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Virtual sensor for probabilistic estimation of
the evaporation in cooling towers
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Abstract. Global natural resources are affected by several causes such as climate change effects or unsustainable management
strategies. Indeed, the use of water has been intensified in urban buildings because of the proliferation of HVAC (Heating,
Ventilating and Air Conditioning) systems, for instance cooling towers, where an abundant amount of water is lost during the
evaporation process. The measurement of the evaporation is challenging, so a virtual sensor could be used to tackle it, allowing to
monitor and manage the water consumption in different scenarios and helping to plan efficient operation strategies which reduce the
use of fresh water. In this paper, a deep generative approach is proposed for developing a virtual sensor for probabilistic estimation
of the evaporation in cooling towers, given the surrounding conditions. It is based on a conditioned generative adversarial network
(cGAN), whose generator includes a recurrent layer (GRU) that models the temporal information by learning from previous
states and a densely connected layer that models the fluctuations of the conditions. The proposed deep generative approach is
not only able to yield the estimated evaporation value but it also produces a whole probability distribution, considering any
operating scenario, so it is possible to know the confidence interval in which the estimation is likely found. This deep generative
approach is assessed and compared with other probabilistic state-of-the-art methods according to several metrics (CRPS, MAPE
and RMSE) and using real data from a cooling tower located at a hospital building. The results obtained show that, to the best of
our knowledge, our proposal is a noteworthy method to develop a virtual sensor, taking as input the current and last samples, since
it provides an accurate estimation of the evaporation with wide enough confidence intervals, contemplating potential fluctuations
of the conditions.

Keywords: HVAC systems, cooling tower, evaporation, probabilistic estimation, generative adversarial network, gated recurrent
unit

1. Introduction large aquifers without returning the content [18,37,50].
In addition, water scarcity is accentuated in cities be-
cause of fast urbanization, insufficient maintenance of

water infrastructures and unsatisfactory waste manage-

Climate change is an evidence whose effects not only
include a rise of global temperature, changing precipi-

tation patterns, and causing intense heat waves or more
droughts [41] but it also produces serious impacts in
global natural resources, such as water. The reduction
of global water supplies could be accelerated in several
parts of the world due to certain management strategies
which require intensive extraction of groundwater from
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ment [36].

The public water supply represents 21% of the con-
sumption in the European Union [8], including build-
ings that account for the greater use, in particular com-
mercial and institutional ones [52,55]. Some reports
state that up to 30% of the volume of water consumed
in buildings could be saved [8]. However, a sustain-
able water management in buildings would help to
preserve global water resources [52]. The majority
of buildings use Heating, Ventilating and Air Condi-
tioning (HVAC) systems that consume a significant
amount of water (around 48% of the total), especially
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Fig. 1. Cooling tower scheme.

the water-based cooling systems such as cooling tow-
ers [16,27,55]. Measures for enhancing the efficiency
of these systems could therefore provide important wa-
ter savings [17,27]. In addition, the performance of the
cooling towers depends mainly on ambient conditions,
given a fixed quantity of heat to dissipate. For this rea-
son, knowing how water is used in cooling towers is
an interesting subject in order to support management
decisions and operation strategies.

A cooling tower is a HVAC system designed to trans-
fer heat from the water to the air (see Fig. 1). The warm
water flow entering to the tower is sprayed while an
air draft is generated in the opposite direction, in order
to achieve the evaporation. In this process, the water
exchanges the latent heat with the air, so that the cold
water flow leaving the tower is obtained [32]. A lot
of water is lost in the evaporation, so additional water
must be continuously added to the system. Although
other processes taking place in the tower such as drift or
blow-down increase slightly the loss of water, evapora-
tion represents the main part of the losses and has a sig-
nificant effect in the environment and the cost [30]. Fur-
thermore, evaporation is directly influenced by the am-
bient conditions that fluctuate over time and determine
the operation and performance of the cooling tower. For
that reason, the evaporation flow should be measured in
a cooling tower, although these systems do not usually
incorporate a meter for this purpose.

Although there are some systems using recycled wa-
ter, it is not contemplated in hospital applications, where

cooling towers must use fresh water treated with bio-
cides to comply with a strict health regulation and to
prevent legionella. In this context, a virtual sensor could
be used to estimate the evaporation in a cooling tower,
facilitating to plan its operation and to improve its per-
formance, consequently saving fresh water.

A virtual sensor is a software sensor that estimates
an indirect variable using readings from related phys-
ical sensors [39]. The applications are wide, ranging
from the estimation of a measure that is difficult or even
impossible to obtain to support in case of a failure or
replacement of an installed sensor. A virtual sensor re-
quires computational methods such as neural networks
that replicate the functional behavior of the process ac-
curately. The virtual sensor should consider the sur-
rounding conditions, i.e., the operating and environ-
mental conditions as well as their possible variations.
Moreover, it should take advantage of past states of the
cooling tower. The virtual sensor should be able to esti-
mate the range of values in which the evaporation could
be found and with what confidence, i.e., the probability
distribution instead of a single value of evaporation to
accommodate slight variations of the surrounding con-
ditions. For that purpose, the method should provide
a probabilistic estimation in order to take into account
these mentioned conditions and fluctuations.

In this paper, we propose a deep generative approach
to develop a virtual sensor for probabilistic estimation
of the evaporation in cooling towers, given the operat-
ing and environmental conditions. The proposed deep
generative approach considers the potential fluctuations
of the surrounding conditions and the previous states
of the cooling tower. Novel deep learning methods can
be appropriate for estimating the probability distribu-
tion of the evaporation in cooling towers. Deep archi-
tectures based on a Generative Adversarial Network
(GAN) could yield likely estimations in both normal
and abnormal scenarios and recurrent networks could
learn from the past states of the cooling tower. This
paper extends the approach first presented in [5] and
introduces novelties in several directions:

— The introduction of previous samples to the input
of the model.

— The processing of the noise in the intermediate lay-
ers in order to allow the model to capture patterns
in the first layers.

— The use of a recurrent network to remember past
states of the cooling tower.

— The comparison of the proposed deep generative
approach with other state-of-the-art methods.
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— The use of a different test dataset to assess and
compare all the models, increasing the training and
validation data.

— The use of several metrics, suitable for evaluating
probabilistic distributions.

The remainder of the paper is organized as follows:
Literature is reviewed in Section 2. In Section 3, the
proposed deep generative approach used to address the
problem is explained in detail. Section 4 describes the
cooling tower, the dataset, the evaluation metrics and
the experimental setup. In Section 5, the results are
presented and discussed. Finally, conclusions are drawn
in Section 6.

2. Related work

One of the main challenges in the operation of cool-
ing towers is to reduce the evaporation (preserving
fresh water sources) while minimizing energy consump-
tion [20]. However, the measurement of the evaporation
is challenging. A virtual sensor can estimate a variable,
which is difficult or expensive to measure, through mod-
els created using lower cost or related physical sensors.
Although the virtual sensing technique has been applied
in many fields, building systems are slower to adopt
some technologies because of the costs [39]. The adap-
tation of virtual sensors in embedded devices within a
building can provide an improvement in monitoring the
performance. In this section, related works concerning
models for simulation and prediction of the behaviour
of this type of HVAC systems are briefly reviewed.
State-of-the-art approaches can be categorized in the
following groups:

— Physical models that try to simulate the system by
means of mathematical formulas.

— Data-based models which can extract patterns of a
system from data described by several variables of
the process.

— Generative models that estimate data distribution
and can generate new plausible data instances.

Initial approaches for water loss in cooling towers
are referred to mathematical models [26,48]. Merkel
developed a baseline theory of cooling towers using
differential equations of heat and mass transfer [44].
For that purpose, several assumptions have to be taken,
such as the Lewis factor (heat and mass transfer rela-
tion) being equal to one, the saturation of exit air by
water vapor and its characterization by its enthalpy, or
neglecting the evaporation of water flow rate. In fol-

lowing works, these assumptions were modified. For
example, other values of the Lewis number were con-
sidered [24] whereas Kloppers and Kroger specified the
influence of the Lewis relation on water outlet temper-
ature for dry conditions of ambient air [33]. A model
based on Merkel’s theory was proposed [51] for the pre-
diction of energy and water consumption under variable
wet-bulb temperatures and airflow rates. Besides, Li et
al. [40] proposed a dynamic model for a mechanical
draft counterflow cooling tower by simulating its tran-
sient behaviour for three different inlet conditions of
tower: fixed condition, change in evaporator inlet water
temperature and change in ambient air condition. Al-
though these approaches represent the system closely,
they require complex developments and a complete un-
derstanding of the physical laws, including the spec-
ification of several parameters. Furthermore, several
assumptions are involved that do always not adjust to
the real conditions of the system and might lead to poor
accuracy in the results.

In contrast, data-based methods possess the ability to
extract non-linear relationships from several variables
describing a process, without a complete understanding
of the underlying physical system [1,9]. Indeed, data-
driven models provide flexible methods that can be used
for energy and performance prediction in a context of
smart infrastructures. The applicability of artificial neu-
ral networks (ANN) for prediction of the performance
of cooling towers covering several ambient conditions
was shown on an experimental system [19,30].

Another data-based approach for energy prediction is
the use of ensemble methods that use a set of predictors
(using decision trees) to estimate a final value. A mod-
eling method based on gradient boosting machine was
proposed for energy consumption in several commer-
cial buildings [53]. Random forest (RF) was used for
hourly building energy prediction and its performance
was evaluated in educational buildings [54]. A compar-
ison of the performance of ANN and RF for electricity
consumption prediction in a HVAC system showed a
better behavior of the ANN model [2].

The above methods learn a model from training data
that simulates the behaviour of the system, but new situ-
ations not included in training data could appear, so that
the model would be unable to capture certain operations
of the system. In order to deal with this issue, a function
for all the possible input values should be inferred con-
sistently from training data. In this sense, Gaussian pro-
cesses [49] are a probabilistic method, based on multi-
variate Gaussian distributions, to model the underlying
distribution over possible functions. A direct applica-
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tion area is regression, using a mean vector (frequently
assumed to be zero) and a covariance matrix, defined
by evaluating various types of similarity measures, such
as linear or radial basis functions, through a kernel. Ad-
ditional information can be incorporated from training
data using Bayesian inference, which serves to con-
strain the set of functions. This modeling has been used
for determining energy savings and uncertainty levels in
measurement and verification practices [28] or estimat-
ing brain activity [42]. An enhanced probabilistic neural
network was presented in [3] using local decision cir-
cles with an increase of its robustness for classification.
Also a generalization of the RF algorithm, called quan-
tile regression forest (QRF) [43], can be more suitable
for representing a prediction with uncertainties [58].

On the other hand, recent deep learning approaches
have produced advances in several fields such as com-
puter vision applications [7,21,46] or natural language
processing [22]. These approaches have also been ap-
plied to other novel scenarios, for instance, real-time
crack assessment for civil structure inspection [31] data
compression in structural health monitoring [6,47], a
deep learning framework proposed for data streaming
classification [38], or the addition in the algorithm of
prior knowledge and temporal information [13]. Gener-
ative adversarial networks (GAN) [23] provide a gen-
erative model that is able to obtain predictions that can
occur in real situations, but that are not included in
training data. Although GAN was initially applied to
domains where the evaluation method can be intuitive
such as images [25], later they have also been applied
to time-series data in several domains such as sensory
data [35]. In the field of energy management, the use
of GAN was proposed for the task of scenario gen-
eration, so that new scenarios can be produced using
historical data from renewable resources without ex-
plicitly modeling the distribution [14]. A data-driven
approach was also proposed to generate synthetic data
using GAN based on learned conditional probability
distribution [57].

In this paper, a probabilistic estimation of the evap-
oration in cooling towers is performed taking into ac-
count contextual and novel information and past states.
For that purpose, a deep generative approach is used and
assessed under a real scenario using data collected from
a cooling tower located in a hospital building [5]. This
work differs from the above mentioned works, since
it does not only consider the surrounding conditions
but also their potential fluctuations and the dynamics
of the process, remembering prior states. In addition,
it provides a probability distribution instead of just an
estimated value.

3. Methodology

This paper addresses the development of a virtual
sensor able to provide a probabilistic estimation of the
evaporation in cooling towers, given the surrounding
conditions. The virtual sensor should consider the in-
fluence of the operating and environmental variables on
the evaporation. Furthermore, it should tackle the po-
tential fluctuations of these conditional variables due to
abnormal situations, such as a peak in thermal load, an
increase of the outdoor temperature during a heatwave
or a rise of the relative humidity because of fog banks.
In addition, it should learn from previous operations and
the dynamics of the thermodynamic process in a cool-
ing tower. Therefore, the virtual sensor should estimate
the evaporation in both normal and abnormal situations.
Likewise, it should estimate not only a single value of
the evaporation, but also the probability distribution of
the evaporation, in order to determine a range to which
the evaporation could belong with certain confidence
level.

In order to deal with this problem, we propose a deep
generative approach to obtain probabilistic estimations
of the evaporation. It is based on a Generative Adver-
sarial Network (GAN) [23] that can provide a plau-
sible estimation of the evaporation, even in novel un-
seen situations. A GAN architecture allows us to create
generative models through an adversarial process. It
consists of two parts: the generator whose function is
to yield new credible data that are very similar to real
data by capturing the data distribution; and the discrim-
inator which is in charge of classifying data as either
real or artificial by providing if a sample is from the
input dataset or from the generator.

Training the GAN architecture entails, first, training
and updating the discriminator assuming that the class
is always real. Next, both the generator and the dis-
criminator models are trained assuming that the class
is always fake, but only the generator is updated. The
final aim of training a GAN architecture is to achieve
a generator which is able to fool the discriminator by
providing real-looking data which are used as output.

3.1. The proposed deep generative approach

Since some operating and environmental variables
influence the evaporation, the GAN architecture should
be conditioned by these contextual variables. For that
purpose, a conditional version of the GAN architec-
ture, called Conditioned Generative Adversarial Net-
work (cGAN) [45], is used in this paper. In a cGAN
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architecture, both the generator and discriminator are
conditioned on some extra information in order to man-
age the data generation process. In this case, the cGAN
considers the operating and environmental conditions,
the previous states of the cooling tower and the dynam-
ics of the thermodynamic process. The effort focuses on
building the deterministic models for both the generator
and the discriminator.

Figure 2 summarizes the proposed deep generative
approach (cGAN-GRU) based on a conditioned GAN.
Using this approach, the evaporation ¢ could be esti-
mated as follows:

gt:f(xtaxt—lv"';xt—kvz), (1)

where f represents the regression function to be learned
by the deep generative approach during the training
process.

The environmental and operating variables for cur-
rent time ¢ are

X; = [T1,22, -+, Tt 2)
and for past times ¢t — 1, ..., t — k are respectively
s Tmlt—1
...... , 3)

Xt—k = [171, T2y .- 7xm]t—k

xi-1 = 1,72, ..

being m the number of variables and k& the number of
previous samples.

The noise representing the variations of the contex-
tual variables is

Z:[ZMZQ""’ZTL]? (4)

being n the number of noisy variables.

The generator should consider prior states and the
dynamics of the evaporation process. For that purpose,
we propose the use of a recurrent layer which is able to
learn from the past environmental and operating con-
ditions. The deep generative approach includes a GRU
(Gated Recurrent Unit) layer [15] since its structure is
less complex and computationally more efficient than
other recurrent alternatives, such as LSTM (Long Short-
Term Memory) [29]. The generator should also consider
potential fluctuations of the environmental and oper-
ating variables. For that reason, a concatenate layer is
introduced after the recurrent layer to add noise to the
model [34], representing these variations.

The input to the generator are k + 1 vectors con-
taining the current (x;) and k past samples of m en-
vironmental and operating variables of the process
(X4, X¢-1,-..,X¢_k), i.e., the conditional variables and
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Fig. 2. The proposed deep generative approach (cGAN-GRU).

time. Moreover, n noisy variables (z1, 22, ..., z,,) are
introduced to the generator. First of all, the genera-
tor comprises a GRU layer that processes the condi-
tioned variables and time with the aim of remember-
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ing past states of the cooling tower. Secondly, a con-
catenate layer is used to introduce the n noisy vari-
ables (21, 22, . . . , 2,,) to the model. Then, a dense layer
processes together the temporal information and noise.
The generator could include additional hidden layers
in order to improve its performance. The output from
the generator is the current estimation of the evapora-
tion ¢, which, in turn, is the output of the deep gener-
ative approach once the generator is well trained and
succeeds.

The discriminator should evaluate if the estimation
yielded by the generator is plausible or not, given the
current context of the cooling tower, i.e., the environ-
mental conditions and the operating modes of the cool-
ing tower. Therefore, in this case, the model could be
built as a deep network but, unlike for the generator,
without the specific use of a recurrent layer for acquir-
ing information from the past.

The input to the discriminator is a vector representing
the current state of the cooling tower (comprising the
current samples of m environmental and operating vari-
ables, i.e., x;), the estimated value of the evaporation
U yielded by the generator and the real value of the
evaporation y,. The input data to the model are com-
bined using a concatenate layer and the discriminator
could include a certain number of layers. The output
from the discriminator is a class (real of fake) to which
the estimation of the evaporation is assigned.

The output of the proposed deep generative approach
(cGAN-GRU) should be a probability distribution of
the evaporation, considering different scenarios. For
that, a distribution of values (not only a single value)
for each noisy variable is introduced to the generator,
ie, (P(z1),P(22),...,P(zn)), representing potential
variations of the conditional variables. In this way, a
distribution of estimated values of the evaporation is
obtained P(gy).

3.2. Additional methods

The proposed deep generative approach is compared
with other state-of-the-art methods:

— Conditioned GAN with dense layers (cGAN-
Dense): A conditioned generative adversarial net-
work with dense layers (cGAN-Dense), which
consists of a generator and a discriminator deep
networks based on dense layers (with a certain
number of hidden layers) [5]. On the one hand,
noise is introduced to the generator, together with
the conditional variables that influence the estima-
tion. The generator has one or several dense layers

and provides the estimation as its output. On the
other hand, the estimated and the real values are
concatenated with the conditional variables and
they are fed into the discriminator. As the gener-
ator, the discriminator comprises one or several
dense layers. The output of the discriminator is the
class of the estimation, i.e., it returns whether this
value is real or not.

— Gaussian Process Regression (GPR): Gaus-
sian process regression [49] is a nonparametric
Bayesian approach that computes the probability
distribution over all admissible functions that fit
the data instead of calculating the probability dis-
tribution of parameters of a specific function. GPR
infers a probability distribution over all possible
values so that it has the ability to provide uncer-
tainty measurements on the estimations. A Gaus-
sian process is completely specified by a mean
function and a positive definite covariance func-
tion.

— Quantile Regression Forest (QRF): This method
is a generalization of the standard random forest
(RF), which produces an accurate approximation
of the conditional distribution of a response vari-
able, not only about the conditional mean [43]. A
QRF model infers the full conditional distribution
of a response variable [43], whereas a RF mod-
els calculates the mean value of the target vari-
able in each tree leaf [11]. Thus, QRF gives a non-
parametric and accurate way of estimating con-
ditional percentiles for high-dimensional predic-
tor variables, what can be used to build prediction
intervals and detect outliers in the data.

4. Experiments
4.1. System and dataset

A mechanical draft cooling tower (Baltimore Aircoil
S-3654-NM) is used in the experiment (see Fig. 3). This
tower, located at the Hospital of Ledn, is used to con-
dense water from a chiller [5]. The air flow is gener-
ated by an axial fan with a three-phase induction motor
(18.5 KW) which is driven by a variable speed drive
(Moeller DF6-340-22K). The water flow is provoked
by two pumps Grundfos NK 150-315/307/BAQE with a
three-phase induction motor (30 KW) each. Two John-
son Controls TS-9101- 8224 sensors measure input and
output temperatures of the water.

A dataset is created, acquiring and storing data from
the operation of the cooling tower for 40 days, sam-
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Fig. 3. Photo of cooling tower [5].

Table 1
Variables in the dataset

Symbol  Variable name Unit
Ta Dry-bulb temperature °C
Hr Relative humidity %
Tin Input water temperature (warm) °C
Tour Output water temperature (cold) °C
Fs Fan speed %
Moy Evaporated water flow m3 /h

pled at 1 hour. This dataset comprises 960 samples and
6 variables (see Table 1). Ambient temperature (7a)
and humidity (Hr), input (7},) and output (7,,) water
temperatures and fan speed (Fs) are acquired by the
BMS (Building Management System) and the evapora-
tion (1, ) is computed by measuring water flow. There-
fore, a flow meter is required to measure the water flow
through the cooling tower. For that purpose, an ultra-
sonic portable meter (Fluxus F601 by Flexim) is occa-
sionally installed because the system lacks a permanent
meter.

4.2. Evaluation metrics

Several metrics can be used for evaluating estima-
tions and comparing the performance between the meth-
ods in this context [10]. They are described in the fol-
lowing. On the one hand, several metrics are related
to prediction error defined by the difference between
an observed value y; and an estimated value g; at the
instant of time ¢. Since a probabilistic estimation is ob-
tained and they are applied to scalar values, the mean
value of the estimated distribution 7, is considered to
compute the performance of the methods.

One measure that compares estimation performance
is the mean absolute percentage error (MAPE) that takes
into account relative errors of the estimation as follows:

q
MAPE = 100% Z

t=1

Yt — ?t
Yt

(&)

Also, a widely known measure, root mean squared
error (RMSE) is considered for the evaluation:

Zg:l (Zt - :ﬁt)2 (6)

On the other hand, Continuous Ranked Probability
Score (CRPS) can be used to compare the accuracy
of a probabilistic estimation quantitatively [56]. CPRS
considers the probability distribution of the estimations
as a whole, without focusing on any specific point of
the distribution. CRPS generalizes the mean absolute
error (MAE) to the case of probabilistic estimations.
It is a quadratic measure of the difference between the
predicted cumulative distribution function (CDF) and
the empirical CDF of the observation. The CRPS be-
tween an observation y and an empirical probabilistic
forecast F'(§) is defined as:

crrs(E.y) = [ (F(G) =16~ v) dis )

— o0
being F' the cumulative distribution function (CDF) of a
variable and 1 the step function which attains the value
of 1 for positive or zero arguments and the value of 0
otherwise.

RMSE =

oo

4.3. Experiment setup

The data from the original dataset are preprocessed
and scaled in range [—1, 1]. The difference between
input and output water temperatures is calculated (Dt =
Tin — Tour)- Therefore, according to Eq. (1), the esti-
mation of the evaporation Ty is

,ﬁ?’v :f(xtvxtfl,"'»xtfk‘vz) (8)

where the conditional variables x for instants ¢, t — 1,
..., t—kare:

x; = [Ta, Hr, Dt, Fs);

x¢—1 = [Ta, Hr, Dt, Fs];_1 )

Xt = |Ta, Hr, Dt, Fs];_j.

The length of the sliding window k is used to con-
sider the past samples and is set after a cross-validation
process.
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Table 2
Overview of the hyperparameter tuning

Hyperparameter Range Best value
QRF
‘Window [0-9] 0
Estimators [100-2000] 500
Depth [1-10] 5
GPR
Window [0-9] 3
Kernel Linear, Matern,
RBF, DotProduct  DotProduct
cGAN-Dense
Window [0-9] 1
Noise dimension  [1-10] 4
Neurons G1 [20-150] 150
Neurons G2 [20-150] 100
Neurons D1 [20-150] 150
Neurons D2 [20-150] 100
cGAN-GRU
Window [0-9] 1
Noise dimension  [1-10] 4
Neurons G1 [20-150] 100
Neurons G2 [20-150] 50
Neurons D1 [20-150] 50
Neurons D2 [20-150] -

Vector z contains the noisy variables which are used
to introduce the variability to the model. A distribution
of values for each noisy variable (P(z1), P(z2),...,
P(zy,)) is generated according to a normal distribution
centered at 0 and within 1 standard deviation. In this
way, a distribution of estimated values of the evapora-
tion P (r;z,,) is obtained as output of the deep generative
approach.

The proposed and state-of-the-art methods are trained
and tested using the previously defined dataset (data
from 40 days sampled at 1 hour). For that purpose, it is
split into training, validation and test subsets. Data from
the first 35 days are used for training and validation and
data from the last 5 days are used for testing.

A 5-fold cross-validation is applied to select the
parameters which provide the lowest errors for each
method. Specifically, a range of hyperparameters was
established after several preliminary runs. Then, a grid
search is performed to tune the hyperparameters of
each model. Table 2 summarizes the hyperparameters
considered for tuning each method. Another alterna-
tive could be the use of an automated methodology for
designing the architecture and its parameters [12].

As a result of this process, the following hyperpara-
meters have been selected. In QRF method, the selected
number of estimators is 500 and the depth of each tree
is 5. In this case, the input comprises only the current
sample (no sliding window). GPR method uses a dot
product function as a kernel and the input comprises the
current and 3 past samples (window = 3). In cGAN-

Dense, the generator consists of two consecutive dense
layers (G1 and G2) with 150 and 100 neurons, respec-
tively. Likewise, the discriminator contains two dense
layers (D1 and D2) with identical number of neurons. In
c¢GAN-GRU, the generator is formed by the GRU layer
(G1) and a dense layer (G2), with 100 and 50 neurons
respectively. The discriminator comprises only a dense
layer (D1) with 50 neurons. An additional dense layer
(D2) was introduced, but it did not provide better re-
sults, so it was dismissed. Comparing the architecture of
both GAN-based approaches, it should be highlighted
that cGAN-GRU has a lower number of layers in the
discriminator and requires a lower number of neurons
in the layers in both generator and discriminator. In
cGAN-Dense and cGAN-GRU, the dimension of the
noise vector (z) is equal to the number of conditional
variables, i.e., n = 4. Moreover, the input encompasses
the current and one past sample (window = 1) in both
methods. Regarding activation functions, LeakyReLU is
used in combination with all dense layers, linear is ap-
plied to the output of the generator (estimation) and sig-
moid is used for the output of the discriminator (class).
The number of epochs of both GAN-based approaches
(cGAN-Dense and cGAN-GRU) is set to 5000 in or-
der to avoid a convergence failure or mode collapse.
Above 5000 epochs, the training process is also stable
but it increases significantly the training times, without
a noticeable improvement of the results. That can be
observed in Fig. 4, with the generator and the discrimi-
nator losses and the accuracy of the proposed approach
(cGAN-GRU).

The experiments described have been executed on
a PC equipped with an Intel Core i7-6700 3.40 GHz
CPU and 16 GB RAM. No GPU memory is used. Keras
2.3.1, Tensorflow 1.14 and scikit-learn 0.22.1 libraries
are used to implement all methods.

5. Results and discussion

In this section, results from the proposed approach
(cGAN-GRU) and the baseline methods (QRF, GPR
and cGAN-Dense) are presented and compared. In or-
der to determine the probability distribution of data,
2000 values are computed for each observation. In the
proposed approach case, 2000 values are generated ran-
domly according to a normal distribution for each noisy
variable (P(z1), P(#2), ..., P(z,)). Then, these noisy
values are introduced one by one to the deep generative
approach (cGAN-GRU), gathering 2000 values of the
estimated evaporation for each observation. Hence, in
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Fig. 4. Losses and accuracy for the generator and discriminator of cGAN-GRU.
Table 3 Table 4
Validation errors (mean and standard deviation of the 5 folds) Test errors
CRPS MAPE RMSE CRPS MAPE RMSE
Method (x10~3) (x1) (x10~3) Method (x1073)  (x1)  (x107%)
QRF 7.7+£29 095+027 15.043.0 QRF 7.5 1.41 11.0
GPR 6.5+27 078+£024 9.70+34 GPR 6.0 1.01 8.6
cGAN-Dense 6.6+19 098+048 12.1+5.0 c¢GAN-Dense 52 1.15 7.3
cGAN-GRU 62+18 0.77+025 9.80+5.0 cGAN-GRU 4.3 0.95 7.4

the end, a probability distribution of the evaporation
P(n,) is obtained as output.

Three evaluation metrics (CRPS, MAPE and RMSE)
are computed in order to assess and compare the meth-
ods.

Table 3 presents the results from all methods with
tuned hyperparameters using the validation dataset
(comprising 7 days of data for each of the 5 folds). Note
that the lowest values are highlighted in bold. The mean
and standard deviation of the 5 folds are calculated. In
general, all methods provide acceptable results. How-
ever, the proposed approach (cGAN-GRU) performs
slightly better. Indeed, it is the best performing method
according to the CRPS and MAPE and the second one
(closely to the first one) with regard to the RMSE. GPR
is also a valuable method to perform the probabilistic
estimation of the evaporation since it provides low val-
ues of the three metrics, close to the cGAN-GRU. In
terms of the RMSE, GPR obtains the best results and
it is the second best for the CRPS and MAPE. Further-
more, GPR ensures a fast inference time. cGAN-Dense
would be the third option to develop the virtual sensor
whereas the results from the QRF are the worst.

Table 4 presents the results from all methods with
tuned hyperparameters using the test dataset (compris-
ing 5 days of data). Note that the lowest values are high-
lighted in bold. There is consistency between the test
and validation results. Again, the proposed approach

provides the best results. Although all methods yield
great results, cGAN-GRU obtains the lowest errors ac-
cording to the CRPS and MAPE and the second lowest
one considering the RMSE (but closely to the lowest
one). The other GAN-based approach (cGAN-Dense)
provides the second best results according to the CRPS
and RMSE. However, the MAPE for cGAN-Dense is
higher than the MAPE for GPR, which should be seen
as the third option to develop the virtual sensor. Ana-
lyzing all evaluation metrics, QRF provides again the
worst results.

CRPS is one of the most widely used metrics to as-
sess probabilistic estimations, so we will focus mainly
on its results. In view of both validation and test results,
it can be stated that the proposed approach (cGAN-
GRU) is a noteworthy option to develop a virtual sen-
sor for probabilistic estimation of the evaporation in
cooling towers. Figure 5 shows the probabilistic esti-
mation of the evaporation using the test dataset for all
methods. At the top of each subfigure, the real values
of the evaporation y; (blue points) and the estimated
values computed as the mean value of the distribution
@t (red stars) are represented. At the bottom, the error
(difference between the real and the estimated values)
as well as the confidence intervals for several levels
(50%, 90% and 99%) are depicted.

Figure 5a depicts the probabilistic estimation of the
evaporation using the cGAN-GRU method. It can be
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Fig. 5. Probabilistic estimation of the evaporation with confidence
intervals, using the test dataset.

observed that the confidence ranges are fitted and uni-
form, slightly wider in the valleys of the evaporation
curve, but wide enough to contemplate potential vari-
ations of the environmental and operating conditions
of the cooling tower since always the real values fit
in the interval. The errors (difference between the real
value and the mean of the distribution) are low. The
variability of the evaporation can be found in the range
+ 0.02 m? /h with a confidence level of 99%, if the
conditions change.

Figure 5b shows the probabilistic estimation of the
evaporation using the cGAN-Dense method. It can
be seen that the estimated mean value and the confi-
dence ranges are similar to the CGAN-GRU but a little
broader. This shows that the distribution of data cap-
tured by the cGAN-Dense is slightly more dispersed.
In this case, the variability of the evaporation can be
found in the range + 0.035 m?/h.

Figure 5Sc illustrates the probabilistic estimation of
the evaporation using the GPR method. Although the
error of this method is quite low, the confidence inter-
vals are very narrow. The variability of the evaporation
is most likely in the range 4- 0.01 m?3/h, so many real
values are out of this range (e.g., in the peaks). GPR
method does not capture appropriately the distribution
of data, therefore this method is unable to contemplate
potential environmental fluctuations and changing op-
erating scenarios.

Figure 5d depicts the probabilistic estimation of the
evaporation using the QRF method. It can be seen that
the confidence intervals are irregular and loose. Al-
though this method gives the broadest confidence in-
tervals, since the variability of the evaporation can be
found in the range + 0.05 m?/h, some values are out
of range, proving that QRF method does not fit the
probability distribution of the data. Furthermore, the
errors are slightly higher than those from the above
methods. Hence, QREF is slightly less accurate and fails
contemplating fluctuations.

Finally, we show the probability distributions of the
evaporation in three representative operating points of
the cooling tower for all methods (see Fig. 6). The dis-
tributions drawn at the top of the figure correspond to a
sample located in a peak of the evaporation curve (nor-
mally, at midday) whereas those plotted at the bottom
of the figure correspond to a sample in which the evap-
oration is low (typically, at night). The distributions in
the center of the figure are for a sample where the evap-
oration is either rising or falling (during the morning or
afternoon).

As expected, most of the distributions look like a
symmetric normal one, presenting more values at the
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Fig. 6. Probability distributions of the evaporation in different oper-
ating points of the cooling tower (Top: peak hour in the evaporation
curve; center: off-peak hour in the evaporation curve; bottom: valley
hour in the evaporation curve).

center of the distribution and relatively few in the tails
(except the one provided by the QRF method which is a
bimodal distribution). The proposed approach (cGAN-
GRU) provides a balanced normal distribution (blue)
with a broad dispersion for the three representative op-
erating points of the cooling tower. The distributions
given by the cGAN-Dense (green) are similar to those
from the proposed approach, observing a wider disper-
sion with intermediate evaporation (center). The results
from the GPR (black) show a normal distribution with
most values concentrated around the mean and so the
dispersion is narrower that the ones obtained with both
GAN-based approaches for the three cases. The mean
of the distribution of the three mentioned methods is
close to each other, revealing a similar behaviour re-
garding their accuracy. On the contrary, the distribu-
tions from the QRF (red) are bimodal and their means
are far away from those of the remaining methods for

the three representative operating points of the cooling
tower. For that reason, it presents the highest errors.
Summarizing, generative approaches are able to pro-
vide probabilistic estimations, contemplating differ-
ent situations. Specifically, the proposed deep genera-
tive approach (cGAN-GRU) gives accurate estimations
within tight confidence intervals. However, the train-
ing of generative approaches is very sensitive to the
hyperparameters tuning and can become unstable.

6. Conclusions

This paper proposes a deep generative approach to
develop a virtual sensor for probabilistic estimation of
the evaporation in cooling towers, given the environ-
mental and operating conditions. This deep generative
approach considers the potential fluctuations of the sur-
rounding conditions and the previous states of the cool-
ing tower. It is based on a conditioned generative ad-
versarial network with a GRU recurrent layer to learn
from the past states and a dense layer processing the
fluctuations of the conditions. The proposed approach
(cGAN-GRU) is evaluated and compared against other
probabilistic state-of-the-art methods using three met-
rics, one of them (CRPS) considering the distribution
as a whole. Real data from a cooling tower located at a
hospital building are used for the experiments. cGAN-
GRU is found to be a noteworthy method to develop
a virtual sensor that yields the whole probability dis-
tribution of the evaporation, taking into account any
operating scenario.

To sum up, generative approaches can learn the dis-
tribution of the input data and approximate it to the
true distribution using the power of deep networks. Al-
though the training procedure is not trivial and conver-
gence or mode collapse problems could appear, deep
generative approaches can provide noteworthy results
when the training succeeds. Furthermore, they can give
the whole probability distribution of the estimated vari-
able instead of a single estimated value, if a distribution
of values is introduced as noise, and they can be trained
even with small training data. It is possible to conduct
the data generation process by conditioning a deep gen-
erative approach on extra information. In time domain
problems, the use of deep architectures comprising re-
current layers instead of densely connected layers im-
proves the probabilistic estimation. Thus, deep genera-
tive approaches with recurrent layers are very promising
for estimation of sensor readings and their distributions.
However, methods based on Gaussian processes could
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be considered in applications where there are compli-
cations in handling GAN-based architectures in terms
of tuning and stability. In this case, the training data
should include as much information as possible about
the process, since they usually fail to contemplate the
variations.

As future work, other recent algorithms such as an
enhanced probabilistic network [3] or dynamic ensem-
ble learning [4] can be taken into account for including
additional features and refining the estimation and its
uncertainty. Also, methods for probabilistic forecasting
of the evaporation several hours ahead should be inves-
tigated. This functionality could be useful for the vir-
tual sensor because it would facilitate anticipating and
modifying the planning and operation of the cooling
tower. On the other hand, it would also be interesting
to implement the proposed deep generative approach in
a low-cost embedded board for an easier integration in
production environments.
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