction for ∃X with respect to propositional formula ϕ. As
discussed above, satisfaction and assumption variables are not exposed for every subformula
ψi ∈ sf (ϕ). For the given abstraction, we define the set of interface variables for quantifier
QX as

AX = {ai | ψi ∈ sf (ϕ) ∧ ∃ψj , ψk ∈ dsf (ψi). ψj = ψ≤j ∧ ψk 6= ψ≤k } and

SX = {si | ψi ∈ sf (ϕ) ∧ ∃ψj , ψk ∈ dsf (ψi). ψj = ψ<j ∧ ψk 6= ψ<k } .

This means that for some quantifier alternation QX.QY the sets AX and SY represent the
same subformulas, i.e., ai ∈ AX if, and only if, si ∈ SY .

The algorithm makes progress by refining the abstraction during the execution of the
algorithm. Such a refinement excludes wrong assumptions, i.e., assumptions corresponding
to a losing assignment for the variables of the respective quantifier block. Given such a set
of assumptions L ⊆ A, the refinement is represented by the clause∨

ai∈L
ai . (15)

Algorithm. Algorithm 6 shows the recursive QBF solving algorithm solve-nnf. It de-
cides the problem whether the quantified subformula QX.Φ of Φ for Q ∈ {∀, ∃} is satisfiable
under the condition that the propositional formula ϕ is partially evaluated according to the
assignment αS that abstracts the outer variable assignment. Note that due to duality, the

188

CAQE and QuAbS: Abstraction Based QBF Solvers

Algorithm 6 Algorithm for solving quantified formulas in NNF.

1: procedure solve-nnf(QX, Φ, αSX
)

2: loop
3: match 〈sat(θX , αSX

), Φ〉 as . assume outer variable assignment
4: 〈Sat(α), QY.Ψ〉 ⇒
5: αSY

← {si 7→ α(ai) | ai ∈ AX} . update subformula valuation
6: match solve-nnf(QY , Ψ, αSY

) as . recursive verification
7: SatQ(βSY

) ⇒ θX ← θX ∧
∨
si∈β0

SY

ai . refine θX

8: return SatQ(optimize(α|X , αSX
))

9: UnsatQ(βSY
) ⇒ θX ← θX ∧

∨
si∈β1

SY

ai . refine θX

10: 〈Sat(α), 〉 ⇒ return SatQ(optimize(α|X , αSX
)) . propositional

11: 〈Unsat(βSX
), 〉 ⇒ return UnsatQ(βSX

)

12: end loop
13: end procedure
14: procedure optimize(αX , αSX

)
15: match sat(θX , αX t αSX

) as
16: Unsat(β) ⇒ return β|SX

. β|SX
v αSX

17: end procedure

satisfiability and unsatisfiability are interpreted with respect to the current quantifier, that
is, we define

SatQ =

{
Sat if Q = ∃
Unsat if Q = ∀

and UnsatQ =

{
Unsat if Q = ∃
Sat if Q = ∀

.

For sake of simplicity, we base our explanation on existential quantifier in the following.
The algorithm repeatedly generates candidate assignments by means of the abstraction θX
(line 3). If the abstraction returns Unsat, there is no satisfiable assignment with respect
to the assignment αS of satisfaction variables, thus, the algorithm returns UnsatQ as well
(line 11). Further, the reason for the unsatisfiability result is given, represented by the re-
turned partial assignment βSX

. If the abstraction returns Sat with assignments αA and αX ,
we distinguish two cases. The first case is the base case of the recursion, that is, the inner
formula is quantifier-free (line 10). The algorithm returns SatQ and the partial assignment,
generated by the algorithm optimize, indicating which subformulas have to be positively
assigned by outer quantifier such that the assignment αX satisfies ϕ. Lastly, assume that
the inner subformula is quantified. In this case, we compute the subformulas of ϕ that
the combination of αX and αS assign positively (line 5) and continue with the recursive
verification. In the positive case, the partial assignment βSY

(line 7) indicates the required
positively assigned subformulas. As this witnesses the unsatisfiability of the negated for-
mula, the dual abstraction θX is refined with βSY

before translating the assignment βSY
to

an assignment βSX
using optimize in line 8. In case it is negative, the abstraction θX is

refined by enforcing that some negatively assigned subformulas is assigned postively, before
continuing with the next iteration.

189

L. Tentrup

The algorithm optimize implements dual propagation. The dual abstraction θX is a
representation of the possible assignments of the negated quantifier QX. Thus, assuming
the positively verified assignments αX and αS (lines 8 and 10) lead to unsatisfiability of
θX . Note, that we have to negate αS due to the way the abstraction is built (a formal
justification is given in Section 7.2). The return value β, that is, the failed assumptions
projected onto variables SX , represents a set of subformulas {ψi | si ∈ β1

SX
} that needs to

be assigned positively such that the quantifier QX has a satisfiable assignment.

Example 8. Consider again the formula given in Example 2:

∃x. ∀v, w. ∃y. (x ∨ v ∨
ψ3︷ ︸︸ ︷

(y ∧ w))︸ ︷︷ ︸
ψ2

∧ (x ∨
ψ5︷ ︸︸ ︷

(v ∧ w)∨y)︸ ︷︷ ︸
ψ4

∧ (v ∨ w ∨ y)︸ ︷︷ ︸
ψ6

We give the abstractions as discussed in Example 7 in propositional form as

θ{x} = (a2 ∨ x)(a4 ∨ x),

θ{v,w} = (a2 ∨ (s2 ∧ v))(a3 ∨ w)(a4 ∨ (s4 ∧ (v ∨ w)))(a6 ∨ (v ∧ w)),

θ{v,w} = (a2 ∨ s2 ∨ v)(a3 ∨ w)(a4 ∨ s4 ∨ (v ∧ w))(a6 ∨ v ∨ w),

θ{y} = (s2 ∨ (y ∧ s3))(s4 ∨ y)(s6 ∨ y), and

θ{y} = (s2 ∧ (y ∨ s3)) ∨ (s4 ∧ y) ∨ (s6 ∧ y).

We give a possible execution of algorithm solve. To improve readability, we use the propo-
sitional representation for assignments.

• solve-nnf(∃x, ∀v, w.∃y. ϕ, {})

• sat(θ{x}) = Sat(xa2a4)

• αS{v,w} = s2s4

– solve-nnf(∀v, w, ∃y. ϕ, αS{v,w})

– sat(θ{v,w}, αS{v,w}) = Sat(vwa2a3a4a6)

– αS{y} = s2s3s4s6

∗ solve-nnf(∃y, ϕ, αS{y})

∗ solve(θ{y}, αS{y}) = Unsat(s2s3)

∗ return Unsat(s2s3)

– θ
′
{v,w} = θ{v,w} ∧ (a2 ∨ a3) = (s2 ∨ v ∨ w) [. . .]

– solve(θ
′
{vw}, vw αS{v,w}) = Unsat(vw s2)

– return Unsat(s2)

• θ′{x} = θ{x} ∧ a2

• sat(θ′{x}) = Sat(xa2a4)

190

CAQE and QuAbS: Abstraction Based QBF Solvers

• α′S{v,w} = s2s4

– solve-nnf(∀v, w, ∃y. ϕ, α′S{v,w})

– sat(θ{v,w}, α
′
S{v,w}

) = Sat(vwa2a3a4a6)

– α′S{y} = s2s3s4s6

∗ solve-nnf(∃y, ϕ, α′S{y})

∗ solve(θ{y}, α
′
S{y}

) = Sat(y)

∗ solve(θ{y}, y α
′
S{y}

) = Unsat(y s2s6)

∗ return Sat(s2s6)

– θ′{v,w} = θ{v,w} ∧ (a2 ∨ a6)

– sat(θ{v,w}, α
′
S{v,w}

) = Sat(vwa2a3a4a6)

– α′′S{y} = s2s3s4s6

∗ solve-nnf(∃y, ϕ, α′′S{y})

∗ solve(θ{y}, α
′′
S{y}

) = Sat(y)

∗ solve(θ{y}, y α
′′
S{y}

) = Unsat(y s2s4)

∗ return Sat(s2s4)

– θ′′{v,w} = θ′{v,w} ∧ (a2 ∨ a4)

– sat(θ′′{v,w}, α
′
S{v,w}

) = Unsat(s2)

– return Sat(s2)

• solve-nnf(∃x, ∀v, w.∃y. ϕ, {}) returns Sat

7.2 Correctness

The proof of correctness requires the same high level argumentation as the correctness proof
for the prenex conjunctive normal form algorithm in Section 4.2. The argumentation over
the abstraction and negation normal form formulas is, however, much more sophisticated
than the argumentation over clauses in a matrix. Thus, in this section, we give a rigorous
argumentation for soundness and completeness, even though there is some repetition and
overlap with Section 4.2. Remember, that we fixed a QBF Φ = QX1 · · · QXn. ϕ with
quantifier prefix QX1 · · · QXn and propositional body ϕ in NNF. Further, we assume that
ψ1, . . . , ψm are the non-literal subformulas of ϕ.

Before going into detail, we outline the structure of this section. First, we establish
a relation between assignments of satisfaction variables αS and their effect on the QBF,
analogously to Section 4.2. For some quantifier alternation QX.QY , we show how assign-
ments αSX

with respect to quantifier QX are related to assignments αSY
w.r.t. quantifier

QY . Afterwards, we establish statements over the abstractions, the first (Lemma 11) cov-
ering the base case of the structural induction. Furthermore, we show that the abstractions
θX and θX are effectively dual, which leads to the correctness of the dual propagation in
Lemma 13. The actual proof of correctness is carried out in Lemma 14.

191

L. Tentrup

Duality in NNF representation. To match the assignment of the satisfaction variables
αS with the corresponding valuation of the propositional formula ϕ, we define a partial
function that maps subformulas of ϕ to a Boolean valuation B or undefined ⊥. We use the
convention to write such subformula valuation functions as βϕ : sf (ϕ)→ B⊥, i.e., we index
the partial function by a propositional formula. Then, similar to the correctness proof of
clausal abstraction in Section 4.2, we define an operation Φ|QX

βϕ
, for a QBF Φ, quantifier

QX, and subformula valuation βϕ, as the QBF with the same prefix as Φ with propositional
formula ϕ′ resulting from replacing subformulas ψi by their valuation βϕ(ψi) if it is defined.
Potentially occurring free variables, which were in the original QBF variables bound by
outer quantifiers, are removed by this operation.

Formally, the propositional part of Φ|QX

βϕ
is defined as the partial evaluation of ϕ ac-

cording to the subformula valuation βϕ. Therefore, we use a partial evaluation function
parteval(ψ, βϕ) that maps a propositional formula ψ and a subformula valuation βϕ to a
propositional formula. It is defined as

parteval(ψ, βϕ) =

βϕ(ψ) if βϕ(ψ) 6= ⊥∧
ψ′∈dsf (ψ)

parteval(ψ′,βϕ)6=⊥

parteval(ψ′, βϕ) if type(ψ) = ∧

∨
ψ′∈dsf (ψ)

parteval(ψ′,βϕ)6=⊥

parteval(ψ′, βϕ) if type(ψ) = ∨

ψ if type(ψ) = lit and ψ is bound

⊥ otherwise

Lastly, we need to define the subformula valuation function corresponding to some assign-
ment of satisfaction variables αS . An assignment of satisfaction variables αS represents the
subformula valuation βϕ := sfvalϕ(αS) where sfvalϕ(αS) is defined as

sfvalϕ(αS)(ψi) =

T if si ∈ dom(αS) ∧ (type(ψi) = ∨) ∧ αS(si) = T

F if si ∈ dom(αS) ∧ (type(ψi) = ∧) ∧ αS(si) = F

⊥ otherwise

(16)

Then, we define the shorthand notation Φ|QX
αS

as Φ|QX

βϕ
, where βϕ := sfvalϕ(αS).

Many times in this section, we will argue about duality. To make this reasoning precise,
we begin with a formal justification using two lemmata. Recall that we denote by β the
complement of the partial assignment β. The following lemma states that an assignment
αSX

for Φ corresponds to the negated assignment αSX
in the negated formula Φ.

Lemma 8 (Duality). Let Φ be a QBF with propositional formula ϕ, let QX be some
quantifier of Φ, and let αSX

be an assignment to the satisfaction variables. Φ|QX
αSX

is true

if, and only if, Φ|QX

αSX
is false.

Proof. Let βϕ := sfvalϕ(αSX
) and let βϕ := sfvalϕ(αSX

). It holds that βϕ = βϕ by the
definition of sfval in Equation 16. For every QBF Φ it holds that Φ is true if, and only if,
Φ is false. Together, this shows that Φ|QX

αSX
is true iff Φ|QX

αSX
is false.

192

CAQE and QuAbS: Abstraction Based QBF Solvers

In the correctness proof below, we will argue over optimal assumption assignments for
some quantifier QX, that is, assignments of assumption variables α∗AX

that are minimal
with respect to the number of assumptions α∗AX

(ai) = T. The following lemma estab-
lishes this form of reasoning for quantifier alternations by proving equisatisfiability between
(Φ|QX

αSX
)[αX] and Φ|QY

α∗SY

for some “optimal” αSY
constructed from αSX

and αX analogously

to Lemma 5. In the proof, we argue over consistency of complete subformula assignments,
which means that the assignment respects the propositional formula. A complete subformula
assignment αϕ : sf (ϕ) → B is consistent, if and only if, for every (non-literal) subformula
ψi of ϕ it holds that

αϕ(ψi) =

{∧
ψj∈dsf (ψi)

αϕ(ψj) if type(ψi) = ∧∨
ψj∈dsf (ψi)

αϕ(ψj) otherwise

Lemma 9. Let QX.QY be a quantifier alternation of a QBF Φ with propositional formula
ϕ and let αX and αSX

be assignments. Further, let α∗SY
be defined such that α∗SY

(si) = F
if, and only if, αX ṫ αSX

� enc(ψi) (for quantifier QX). It holds that (Φ|QX
αSX

)[αX] and

Φ|QY

α∗SY

are equisatisfiable.

Proof. We prove the statement for quantifier alternations of the form ∃X.∀Y , the case
∀X.∃Y then follows by Lemma 8. The quantified formulas (Φ|∃XαSX

)[αX] and Φ|∀Yα∗SY

have

the same quantifier prefix (starting with ∀Y) and equisatisfiable propositional formula.
We show the latter by proving equality over the corresponding subformula assignments.
Let βϕ := sfvalϕ(αSX

). We augment βϕ with αX , that is, we define β′ϕ := βϕ t αX . Let
βϕ = sfvalϕ(α∗SY

) be the subformula valuation corresponding to α∗SY
. Note that sfvalϕ(α∗SY

)

is defined with respect to negated subformulas, that is, ψi ∈ ϕ as it corresponds to a
universal quantifier ∀Y (and is thus equivalent to the existential quantifier ∃Y over the
dual propositional formula ϕ). We show that the assignments β′ϕ and βϕ are dual with
respect to the satisfaction variables for quantifier ∀Y . As the assignment αX may propagate
subformula valuations beyond the boundaries given by the satisfaction variables, we prove
the following strengthening: For every complete and consistent extension αϕ of β′ϕ (β′ϕ v αϕ)

and every si ∈ SY it holds that αϕ(ψi) = βϕ(ψi) if βϕ(ψi) 6= ⊥.

Let βϕ(ψi) = T (analogous for βϕ(ψi) = F). Then, by definition of sfvalϕ(α∗SY
)(ψi) in

Equation 16 it holds that type(ψi) = ∨ and α∗SY
(si) = T. By the definition of α∗SY

, we know
that αX ṫ αSX

2 enc(ψi). By the definition of the abstraction θX , for every si ∈ SY , there
is a ψj ∈ dsf (ψi) such that ψj = ψ<j , that is, ψj is only influenced by outer variables (with
respect to X). A recursive argument over enc(ψi) shows that, αX ṫ αSX

2 enc(ψi) implies
that for every complete and consistent subformula valuation αϕ(ψi) = F has to hold.

Further, for every complete and consistent extension αϕ of βϕ with the same variable
assignments as αϕ (αϕ(v) = αϕ(v) for every bound variable v), it holds that αϕ(ψi) = αϕ(ψi)
by duality and the previous statement.

If the assignments are not optimal, there is a monotonicity property on the satisfaction
assignments stated below.

193

L. Tentrup

Lemma 10 (Monotonicity of αSX
). Let QX be a quantifier of QBF Φ and let αSX

be an
assignment such that Φ|QX

αSX
is winning for QX. For every α′SX

with α+
SX
v α′SX

+ it holds

that Φ|QX

α′SX

is winning for QX.

Proof. We prove the statement for ∃X, the universal case is analogous. Let αSX
be given

such that Φ|∃XαSX
is winning for ∃X. Further, choose some arbitrary α′SX

with α+
SX
v α′SX

+.

The subformula valuations βϕ and β′ϕ corresponding to αSX
and α′SX

, respectively, are
monotone as well: If βϕ(ψi) = T it follows that β′ϕ(ψi) = T by definition in Equation 16.

Reasoning over abstractions θX and θX . In this part, we focus on the two types of
abstractions used in the algorithm. First, we have a formal statement regarding equisatis-
fiability of the innermost abstraction and the circuit representation for a given assignment
of the satisfaction variables αS , similar to Lemma 4.1.

Lemma 11. Let Φ be a QBF with propositional formula ϕ, let ∃X be the innermost quanti-
fier, and let αSX

be an assignment over variables SX . It holds that θX [αSX
] is equisatisfiable

to Φ|∃XαSX
.

Proof. As ∃X is the innermost quantifier, all variables in ϕ are either bound by ∃X or by
some outer quantifier. By definition in Equation 12, the abstraction is θX = enc(ϕ). Note
that ϕ and enc(ϕ) are identical up to subformulas ψ of ϕ with only outer influence (ψ = ψ<),
where ψ is replaced in enc(ϕ) by a satisfaction variable. Let αSX

be some assignment over
satisfaction variables SX . By the definition of enc(ϕ) (Equation 13), replacing si with
αSX

(si) leads to formulas which are equal to T if ψi is disjunctive and αSX
(si) = T, and to

F if ψi is conjunctive and αSX
(si) = F. Otherwise, the variable si is just removed from the

encoded formula enc(ϕ). This matches the definition of the subformula valuation function
βϕ resulting from αSX

, thus,

Φ|∃XαSX
= Φ|∃Xβϕ = enc(ϕ)[αSX

] = θX [αSX
] ,

which we show by structural induction over ϕ. Let βϕ be the subformula valuation corre-
sponding to αSX

. We show that Φ|∃Xβϕ is equal to θX [αSX
]. Let ψi be an arbitrary non-literal

subformula of ϕ. Further, let ψj be an arbitrary direct subformula ψj ∈ dsf (ψi). We per-
form a case distinction on ψj :

• Let ψj = ψ=
j , thus, ψj contains only variables X. The encoding of ψj is equal in both

cases, as encψi
(ψj) = ψj and βϕ(ψj) = ⊥.

• Let ψj = ψ<j , thus, ψj contains only variables bound at outer quantifiers. Thus,
encψi

(ψj) = si and the subformula is replaced by a constant in Φ|∃Xβϕ . Since we replace

si with αSX
(si), we do a further case distinction on type(ψi) and αSX

(si).

– Assume type(ψi) = ∧ and αSX
(si) = T, thus, assigning si positively in enc(ψi)

has the same effect as removing ψj .

– Assume type(ψi) = ∨ and αSX
(si) = F, thus, assigning si negatively in enc(ψi)

has the same effect as removing ψj .

194

CAQE and QuAbS: Abstraction Based QBF Solvers

– Assume type(ψi) = ∧ and αSX
(si) = F, thus, assigning si negatively in enc(ψi)

makes enc(ψi) unsatisfiable. By definition in Equation 16, βϕ(ψi) = F as well.

– Assume type(ψi) = ∨ and αSX
(si) = T, thus, assigning si positively in enc(ψi)

makes enc(ψi) valid. By definition in Equation 16, βϕ(ψi) = T as well.

If neither of the base cases above applies, the claim follows by induction.

The following two lemmata formalize the duality of the abstraction. These statements
are used to argue over the dual abstraction. The former states that the abstraction is dual
with respect to negation of the formula except for the satisfaction variables. It shows that
the dual abstraction is unsatisfiable when assuming a satisfying assignment of the abstrac-
tion. The latter lemma shows the correctness of the dual propagation for the innermost
quantifier.

Lemma 12 (Duality of θX). Let Φ be a QBF with propositional formula ϕ, let ∃X be a
quantifier of Φ, and let αX and αSX

be assignments. It holds that

enc(ψi)[αX ṫ αSX
]↔ ¬enc(ψi)[αX ṫ αSX

] .

Proof. As αSX
abstracts the outer assignments as subformula valuations, αSX

needs to be
negated to represent the same assignments in θX . By structural induction, it is straightfor-
ward to show that enc(ψi) and enc(ψi) are dual with the exception of variables from S: A
disjunction in enc(ψi) is a conjunction in enc(ψi) and vice versa, a literal l of quantifier ∃X
in enc(ψi) is negated ¬l in enc(ψi). Only satisfaction variables appear positively in both
formulas.

Lemma 13. Let Φ be a QBF with propositional formula ϕ, let ∃X be the innermost quan-
tifier, and let αX and αSX

be satisfying assignments of θX . It holds that θX [αX ṫ αSX
] is

unsatisfiable. Let β be some set of failed assumptions, that is, β v αX ṫ αSX
and θX [β] is

unsatisfiable. Then, β|SX
v α+

SX
and Φ|∃X

β|SX
[⊥7→F]

is true.

Proof. By the definition of the abstractions, it holds that θX = enc(ϕ) and θX = enc(ϕ).
Lemma 12 shows that if αX ṫ αSX

is a satisfying assignment of enc(ϕ), the assignment
αX ṫ αSX

falsifies enc(ϕ). By definition of failed assumptions, β v αX ṫ αSX
, i.e., there is

no α with β v α that satisfies θX , hence, all α∗SX
with β|SX

v α∗SX
satisfy θX [αX]. Together

with Lemma 11, this shows that Φ|∃X
β|SX

[⊥7→F]
is true.

Correctness of solve-nnf. Finally, we are able to prove the correctness of the solve-
nnf algorithm. As in the case for CNF, we prove the correctness by induction over the
quantifier prefix.

Lemma 14. Let Φ be a QBF with propositional formula ϕ, let QX.Ψ be a quantified
subformula of Φ, and let αSX

be an assignment of the satisfaction variables SX .

• If Φ|QX
αSX

is winning for QX, then solve-nnf(QX, Ψ, αSX
) returns SatQ(βSX

) where

βSX
v α+

SX
and Φ|QX

βSX
[⊥7→F] is winning for QX.

195

L. Tentrup

• If Φ|QX
αSX

is losing for QX, then solve-nnf(QX, Ψ, αSX
) returns UnsatQ(βSX

) where

βSX
v α−SX

and Φ|QX

βSX
[⊥7→T] is losing for QX.

Proof. We prove the statement by structural induction over the quantifier prefix. For this
proof, we can restrict Q to ∃ as the universal case is completely dual (Lemma 8). The base
case ∃X distinguishes whether Φ|∃XαSX

is true or false. In both cases, we use the equisatis-

fiability of Φ|∃XαSX
and θX [αSX

] (Lemma 11). In case the formula is true, we additionally

have to use the correctness of the dual propagation as established in Lemma 13. In the
induction step, i.e., a quantifier alternation ∃X.∀Y , we perform a case distinction on the
value of Φ|∃XαSX

as well. If it is true, there is a satisfying assignment αX such that Φ|∃XαSX
[αX]

is losing for ∀Y . Applying induction hypothesis and dual propagation gives the required
witness. In case the abstraction produces falsifying assignments, the subsequent refinement
excludes them from the abstraction, hence, eventually a satisfying assignment is reached. If
Φ|∃XαSX

is false, every assignment αX is winning for ∀Y and, thus, leads to a refinement of the

abstraction θX . The abstraction becomes eventually unsatisfiable (under the assignment
αSX

) and the failed assumption represents the required witness. The detailed proof follows.

Induction Base. Let ∃X.ϕ be the innermost quantifier of Φ and let αSX
be some assign-

ment over SX . We distinguish whether Φ|∃XαSX
is true or false:

• Assume that Φ|∃XαSX
is true. By Lemma 11, the truth of Φ|∃XαSX

witnesses the satisfia-

bility of θX [αSX
]. By Lemma 13, the return value of solve-nnf in line 10 meets the

requirements.

• Assume that Φ|∃XαSX
is false. By Lemma 11 it follows that θX [αSX

] is unsatisfiable.

Thus, the algorithm returns Unsat(βSX
) where βSX

are the failed assumptions of
sat(θX , αSX

) which implies that βSX
v α−SX

. As θX [βSX
[⊥ 7→ T]] is unsatisfiable,

Φ|∃XβSX
[⊥7→T] is false by Lemma 11, thus, β meets the requirements.

The base case for universal formulas ∀X.ϕ follows from the existential cases by Lemma 8.

Induction Step. Let ∃X.∀Y be a quantifier alternation of Φ and let αSX
be some assign-

ment over SX . We distinguish whether Φ|∃XαSX
is true or false:

• Assume that Φ|∃XαSX
is true. Thus, there is a satisfying assignment αX for the variables

X such that (Φ|∃XαSX
)[αX] is true. We define the “optimal” assignment of the assump-

tion variables α∗AX
, that is, the minimal assignment with respect to the number of

assumptions (α∗A(ai) = T) for the given assignment αX , as

α∗AX
(ai) =

{
F if αX ṫ αSX

� enc(ψi)

T otherwise
.

The definition of the abstraction θX (Equation 12) is

θX =
∧

ai∈AX

ai ∨ enc(ψi) .

196

CAQE and QuAbS: Abstraction Based QBF Solvers

The combined assignment αX ṫα∗AX
is, thus, a satisfying assignment of the abstraction

θX [αSX
] initially. We perform a case distinction on the returned assignment of the

SAT solver in line 3.

– We assume that the SAT call in line 3 returns αX ṫ α∗AX
. Let α∗SY

be the
assignment constructed in line 5. By Lemma 9, it holds that (Φ|∃XαSX

)[αX] =

Φ|∀Yα∗SY

is true and, thus, losing for ∀Y . By induction hypothesis we deduce that

solve-nnf(∀Y.Ψ, α∗SY
) returns Sat(βSY

) with βSY
v α−SY

where Φ|∀YβSY
[⊥7→1] is

true. Subsequently, the dual abstraction θX is refined (line 7) and solve-nnf
returns Sat(βSX

) where βSX
= optimize(αX , αSX

) (line 8).

It remains to show that Φ|∃XβSX
[⊥7→F] is true and βSX

v α+
SX

. First, we show that

θX [αX ṫ αSX
] is unsatisfiable. Initially, the dual abstraction is defined as

θX =
∧

ai∈AX

ai ∨ enc(ψi) .

The refinement clause for the dual abstraction is ξ :=
∨
si∈β0

SY

ai (line 7). As

established by Lemma 12, for every ai ∈ AX it holds that enc(ψi)[αX ṫ αSX
]↔

¬enc(ψi)[αX ṫ αSX
]. By the definition of θX , for every ai ∈ α0

AX
it holds that

enc(ψi)[αX ṫ αSX
] = T. As αAX

(ai) = αSY
(si) for every ai ∈ AX and βSY

v
α−SY

it follows that enc(ψi)[αX ṫ αSX
] = F for every si ∈ β0

SY
. This shows

that θX [αX ṫ αSX
] is unsatisfiable after the refinement ξ. Let β be the failed

assumptions. The returned assignment is βSX
= β|SX

, thus βSX
v α+

SX
. For

every α′SX
with βSX

v α′SX
it holds that θX [αX ṫ α′SX

] is unsatisfiable as it
falsifies the refinement ξ. Thus, one can define a corresponding optimal α′AX

that

satisfies θX and for the resulting α′SY
it holds that Φ|∀Yα′SY

is true as βSY
v α′−SY

.

Hence, Φ|∃XβSX
[⊥7→F] is true.

– Assume that the SAT call in line 3 returns a different assumption α′AX
. Either

α′AX
corresponds to αX and is non-minimal, i.e., α∗AX

+ v α′AX

+, or it corresponds
to a different assignment α′X . The call to solve-nnf may either return Sat or a
counterexample Unsat(βSY

) with βSY
v α+

SY
. We consider the latter case as in

the former case solve-nnf also returns Sat and the same argumentation as in
the previous case applies.

The subsequent refinement in line 9 requires that one of the not satisfied subfor-
mulas ψi with βSY

(si) = αAX
(ai) = T has to be satisfied in the next iteration

and the corresponding refinement clause is ξ :=
∨
si∈β1

SY

ai. By construction of

α∗AX
as the minimal assignment corresponding to αX , α∗AX

2 ξ contradicts that
αX is a satisfying assignment of Φ|∃XαSX

. Hence, αX ṫ α∗AX
is still a satisfying

assignment for the refined abstraction θ′X [αSX
]. The refinement also reduces the

number of AX assignments by at least 1 and, thus, brings us one step closer to
a satisfying assignment.

• Assume that Φ|∃XαSX
is false. For every assignment αX , it holds that (Φ|∃XαSX

)[αX] is

false. The abstraction θX is initially satisfiable for every choice of αSX
(every ai can

197

L. Tentrup

be set to true, see Equation 12). Let α be a such satisfying assignment of θX [αSX
].

We define αX := α|X and αAX
:= α|AX

. By construction of θX (Equation 12),
αX ṫ αSX

2 enc(ψi) implies that αAX
(ai) = T. We define the assignment with op-

timal assumptions α∗AX
as α∗AX

(ai) = F if, and only if, αX t αSX
� enc(ψi). Note

that αX ṫ α∗AX
is a satisfying assignment of θX [αSX

]. We show that even with opti-
mal assumptions α∗AX

, the quantified subformula is unsatisfiable and the subsequent
refinement step excludes assignment αAX

from the abstraction θX .

Let α′SY
and α∗SY

be the assignments after line 5 with respect to αAX
and α∗AX

, re-

spectively. From the construction, we know that α∗AX

+ v αAX
+, by the optimality

of α∗A, and thereby α∗SY

+ v α′SY

+. By Lemma 9, it holds that (Φ|∃XαSX
)[αX] and

Φ|∀Yα∗SX

are equisatisfiable and, thus, winning for ∀. By the monotonicity condition

given in Lemma 10, it follows that Φ|∀Xα′SX

is false as well. By induction hypothesis,

solve-nnf(∀Y , Ψ, α′SX
) returns Unsat(βSY

) such that βSY
v α′SY

+ and Φ|∀βSY
[⊥7→F] is

false. As β1
SY
⊆ α′SY

1 = {ai ∈ AX | αA(ai) = T}, the following refinement with clause∨
si∈β1

S
ai excludes assignment αAX

from θX . As there are only finitely many refine-

ment clauses, the SAT call in line 3 eventually becomes unsatisfiable when assuming
αSX

. Let θ′X be the abstraction at this point and let β′SX
be the failed assumptions,

i.e., β′SX
v α+

SX
.

Let α′′SX
= β′SX

[⊥ 7→ T]. It remains to show that Φ|∃Xα′′SX

is false. Assume for contradic-

tion that there is some αX such that (Φ|∃α′′SX

)[αX] is true. It holds that θ′X [αX ṫα′′SX
]

is unsatisfiable, whereas θX [αX ṫ α′′SX
] is satisfiable. Thus, the assignment αX was

excluded due to refinements. Let α′′AX
be the optimal assumption assignment corre-

sponding to αX . As the refinement only excludes AX assignments corresponding to
some SY assignment β′′SY

such that Φ|∀β′′SY
[⊥7→F] is false, which contradicts our assump-

tion.

The induction step for quantifier alternation ∀X.∃Y follows from ∃X.∀Y and Lemma 8.

Since the main algorithm solve directly calls into solve-nnf, the following theorem
follows immediately from Lemma 14.

Theorem 5. solve returns Sat if, and only if, Φ is true.

7.3 Optimizations

In this section, we describe optimizations for the algorithm. Compared to CNF, there are
less opportunities in the algorithm as the dual abstraction already takes care of generating
and translating witnesses.

As shown in the last section, the satisfaction assignments αS correspond to partial
formula evaluations. In the same way as the CNF algorithm, the abstraction only builds an
implication ai ∨ enc(ψi), thus, assumption assignments αA may not be optimal. Fix some
quantifier QX. During the execution of the algorithm, we maintain the partial evaluation
βϕ of ϕ under the current variable assignment αV of variables bound at X or at some outer

198

CAQE and QuAbS: Abstraction Based QBF Solvers

quantifier and we use this evaluation to build optimal assignments. If βϕ(ψi) = T for some
ai ∈ AX , then we set αAX

(ai) to F.
Lastly, and already noted by other NNF approaches [44], subformulas ψ ∈ sf (ϕ) do not

need to be in negation normal form if ψ is only influenced by variables of a single quantifier,
that is, ψ = ψ=. For example, the following formula ∀x.∃y, z. x ∧ (y ↔ z) can be solved
with the algorithm presented above without modifications.

7.4 Function Extraction

The overall approach for function extraction algorithm is the same as the one described in
Section 5. For every quantifier ∃X, we store a sequence of pairs 〈βSX

, αX〉 ∈ (A⊥(SX) ×
A(X)) and these pairs can be obtained from the algorithm by the returned value βSX

after
the dual abstraction optimization (lines 8 and 10). Next, we define the reverse function
of the abstraction invQX : A⊥(SX) → B(V) that maps an assignment βSX

to a proposi-
tional formula over variables V bound by outer quantifiers (with respect to X). Intuitively,
invQX(βSX

) describes those assignments that lead to βSX
in the abstraction of quantifier

QX. We define invQX as

inv∃X(βSX
) :=

∧
si∈β1

SX

outer(ψi) (17)

where outer is defined as

outer(ψi) =

∧
ψj∈dsf (ψi)

ψ<
j =ψj

ψj if type(ψi) = ∧

∨
ψj∈dsf (ψi)

ψ<
j =ψj

ψj otherwise

The definition of the extracted function fx for some x ∈ X follows then by Equation 10.

Example 9. We show the function extraction for our running example

∃x.∀v, w. ∃y. (x ∨ v ∨
ψ3︷ ︸︸ ︷

(y ∧ w))︸ ︷︷ ︸
ψ2

∧ (x ∨
ψ5︷ ︸︸ ︷

(v ∧ w)∨y)︸ ︷︷ ︸
ψ4

∧ (v ∨ w ∨ y)︸ ︷︷ ︸
ψ6

From the execution shown in Example 8, we extract the sequences 〈∅, x〉 and 〈s2s6, y〉〈s2s4, y〉
as described above. The Skolem function for x is the constant x = T. Applying the defini-
tion of inv∃y, we get

inv∃y(s2s6) = (x ∨ v) ∧ (v ∨ w) and

inv∃y(s2s4) = (x ∨ v) ∧ (x ∨ (v ∧ w)) .

Thus, the Skolem function fy is defined as

fy(v, w) = inv∃y(s2s6)[x 7→ T] = (x ∨ v) ∧ (v ∨ w)[x 7→ T] = (v ∨ w) .

fx and fy depend solely on its dependencies and are functionally correct as ϕ[f{x,y}] =
((v ∧ w) ∨ v ∨ w)(v ∨ w ∨ (v ∧ w)) is a tautology.

199

L. Tentrup

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
0

200

400

600

solved instances

ti
m

e
(s

ec
.)

CAQE
RAReQS
Qesto

DepQBF
Qute
Ijtihad
dynQBF
GhostQ

Figure 5: Cactus plot showing the number of solved instances on the prenex CNF benchmark
set of QBFEVAL’18 using HQSPre as preprocessor.

8. Experimental Evaluation

For our experiments, we used a machine with a 3.6 GHz quad-core Intel Xeon (E3-1271
v3) processor and 32 GB of memory. The timeout and memout were set to 10 minutes and
8 GB, respectively.

8.1 CAQE

We implemented the clausal abstraction algorithm in a tool called CAQE5. (Clausal Ab-
straction for Quantifier Elimination) that takes as input a quantified Boolean formula en-
coded in the QDIMACS format. As the solver for the propositional abstractions, we used
the SAT solver CryptoMiniSat [69] version 5.0.1. We compare CAQE against publicly avail-
able QBF solvers that support the QDIMACS format, namely DepQBF [56] version 6.03,
dynQBF [19] version 1.1.1, GhostQ [50] version 2017, Qesto [46] version 1.0, Qute [62]
version 1.1, and RAReQS [44] version 1.1. We use the prenex CNF benchmark set from
the QBF competition QBFEVAL’18 6.. As preprocessors, we used Bloqqer [12] version
031, HQSPre [75] version 1.4, and QRATPre+ [57] version 1.0. The cactus plot given in
Figure 5 shows the number of solved instances for the best combination of preprocessor and
solver. Detailed solving results are shown in Table 1. CAQE solves overall most instances,
followed by RAReQS and Qesto. Further, all solvers solved significantly more instances
when using HQSPre compared to Bloqqer. At the same time, the improvement due to
HQSPre is much smaller for the solvers CAQE and RAReQS that are based on (partial)
expansion then for the other solvers, possibly due to the more aggressive in expansion of
universal variables in HQSPre compared to Bloqqer.

5. Source code available at https://github.com/ltentrup/caqe
6. Available at http://www.qbflib.org/qbfeval18.php

200

https://github.com/ltentrup/caqe
http://www.qbflib.org/qbfeval18.php

CAQE and QuAbS: Abstraction Based QBF Solvers

Table 1: Number of solved formulas by combinations of solvers and preprocessors on the
prenex-CNF benchmark set of QBFEVAL’18. For every combination, we give the number
of solved instances overall and broken down by result, that is, satisfiable and unsatisfiable.

preprocessor HQSPre Bloqqer QRATPre+ none
solver solved sat unsat solved sat unsat solved sat unsat solved sat unsat

CAQE 309 122 187 273 115 158 161 63 98 141 43 98
RAReQS 274 102 172 247 94 153 136 47 89 139 28 111
Qesto 269 108 161 196 89 107 127 52 75 98 29 69
DepQBF 246 97 149 181 91 90 138 70 68 136 53 83
Qute 239 79 160 159 58 101 116 40 76 94 17 77
Ijtihad 201 75 146 198 74 124 125 39 86 131 23 108
dynQBF 201 85 116 113 59 54 81 56 25 59 39 20
GhostQ – – – – – – – – – 176 89 87

Extended Refinements. We discuss the effect of the stronger refinements given in Sec-
tion 4.3 and the expansion refinement given in Section 6. There is a tradeoff between the
precision of the abstraction and the cost of these satisfiability calls. The more precise an
abstraction, the more losing assignments are excluded, i.e., a higher precision can poten-
tially reduce the number of propositional satisfiability calls. Both presented optimizations
can potentially improve the precision, but both of them also may increase the time spent
inside the SAT solver. Further, the relative performance of the optimizations depend on the
benchmark set as well as the preprocessor that is used, thus, it is advisable to evaluate those
optimizations in practice on a case-by-case basis. However, in our experiments, we found
that the expansion refinement optimization vastly improves the number of solved instances
independently of the preprocessor. Also, when comparing the running times directly, as
done in the scatter plot depicted in Figure 6, the negative effect of the running time of the
propositional SAT solver is reasonably small.

Regarding the stronger refinements, we found that the effect on instances preprocessed
with HQSPre is negligible. When using Bloqqer, however, the optimization improved
the number of solved instances significantly. Further, the combination of both refinements,
which we call extended refinement (which is also the default configuration used in the eval-
uation above), is the best performing variant of CAQE when using Bloqqer as preproces-
sor. In our experiments, the combination performed better than any of the two refinements
alone, indicating that they are in some sense orthogonal, as shown in the scatter plots in
Figure 6.

Algorithmic Choices. In the following, we want to quantify the impact of the algorith-
mic choices described in the article. For this setup, we used a version of CAQE which is
close to the initial version of Section 4. Then, we enabled one of the algorithmic improve-
ments mentioned in this article to evaluate their impact. The results are given in Table 2.
The most impact in terms of additionally solved instances has the expansion refinement
which can be explained by the corresponding improvement of the underlying proof sys-
tem [72]. The sum of additionally solved instances of the optimizations that are enabled by

201

L. Tentrup

10−1 100 101 102
10−1

100

101

102

CAQE without expansion refinement

C
A
Q
E

w
it

h
ex

p
a
n

si
o
n

re
fi

n
em

en
t

10−1 100 101 102
10−1

100

101

102

CAQE without stronger refinement

C
A
Q
E

w
it

h
st

ro
n

g
er

re
fi

n
em

en
t

10−1 100 101 102
10−1

100

101

102

CAQE without extended refinement

C
A
Q
E

w
it

h
ex

te
n

d
ed

re
fi

n
em

en
t

Figure 6: Scatter plot comparing the solving time (in sec.) of CAQE with and without
extended refinements (expansion refinement and stronger refinement) and preprocessing
using Bloqqer. Both axes have logarithmic scale.

default (304) is smaller than the number of instances solved by CAQE (309) which hints
at a positive synergy regarding the combination of individual optimizations.

8.2 QuAbS

We implemented the abstraction algorithm for negation normal form formulas in a solver
called QuAbS7. (Quantified Abstraction Solver) that takes as input a quantified Boolean
formula encoded in the quantified circuit (QCIR) [64] format. As the solver for the proposi-
tional abstractions, we used the SAT solver CryptoMiniSat [69] version 5.0.1. We compare
QuAbS against the publicly available QBF solvers that support the QCIR format, namely
GhostQ [50] version 2017, QFUN [42] version 2018, cQESTO [41] version 2018, and
Qute [62] version 1.1. We use the prenex non-CNF benchmark set from the QBF com-

7. Source code available at https://github.com/ltentrup/quabs

202

https://github.com/ltentrup/quabs

CAQE and QuAbS: Abstraction Based QBF Solvers

Table 2: This table shows the impact of select algorithmic choices on a baseline version of
CAQE using HQSPre as preprocessor. The baseline solves 229 instances on the prenex-
CNF benchmark set of QBFEVAL’18. For every algorithmic choice, we give the difference
of solved instances (∆) compared to the baseline and detailed results (+) and (−).

Algorithmic choice default described in ∆ + −

Expansion refinement yes Section 6 +50 58 8
Tree-shaped quantifier prefix yes Section 4.3 +13 16 3
Stronger refinement yes Section 4.3 +6 7 1
Sharing of abstraction literals yes Section 4.3 +6 14 8
Equivalence constraints in abstraction no [46] +3 5 2
Backtracking over multiple quantifiers no Section 4.3 −1 1 2
Dropping redundant refinement literals no Section 4.3 −1 6 7

0 20 40 60 80 100 120 140 160 180
0

200

400

600

solved instances

ti
m

e
(s

ec
.)

QuAbS
cQESTO
GhostQ
QFUN
Qute

Figure 7: Cactus plot showing the number of solved instances on the QBFEVAL’18 bench-
mark set.

petition QBFEVAL’18. The results are shown in Figure 7. Despite being slower initially
compared to cQESTO, QuAbS solves more instances overall.

Function Extraction. Enabling function extraction outputs a representation of the
Skolem and Herbrand function, encoded as And-Inverter-Graph, after determining that
the formula is satisfiable and unsatisfiable, respectively. In contrast to CNF solvers, we do
not need to disable optimizations [61] nor preprocessing (as we do not use external prepro-
cessors and QuAbS uses only constant propagation as preprocessing technique). Thus, the
impact of function extraction is small, as shown by Figure 8 which compares the running
time of QuAbS with and without function extraction.

203

L. Tentrup

0 50 100 150 200 250 300 350 400 450 500 550 600
0

50

100

150

200

250

300

350

400

450

500

550

600
QuAbS without function extraction

Q
u
A
b
S

w
it

h
fu

n
ct

io
n

ex
tr

a
ct

io
n

Figure 8: Scatter plot comparing the solving time (in sec.) of QuAbS with and without
function extraction.

This makes QuAbS an ideal candidate for applications where solving witnesses are
needed: QuAbS is used in the reactive synthesis tool BoSy [24], which won the synthesis
track in the reactive synthesis competition (SYNTCOMP) 2016 and 2017 [39,40]. Further,
it is also part of the Petri game solver Adam [26] and the HyperLTL satisfiability solver
MGHyper [27].

9. Conclusion

We presented a detailed description and analysis of the clausal abstraction approach—a
versatile and performant solving approach for quantified Boolean formulas. A key aspect
for the algorithm is the abstraction itself: it can be efficiently implemented using a modern
SAT solver and it is flexible, for example, we showed that we can integrate partial expan-
sion in addition to clausal abstraction refinements. On the algorithmic side, the approach
of communicating subformula valuations scales from formulas in prenex conjunctive nor-
mal form, to non-prenex and negation normal form, respectively, as well as dependency
quantified Boolean formulas (DQBF) [73].

Acknowledgments

204

CAQE and QuAbS: Abstraction Based QBF Solvers

I thank Bernd Finkbeiner, Jesko Hecking-Harbusch, Markus Rabe, and Martina Seidl for
their feedback on earlier versions of this article. I also thank the anonymous reviewers for
their comments.

References

[1] Abdelwaheb Ayari and David A. Basin. QUBOS: deciding quantified Boolean logic
using propositional satisfiability solvers. In Proceedings of FMCAD, 2517 of LNCS,
pages 187–201. Springer, 2002.

[2] Valeriy Balabanov and Jie-Hong R. Jiang. Unified QBF certification and its applica-
tions. Formal Methods in System Design, 41(1):45–65, 2012.

[3] Valeriy Balabanov, Jie-Hong Roland Jiang, Mikolas Janota, and Magdalena Widl.
Efficient extraction of QBF (counter)models from long-distance resolution proofs. In
Proceedings of AAAI, pages 3694–3701. AAAI Press, 2015.

[4] Valeriy Balabanov, Jie-Hong Roland Jiang, Christoph Scholl, Alan Mishchenko, and
Robert K. Brayton. 2QBF: Challenges and solutions. In Proceedings of SAT, 9710 of
LNCS, pages 453–469. Springer, 2016.

[5] Valeriy Balabanov, Shuo-Ren Lin, and Jie-Hong R. Jiang. Flexibility and optimization
of QBF skolem-herbrand certificates. IEEE Trans. on CAD of Integrated Circuits and
Systems, 35(9):1557–1568, 2016.

[6] Marco Benedetti. Evaluating QBFs via symbolic skolemization. In Proceedings of
LPAR, 3452 of LNCS, pages 285–300. Springer, 2004.

[7] Marco Benedetti. Extracting certificates from quantified Boolean formulas. In Pro-
ceedings of IJCAI, pages 47–53. Professional Book Center, 2005.

[8] Marco Benedetti. sKizzo: A suite to evaluate and certify QBFs. In Proceedings of
CADE-20, 3632 of LNCS, pages 369–376. Springer, 2005.

[9] Marco Benedetti and Hratch Mangassarian. QBF-based formal verification: Experience
and perspectives. JSAT, 5(1-4):133–191, 2008.

[10] Olaf Beyersdorff, Leroy Chew, and Mikolás Janota. Proof complexity of resolution-
based QBF calculi. In Proceedings of STACS, 30 of LIPIcs, pages 76–89. Schloss
Dagstuhl – LZI, 2015.

[11] Armin Biere. Resolve and expand. In Proceedings of SAT, 3542 of LNCS, pages
59–70. Springer, 2004.

[12] Armin Biere, Florian Lonsing, and Martina Seidl. Blocked clause elimination for QBF.
In Proceedings of CADE, 6803 of LNCS, pages 101–115. Springer, 2011.

[13] Nikolaj Bjørner and Mikolás Janota. Playing with quantified satisfaction. In Proceed-
ings of LPAR, 35 of EPiC Series in Computing, pages 15–27. EasyChair, 2015.

205

L. Tentrup

[14] Roderick Bloem, Nicolas Braud-Santoni, Vedad Hadzic, Uwe Egly, Florian Lonsing,
and Martina Seidl. Expansion-based QBF solving without recursion. In Proceedings of
FMCAD, pages 1–10. IEEE, 2018.

[15] Roderick Bloem, Uwe Egly, Patrick Klampfl, Robert Könighofer, and Florian Lonsing.
SAT-based methods for circuit synthesis. In Proceedings of FMCAD, pages 31–34.
IEEE, 2014.

[16] Roderick Bloem, Robert Könighofer, and Martina Seidl. SAT-based synthesis methods
for safety specs. In Proceedings of VMCAI, 8318 of LNCS, pages 1–20. Springer, 2014.

[17] Thomas Brihaye, Véronique Bruyère, Laurent Doyen, Marc Ducobu, and Jean-François
Raskin. Antichain-based QBF solving. In Proceedings of ATVA, 6996 of LNCS, pages
183–197. Springer, 2011.

[18] Hans Kleine Büning and Uwe Bubeck. Theory of quantified Boolean formulas. In
Handbook of Satisfiability, 185 of Frontiers in Artificial Intelligence and Applications,
pages 735–760. IOS Press, 2009.

[19] Günther Charwat and Stefan Woltran. Dynamic programming-based QBF solving.
In Proceedings of QBF@SAT, 1719 of CEUR Workshop Proceedings, pages 27–40.
CEUR-WS.org, 2016.

[20] Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith.
Counterexample-guided abstraction refinement. In Proceedings of CAV, 1855 of
LNCS, pages 154–169. Springer, 2000.

[21] Uwe Egly, Florian Lonsing, and Magdalena Widl. Long-distance resolution: Proof
generation and strategy extraction in search-based QBF solving. In Proceedings of
LPAR, 8312 of LNCS, pages 291–308. Springer, 2013.

[22] Uwe Egly, Martina Seidl, and Stefan Woltran. A solver for QBFs in negation normal
form. Constraints, 14(1):38–79, 2009.

[23] Peter Faymonville, Bernd Finkbeiner, Markus N. Rabe, and Leander Tentrup. Encod-
ings of bounded synthesis. In Proceedings of TACAS, 10205 of LNCS, pages 354–370,
2017.

[24] Peter Faymonville, Bernd Finkbeiner, and Leander Tentrup. BoSy: An experimenta-
tion framework for bounded synthesis. In Proceedings of CAV, 10427 of LNCS, pages
325–332. Springer, 2017.

[25] Katalin Fazekas, Marijn J. H. Heule, Martina Seidl, and Armin Biere. Skolem function
continuation for quantified Boolean formulas. In Proceedings of TAP, 10375 of LNCS,
pages 129–138. Springer, 2017.

[26] Bernd Finkbeiner, Manuel Gieseking, Jesko Hecking-Harbusch, and Ernst-Rüdiger
Olderog. Symbolic vs. bounded synthesis for Petri games. In Proceedings of
SYNT@CAV, 260 of EPTCS, pages 23–43, 2017.

206

CAQE and QuAbS: Abstraction Based QBF Solvers

[27] Bernd Finkbeiner, Christopher Hahn, and Tobias Hans. MGHyper: Checking satis-
fiability of HyperLTL formulas beyond the ∃∗∀∗ fragment. In Proceedings of ATVA,
11138 of LNCS, pages 521–527. Springer, 2018.

[28] Bernd Finkbeiner, Christopher Hahn, Philip Lukert, Marvin Stenger, and Leander
Tentrup. Synthesizing reactive systems from hyperproperties. In Proceedings of CAV,
10981 of LNCS, pages 289–306. Springer, 2018.

[29] Bernd Finkbeiner and Leander Tentrup. Fast DQBF refutation. In Proceedings of SAT,
8561 of LNCS, pages 243–251. Springer, 2014.

[30] Enrico Giunchiglia, Paolo Marin, and Massimo Narizzano. Reasoning with quanti-
fied Boolean formulas. In Handbook of Satisfiability, 185 of Frontiers in Artificial
Intelligence and Applications, pages 761–780. IOS Press, 2009.

[31] Enrico Giunchiglia, Massimo Narizzano, and Armando Tacchella. QuBE++: An effi-
cient QBF solver. In Proceedings of FMCAD, 3312 of LNCS, pages 201–213. Springer,
2004.

[32] Alexandra Goultiaeva and Fahiem Bacchus. Exploiting QBF duality on a circuit rep-
resentation. In Proceedings of AAAI. AAAI Press, 2010.

[33] Alexandra Goultiaeva, Allen Van Gelder, and Fahiem Bacchus. A uniform approach for
generating proofs and strategies for both true and false QBF formulas. In Proceedings
of IJCAI, pages 546–553. IJCAI/AAAI, 2011.

[34] Alexandra Goultiaeva, Vicki Iverson, and Fahiem Bacchus. Beyond CNF: A circuit-
based QBF solver. In Proceedings of SAT, 5584 of LNCS, pages 412–426. Springer,
2009.

[35] Alexandra Goultiaeva, Martina Seidl, and Armin Biere. Bridging the gap between dual
propagation and CNF-based QBF solving. In Proceedings of DATE, pages 811–814.
EDA Consortium San Jose, CA, USA / ACM DL, 2013.

[36] Jesko Hecking-Harbusch and Leander Tentrup. Solving QBF by abstraction. In Pro-
ceedings of GandALF, 277 of EPTCS, pages 88–102, 2018.

[37] Marijn Heule, Martina Seidl, and Armin Biere. A unified proof system for QBF pre-
processing. In Proceedings of IJCAR, 8562 of LNCS, pages 91–106. Springer, 2014.

[38] Marijn J. H. Heule, Martina Seidl, and Armin Biere. Solution validation and extraction
for QBF preprocessing. J. Autom. Reasoning, 58(1):97–125, 2017.

[39] Swen Jacobs, Nicolas Basset, Roderick Bloem, Romain Brenguier, Maximilien Colange,
Peter Faymonville, Bernd Finkbeiner, Ayrat Khalimov, Felix Klein, Thibaud Michaud,
Guillermo A. Pérez, Jean-François Raskin, Ocan Sankur, and Leander Tentrup. The
4th reactive synthesis competition (SYNTCOMP 2017): Benchmarks, participants &
results. In Proceedings of SYNT@CAV, 260 of EPTCS, pages 116–143, 2017.

207

L. Tentrup

[40] Swen Jacobs, Roderick Bloem, Romain Brenguier, Ayrat Khalimov, Felix Klein, Robert
Könighofer, Jens Kreber, Alexander Legg, Nina Narodytska, Guillermo A. Pérez, Jean-
François Raskin, Leonid Ryzhyk, Ocan Sankur, Martina Seidl, Leander Tentrup, and
Adam Walker. The 3rd reactive synthesis competition (SYNTCOMP 2016): Bench-
marks, participants & results. In Proceedings of SYNT@CAV, 229 of EPTCS, pages
149–177, 2016.

[41] Mikolás Janota. Circuit-based search space pruning in QBF. In Proceedings of SAT,
10929 of LNCS, pages 187–198. Springer, 2018.

[42] Mikolás Janota. Towards generalization in QBF solving via machine learning. In
Proceedings of AAAI. AAAI Press, 2018.

[43] Mikolás Janota, Radu Grigore, and João Marques-Silva. On QBF proofs and prepro-
cessing. In Logic for Programming, Artificial Intelligence, and Reasoning - 19th In-
ternational Conference, LPAR-19, Stellenbosch, South Africa, December 14-19, 2013.
Proceedings, 8312 of LNCS, pages 473–489. Springer, 2013.

[44] Mikolás Janota, William Klieber, Joao Marques-Silva, and Edmund M. Clarke. Solving
QBF with counterexample guided refinement. Artif. Intell., 234:1–25, 2016.

[45] Mikolás Janota and Joao Marques-Silva. Expansion-based QBF solving versus Q-
resolution. Theor. Comput. Sci., 577:25–42, 2015.

[46] Mikolás Janota and Joao Marques-Silva. Solving QBF by clause selection. In Proceed-
ings of IJCAI, pages 325–331. AAAI Press, 2015.

[47] Mikolás Janota and João Marques-Silva. An achilles’ heel of term-resolution. In Pro-
ceedings of EPIA, 10423 of LNCS, pages 670–680. Springer, 2017.

[48] Toni Jussila, Armin Biere, Carsten Sinz, Daniel Kröning, and Christoph M. Winter-
steiger. A first step towards a unified proof checker for QBF. In Proceedings of SAT,
4501 of LNCS, pages 201–214. Springer, 2007.

[49] Hans Kleine Büning, Marek Karpinski, and Andreas Flögel. Resolution for quantified
Boolean formulas. Inf. Comput., 117(1):12–18, 1995.

[50] William Klieber, Samir Sapra, Sicun Gao, and Edmund M. Clarke. A non-prenex,
non-clausal QBF solver with game-state learning. In Proceedings of SAT, 6175 of
LNCS, pages 128–142. Springer, 2010.

[51] Nian-Ze Lee, Yen-Shi Wang, and Jie-Hong R. Jiang. Solving exist-random quantified
stochastic Boolean satisfiability via clause selection. In Proceedings of IJCAI, pages
1339–1345. ijcai.org, 2018.

[52] Florian Lonsing, Fahiem Bacchus, Armin Biere, Uwe Egly, and Martina Seidl. Enhanc-
ing search-based QBF solving by dynamic blocked clause elimination. In Proceedings
of LPAR, 9450 of LNCS, pages 418–433. Springer, 2015.

208

CAQE and QuAbS: Abstraction Based QBF Solvers

[53] Florian Lonsing and Armin Biere. Nenofex: Expanding NNF for QBF solving. In
Proceedings of SAT, 4996 of LNCS, pages 196–210. Springer, 2008.

[54] Florian Lonsing and Armin Biere. DepQBF: A dependency-aware QBF solver. JSAT,
7(2-3):71–76, 2010.

[55] Florian Lonsing and Uwe Egly. Incremental QBF solving by DepQBF. In Proceedings
of ICMS, 8592 of LNCS, pages 307–314. Springer, 2014.

[56] Florian Lonsing and Uwe Egly. DepQBF 6.0: A search-based QBF solver beyond tra-
ditional QCDCL. In Proceedings of CADE, 10395 of LNCS, pages 371–384. Springer,
2017.

[57] Florian Lonsing and Uwe Egly. QRAT+: generalizing QRAT by a more powerful
QBF redundancy property. In Proceedings of IJCAR, 10900 of LNCS, pages 161–177.
Springer, 2018.

[58] Christian Miller, Christoph Scholl, and Bernd Becker. Proving QBF-hardness in
bounded model checking for incomplete designs. In Proceedings of MTV, pages 23–28.
IEEE Computer Society, 2013.

[59] Massimo Narizzano, Luca Pulina, and Armando Tacchella. The QBFEVAL web portal.
In Proceedings of JELIA, 4160 of LNCS, pages 494–497. Springer, 2006.

[60] Aina Niemetz, Mathias Preiner, and Armin Biere. Turbo-charging lemmas on demand
with don’t care reasoning. In Proceedings of FMCAD, pages 179–186. IEEE, 2014.

[61] Aina Niemetz, Mathias Preiner, Florian Lonsing, Martina Seidl, and Armin Biere.
Resolution-based certificate extraction for QBF - (tool presentation). In Proceedings
of SAT, 7317 of LNCS, pages 430–435. Springer, 2012.

[62] Tomás Peitl, Friedrich Slivovsky, and Stefan Szeider. Dependency learning for QBF.
In Proceedings of SAT, 10491 of LNCS, pages 298–313. Springer, 2017.

[63] Luca Pulina and Martina Seidl. The 2016 and 2017 QBF solvers evaluations (QBFE-
VAL’16 and QBFEVAL’17). Artif. Intell., 274:224–248, 2019.

[64] QBF Gallery 2014. QCIR-G14: A non-prenex non-CNF format for quantified Boolean
formulas. Technical report, 2014.

[65] Markus N. Rabe and Sanjit A. Seshia. Incremental determinization. In Proceedings of
SAT, 9710 of LNCS, pages 375–392. Springer, 2016.

[66] Markus N. Rabe and Leander Tentrup. CAQE: A certifying QBF solver. In Proceedings
of FMCAD, pages 136–143. IEEE, 2015.

[67] Markus N. Rabe, Leander Tentrup, Cameron Rasmussen, and Sanjit A. Seshia. Un-
derstanding and extending incremental determinization for 2QBF. In Proceedings of
CAV, 10982 of LNCS, pages 256–274. Springer, 2018.

209

L. Tentrup

[68] Christoph Scholl and Florian Pigorsch. The QBF solver AIGSolve. In Proceedings of
QBF@SAT, 1719 of CEUR Workshop Proceedings, pages 55–62. CEUR-WS.org, 2016.

[69] Mate Soos, Karsten Nohl, and Claude Castelluccia. Extending SAT solvers to cryp-
tographic problems. In Proceedings of SAT, 5584 of LNCS, pages 244–257. Springer,
2009.

[70] Igor Stéphan and Benoit Da Mota. A unified framework for certificate and compilation
for QBF. In Proceedings of ICLA, 5378 of LNCS, pages 210–223. Springer, 2009.

[71] Leander Tentrup. Non-prenex QBF solving using abstraction. In Proceedings of SAT,
9710 of LNCS, pages 393–401. Springer, 2016.

[72] Leander Tentrup. On expansion and resolution in CEGAR based QBF solving. In
Proceedings of CAV, 10427 of LNCS, pages 475–494. Springer, 2017.

[73] Leander Tentrup and Markus N. Rabe. Clausal abstraction for DQBF. In Proceedings
of SAT, 11628 of LNCS, pages 388–405. Springer, 2019.

[74] Grigori S Tseitin. On the complexity of derivation in propositional calculus. Studies
in constructive mathematics and mathematical logic, 2(115-125):10–13, 1968.

[75] Ralf Wimmer, Sven Reimer, Paolo Marin, and Bernd Becker. HQSpre - an effective
preprocessor for QBF and DQBF. In Proceedings of TACAS, 10205 of LNCS, pages
373–390, 2017.

[76] Lintao Zhang and Sharad Malik. Conflict driven learning in a quantified Boolean
satisfiability solver. In Proceedings of ICCAD, pages 442–449. ACM / IEEE Computer
Society, 2002.

[77] Wenhui Zhang. QBF encoding of temporal properties and QBF-based verification. In
Proceedings of IJCAR, 8562 of LNCS, pages 224–239. Springer, 2014.

210

	Introduction
	Quantified Boolean Formulas
	Syntax
	Boolean Assignments and Functions
	Semantics

	Solving QBF with One Quantifier Alternation
	Algorithm
	Correctness
	Optimizations

	Solving QBF with Arbitrary Quantifier Alternations
	Algorithm
	Correctness
	Optimizations

	Function Extraction
	Integrating Partial Expansion
	Circuit Abstraction
	Algorithm
	Correctness
	Optimizations
	Function Extraction

	Experimental Evaluation
	CAQE
	QuAbS

	Conclusion

