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Abstract.

Background: Studies in aging older adults have shown the positive association between cognition and exercise related
fitness, particularly cardiorespiratory fitness. These reports have also demonstrated the association of high cardiorespiratory
fitness, as well as other types of fitness, on the reversal of age-related decline in neural network connectivity, highlighting the
potential role of fitness on age- and disease-related brain changes. While the clinical benefits of exercise are well-documented
in Parkinson’s disease (PD), the extent to which cardiorespiratory fitness (assessed by estimated VO, testing) or motor
skill fitness (assessed by the Physical Performance Test (PPT)) affects neural network connectivity in PD remains to be
investigated. The purpose of this study was to explore the hypothesis that higher fitness level is associated with an increase
in the intrinsic network connectivity of cognitive networks commonly affected in PD.

Methods: In this cross-sectional resting state fMRI, we used a multivariate statistical approach based on high-dimensional
independent component analysis (ICA) to investigate the association between two independent fitness metrics (estimated
VOomax and PPT) and resting state network connectivity.

Results: We found that increased estimated VO,,,x Was associated with increased within network connectivity in cognitive
networks known to be impaired in PD, including those sub-serving memory and executive function. There was a similar
trend for high levels of PPT to be associated with increased within network connectivity in distinct resting state networks.
The between functional network connectivity analysis revealed that cardiorespiratory fitness was associated with increased
functional connectivity between somatosensory motor network and several cognitive networks sub-serving memory, attention,
and executive function.
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Conclusion: This study provides important empirical data supporting the potential association between two forms of fitness

and multiple resting state networks impacting PD cognition. Linking fitness to circuit specific modulation of resting state

network connectivity will help establish a neural basis for the positive effects of fitness and specific exercise modalities and
provide a foundation to identify underlying mechanisms to promote repair.
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LIST OF ABBREVIATIONS

BA Brodmann’s area

BG basal ganglia

BOLD  blood oxygenation level-dependent
CAN cognitive/attention network

CEN central executive network

CRF cardiorespiratory fitness

DA dopamine

DAN dorsal attention network

DLPFC dorsolateral prefrontal cortex

DMN default mode network

EPI echo-planar imaging

FD frame-wise displacement of head
movement

fMRI functional magnetic resonance imaging

FDR false discovery rate

FNC functional network connectivity

ICA independent component analysis

IC independent component

Iq quality index

MSF motor skill fitness

MCI mild cognitive impairment

MNI Montreal Neurological Institute

PD Parkinson’s disease

PPT physical performance test

ROI region of interest

rs-fMRI  resting state functional magnetic
resonance imaging

SRN self-referential network
RSN resting state network
SCN subcortical network
SMN sensorimotor network
SN salience network

VAN ventral attention network
VOomax  maximal oxygen uptake

INTRODUCTION

Parkinson’s disease (PD) is a chronic, progres-
sive neurodegenerative disorder that is the result of
dopaminergic cell death and dopamine (DA) deple-
tion. Loss of DA in turn leads to decreased synaptic
connectivity and dysfunction in a number of cortical

and subcortical networks resulting in motor impair-
ment such as bradykinesia, rigidity, and gait and
balance instability, as well as cognitive impairment.
Cognitive impairment may include deficits in execu-
tive function, attention, visual spatial, and memory
domains which often progresses to dementia and
poor quality of life. Although the etiology for cog-
nitive change in PD is not fully elucidated, studies
in PD have used resting state functional magnetic
resonance imaging (rs-fMRI) and either seed-based
or independent component analysis (ICA) to explore
functional connectivity. These approaches have gen-
erally demonstrated loss of functional connectivity
within the cognitive networks, including the default
mode network (DMN), central executive network
(CEN), dorsal attention network (DAN), and the
salience network (SN) [1, 2]. In addition, changes
have been reported between these well-established
cognitive networks and also the sensorimotor net-
work (SMN) and the subcortical network (SCN) [3].
While DA therapy has generally been shown to be
helpful for motor deficits in PD, currently there is no
effective treatment for cognitive impairment. Identi-
fying interventions that promote neuroplasticity and
repair of cognitive networks may lead to new thera-
peutic strategies for improving cognitive function and
slowing disease progression.

In the last decade, studies in aging older adults
have supported the potential role that exercise may
play in promoting neuroplasticity and improving cog-
nitive performance [4]. These studies highlight the
relationship between exercise related cardiorespira-
tory fitness (CRF) and attenuation of age-related
brain atrophy as well as improved functional network
connectivity in brain regions sub-serving cognitive
performance [5, 6]. In particular, CRF has been shown
to improve functional network connectivity of corti-
cal networks associated with age-related impairment
including the DMN and DAN. Taken together, stud-
ies in aging have supported the idea that CRF may
be associated with improved connectivity of brain
regions that are particularly vulnerable to the adverse
effects of aging and/or areas at risk for neurolog-
ical diseases [5, 7, 8]. The gold standard metric
for measuring CRF is VOpmax and is defined as
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the capacity of the heart and lungs to deliver oxy-
genated blood to working muscles and brain. Since
individuals with PD may experience fatigue during
a traditional maximal exercise fitness assessment, a
sub-maximal exercise test can be used to predict an
estimated VOoax [9]. In addition to CRF, exercise
programs, particularly those incorporating aspects of
skill including gait and balance practice may lead
to improved motor skill fitness (MSF). While less
is known about the role of motor skill fitness and
its impact on neuroplasticity, a few studies in aging
older adults have also supported the association of
high levels of motor skill fitness with increased cogni-
tive network activation and neural efficiency in brain
regions also affected in aging [7, 8]. MSF is defined
as physical activity training that incorporates aspects
of complex motor performance including balance,
agility, coordination, power, and speed, and higher
levels of cognitive processing [10]. The Physical Per-
formance Test (PPT) is a standardized test used to
assess motor skill fitness that incorporates aspects
of complex, fine and gross motor function, includ-
ing coordination, balance, agility, and speed [10].
Importantly, fitness level (both CRF and MSF) may
represent a means to determine exercise benefits that
occur as a consequence of a variety of exercise types
that engage either high aerobic practice such as run-
ning and swimming, and/or motor skill practice such
as Tai Chi and yoga.

While the benefits of cardiorespiratory fitness and
motor skill fitness have been shown in age-related
changes in functional connectivity within the brain,
there remain significant gaps in knowledge in under-
standing the role that CRF, and other types of fitness
including MSF, may play in enhancing cognitive and
motor network connectivity known to be dysfunc-
tional in PD. Pre-clinical exercise studies in rodent
models of PD have supported that different forms
of exercise (aerobic versus skill-based) can lead to
changes in synaptic and network connectivity as
displayed through increased cortical and subcorti-
cal synaptogenesis, hippocampal neurogenesis, and
changes in regional cerebral blood flow [11-15]. In
addition, a few studies that have examined executive
function, adomain commonly affected in PD, support
the potential benefits of aerobic exercise and related
improvement in cardiorespiratory fitness on cognitive
circuits impaired in PD [16, 17].

In this study, we sought to explore the hypoth-
esis that higher fitness level is associated with an
increase in the intrinsic network connectivity of
cognitive and motor networks commonly affected

in PD. Using rs-fMRI and a cross-sectional study
design, we examined the association between car-
diorespiratory fitness (estimated by the VOopax test)
and motor skill fitness (assessed with the PPT) on
both within network connectivity, measured by net-
work’s spatial map intensity, and between network
connectivity, measured by functional network con-
nectivity (FNC) [18] of intrinsic resting state
networks (RSNs). Understanding the effects of fit-
ness on intrinsic brain network connectivity is crucial
to better elucidate effective interventional strategies
important for brain repair in PD.

For this study we recruited PD individuals who
were physically active and routinely exercising
based on self-report. We used blood oxygenation
level-dependent (BOLD) rs-fMRI and an ICA-based
approach to extract a select number of cognitive
and motor RSNs implicated in PD, [1-3, 19]. We
used high-dimensional spatial ICA to obtain more
refined neural networks, and applied a multivariate,
data-driven method that takes into account the rela-
tionships between all voxels across the brain with
appropriate dimension reduction of response vari-
ables to decrease risk of spurious findings [20], and
also to provide better sensitivity to detect subtle dif-
ferences between PD individuals [21, 22].

MATERIALS AND METHODS

PD individuals and clinical assessments

The PD individuals for this cross-sectional study
included 24 physically active, non-demented and
ambulatory individuals with PD (15 males/9 females,
mean age 65.5 years, range 51 — 88 years) with Hoehn
and Yahr equal to IT and years of diagnosis 4.9 +/-
3.3. Current physical activity levels were determined
through self-report using the Global Physical Activ-
ity Questionnaire (GPAQ) [23]. Subjects provided
written informed consent to participate in the study,
which was approved by the Institutional Review
Boards at the University of Southern California, and
the University of California at Los Angeles. All PD
individuals met the UK Parkinson’s Disease Brain
Bank criteria for the diagnosis of idiopathic PD [24].
Inclusion and exclusion criteria were determined
through chart review, participant interview, and phys-
ical and neurological screening performed by a
board-certified neurologist with movement disorder
expertise (GP). Inclusion criteria for participation
included: (i) willing and able to provide informed
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consent; (ii) confirmed diagnosis of idiopathic PD
based on the UK Brain Bank criteria; (iii) age 30
to 85, (iv) medically eligible for MRI imaging; (v)
Hoehn and Yahr scale score of less than III [25]; (vi)
stable PD medications for 3 months; and (vii) English
as their primary language. Exclusion criteria for par-
ticipation included: (i) electrically, magnetically, or
mechanically activated implant (such as cardiac pace-
makers or intracerebral respiratory clip); (ii) metal
in any part of the body including metal injury to
the eye; (iii) dementia based on performance or the
inability to perform instrumental activities of daily
living; (iv) other neurological diseases such as severe
head trauma or stroke; (v) symptomatic orthostatic
hypotension at the screening visit; and (vi) taking
anticholinesterase inhibitors or anticholinergic med-
ication. All subject assessments for the study were
performed while on dopaminergic replacement med-
ication (e.g., levodopa and DA agonists) and during
the “on-state” period [26].

Fitness measurements

Cardiorespiratory fitness was determined using the
Ebbeling Single Stage Treadmill Walking Test, which
is a validated submaximal fitness test that can be used
to estimate VOpmax in adult subjects [27]. Briefly,
subjects first underwent a 4-minute warm-up, walk-
ing at a brisk, but comfortable pace starting at 2.0 mph
and increasing by 0.2 mph increments every 30 secs,
and not to exceed 4.5 mph, and at 0% grade, eliciting
a heart rate within 50 to 70% of age-predicted
maximum. This was followed by a single testing
stage of treadmill walking for 4 minutes at 5% grade.
The steady state heart rate was determined from the
average of the final 30 seconds at 5% grade and the
tester was careful to avoid extremes of their heart
rate range [28]. The equation to estimate VOjmax
(ml kg-1min-1) from a single stage 4-minute,
5% grade submaximal treadmill test is as follows:
estimated VOjmax =15.1+21.8*SPEED (mph) -
0.327*HEART RATE (bpm) — 0.263*SPEED*AGE
(yr)+0.00504*HEART RATE*AGE+5.98*SEX (0=
female; 1 =male) [27]. The estimated VO, x values
were adjusted for the effects of age and sex in order
to avoid multicollinearity issues. Estimated VO2max
was expressed as oxygen capacity per kilogram
of body weight over time (mL/kg/min) [29], and
is a value at which oxygen uptake volume (VO;)
plateaus or increases minimally despite increased
workload on the graded exercise test.

The Physical Performance Test (PPT) was used
as an objective evaluation of an individual’s level of
motor skill fitness [10]. PPT is a standardized, func-
tional test with nine items that include upper limb
fine and coarse motor functions, balance, coordina-
tion, and endurance, that requires timed performance
in most items [10]. The PPT also simulates activi-
ties of daily living of various degrees of difficulty
(writing, dressing, eating, stair climbing, walking,
turning, bending, and lifting), and has been found
to correlate well with the degree of geriatric disabil-
ity, loss of independence, nursing home placement,
and early mortality [30, 31]. The total score for the
nine-item PPT ranges from 0 to 36 with lower scores
indicating poorer physical performance. The PPT
scores were assessed at a single point in time and
adjusted for the effects of age and sex in order to
avoid multicollinearity issues.

MRI acquisition

Structural MRI and rs-fMRI data were acquired
on a Siemens 3T Trio (N=11) and Prisma systems
(N=13) (Siemens, Erlangen, Germany) using a 12-
channel head coil at the UCLA Staglin IMHRO Cen-
ter for Cognitive Neuroscience. The functional T2*-
weighted images were obtained with echo-planar
imaging (EPI) sequence (repetition time =2000 ms,
echo time=30ms, field of view =220 mm, image
matrix =64 x 64, flip angle=77°, slice thickness=
4 mm, interslice gap=0.5mm, 30 axial slices acq-
uired in sequential ascending order). Head motion
was minimized using padding. PD individuals
were asked to lay still, not to think about anything
in particular, and passively look at the fixation
cross during the 5.13min (154 volumes) rs-fMRI
scanning. The first four images were automati-
cally discarded by the scanner to allow for the
establishment of steady-state magnetization. High-
resolution Ti-weighted magnetization-prepared ra-
pid-gradient echo (MP-RAGE) structural images
were also acquired for functional image registra-
tion and normalization (repetition time=2300ms,
echo time=2.91ms, inversion time=0.9ms, flip
angle =9°, number of excitations=1, resolution=
256 x 256, slice thickness = 1.2 mm, 176 slices).

Image quality assessment and preprocessing

Upon completion of a scan, the imaging data were
anonymized, and transferred to an offline worksta-
tion. Image data quality was assessed using the MRI
Quality Control (MRIQC) software package [32].
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Several of the quantitative image quality metrics from
the quality assessment protocol of Human Connec-
tomes Project [33] were calculated to ensure quality
and consistency of images obtained in this aged
population. They included metrics for (i) artifacts
(AFNT’s outlier ratio and quality index, head motion-
related framewise displacement [FD], and ghost to
signal ratio), (ii) temporal quality (DVARS, global
correlation, and temporal signal to noise ratio and,
(iii) structural quality (Shannon’s entropy focus crite-
rion, foreground-background energy ratio, and static
signal to noise ratio). Upon passing the quality control
(see supplementary material), images were prepro-
cessed using the Statistical Parametric Mapping
(SPM) software package (Wellcome Department of
Cognitive Neurology, London, UK, version 12b) run-
ning under the MATLAB environment (Mathworks
Inc., Natick, MA, USA, release 16a). In the first
step, EPI images were realigned to correct head
motions using rigid body transformations. Subse-
quently, images were corrected for acquisition time
delay between different slices by temporally realign-
ing the time series of each voxel to acquisition of the
first slice. We chose to perform spatial realignment
first to minimize the effect of inter-slice movement
[34]. Spatial realignment parameters were computed
by estimating the translational displacements along
X, Y, and Z axes as well as the rotational dis-
placements of pitch, yaw, and roll. Subjects’ spatial
realignment parameters did not exceed 2 mm (transla-
tional) or 1.5° (rotational) in relation to the reference.
However, considering the potential influence of even
small degrees of head motions on the rs-fMRI con-
nectivity analysis [35], we calculated FD, an index
of volume-to-volume changes in head position [36]
and used it as a nuisance covariate in our analysis.
Next, EPI and structural scans were co-registered and
normalized to the standard template in Montreal Neu-
rological Institute (MNI) space using the linear (affine
transformation) followed by nonlinear deformations
defined by linear combinations of 3D discrete cosine
transform basis functions implemented in SPM,
resampled to 2 x 2 x 2 mm?3 isotropic voxels, and
spatially smoothed using a Gaussian filter with a
full-width half maximum smoothness [FWHM] of
4 mm [37]. A relatively small smoothing kernel size
was used to allow detection of RSN especially those
containing refined subcortical structures. To further
improve the accuracy and test-retest reliability of
ICA, data intensity was normalized by dividing each
voxel time course by its average intensity and con-
verting data to percent signal change units [20].

High-dimensional independent component
analysis (ICA)

Following a validated ICA analysis framework for
rs-fMRI[1], we applied a relatively high model order
ICA to the preprocessed data using the Group ICA
of fMRI Toolbox (GIFT)-toolbox (Medical Image
Analysis Lab, University of New Mexico; version
4.0b). Specifically, we chose 75-IC model order
because recent ICA rs-fMRI studies have shown
that such high-order ICA models yield more refined
and particularly robust decomposition of compo-
nents [38, 39]. A two-step data reduction approach
using principal component analysis was carried out
prior to performing the group ICA [40]. First,
subject-specific data reduction principal component
analysis with a standard economy-size decomposi-
tion retained 100 principal components. Next, subject
reduced data were concatenated across time, and
group data reduction retained 75 principal compo-
nents using the expectation—-maximization algorithm.
The choice of retaining more principal components
at the first reduction step was based on a previ-
ous study that showed more principal components
at the first reduction step stabilized subsequent back-
reconstruction and could better account for greater
subject-specific variance [41]. Spatial ICA was sub-
sequently performed using the infomax algorithm
[42]. To ensure stability of estimation, ICA algorithm
was repeated 100 times in ICASSO and the agglom-
erative hierarchical clustering with average-linkage
criterion was used for calculating the cluster quality
index (Iq) of the estimated ICs [43]. In the last step,
subject-specific spatial maps and their corresponding
time courses were back-reconstructed using the dual
regression analysis technique (GICA-3 algorithm in
GIFT), and scaled to Z-scores [41].

Resting state network (RSN) identification and
feature extraction

We used a methodical approach to identify RSNs
from noise or physiological artifacts. First, Iq mea-
sures from 100 ICASSO runs were examined to
validate the reliability and stability of IC decomposi-
tion. ICs with Iq value below 0.8 were excluded from
further analysis as lower Iq indicates that the like-
lihood that the IC is randomly produced is higher
[44]. In the second identification step, the spatial
correlations of IC spatial maps with a priori prob-
abilistic maps of cerebrospinal fluid, white matter,
and gray matter in MNI space (using templates pro-
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vided in SPM12b) were calculated. Components that
showed low correlations with gray matter, or high
correlations with cerebrospinal fluid or white matter
were excluded from analysis. Artifactual components
were further identified based on (i) their motion-
related spatial maps (e.g., rings near the borders
of the brain), (ii) special confinement of their peak
activation to cerebrospinal fluid, proximity to known
cerebral blood vessels, or to regions susceptible to
physiological pulsations with mixed high frequency
power [45]. Identification of remaining ICs was
carried out by regression-based spatial sorting to ref-
erence standard network templates from Allen and
colleagues [20] as well as knowledge from estab-
lished brain networks described in previous studies
[20,46-50]. Components averaged across all subjects
were calculated with a one-sample #-test in SPM12b
and thresholded at family-wise error rate (FWE-
corrected p <0.05). Component anatomical extents
in MNI space, and corresponding Brodmann’s areas
(BA) and peak activations were determined using the
cytoarchitectonic probability maps as implemented
in the SPM Anatomy Toolbox [51, 52].

Following the methodological approach explained
above, we identified a subset of 18 surviving com-
ponents as RSNs compatible with those obtained in
previous studies that used high-dimensional ICA [20,
38, 39, 46, 48, 50, 53, 54]. These 18 RSNs fell into
one of the following four standard rs-fMRI network
categories:

e Sensorimotor Network (SMN) consisting of
IC 19 (bilateral ventral somatosensory), IC 46
(right dorsal somatosensory), IC 48 (left dorsal
somatosensory), IC 54 (bilateral motor), and IC
62 (supramarginal gyrus).

e Subcortical Network (SCN) consisting of IC 24
(hippocampus) and IC 35 (basal ganglia; BG,
and also included thalamus and amygdala).

e Default-Mode Network (DMN) consisting of IC
49 (posterior DMN), and IC 63 (containing both
anterior and posterior DMN).

e Cognitive and Attention Network (CAN) con-
sisting of IC 2 (self-referential network (SRN)
comprising ventromedial prefrontal cortex), IC
17 (bilateral DLPFC part of the Central Execu-
tive Network (CEN)), IC 40 (right hemisphere
of CEN), IC 45 (left hemisphere of CEN), IC 47
(dorsal attention network (DAN)), IC 32 (ven-
tral attention network (VAN)), IC 50 (salience
network (SN) including bilateral insula), IC
53 (second SN comprising the frontoinsular

regions), and IC 75 (third SN with dorsal anterior
cingulate and insular cortices).

Spatial maps of these networks are shown in Fig. 1.
Detailed information of component spatial maps
including the rs-fMRI defined networks, anatomical
regions, f-value of maxima, and MNI coordinates are
listed in Table 1.

Multivariate statistical analysis

We used multivariate analysis of covariance
(MANCOVA), which is a multivariate analytical
method comparable to a standard ANOVA F-test,
followed by a post hoc univariate analysis. The MAN-
COVAN toolbox in GIFT software package was used
to discover which spatial map voxels (related to the
connectivity within a network) and FNC correlations
(related to the connectivity between networks) were
uniquely associated with each of our two variables
of interest (i.e., MSF measured by PPT and CRF
measured by estimated VOynax), While statistically
controlling for the effects of covariates including age,
sex and years of education. Head movement estimates
(i.e., FD) were included as covariates of no inter-
est (nuisance predictors). To minimize the potential
disproportionate influence of covariates on the MAN-
COVA model fit, log transformations were applied to
continuous covariates as recommended in [20]. To
optimize for the large dimensions of the voxelwise
ICA outcome measures (spatial maps and FNC corre-
lations) and reduce the number of statistical tests per-
formed, backward multivariate stepwise regressions
(implemented as mStepwise in GIFT MANCOVAN
toolbox) were performed for each response matrix
separately. For more details on the multivariate anal-
ysis please refer to [20]. This approach first utilizes
MANCOVA to determine contributions of each fit-
ness parameter (CRF and MSF levels) on the ICs.
Then, univariate tests corrected for multiple compar-
isons are carried out on a reduced design matrix,
which reduces the number of statistical tests per-
formed, to highlight the direction and strength of the
relationship between fitness levels and ICA measures
(spatial map intensity and FNC correlations).

Spatial map intensity statistical analysis

Following the multivariate analysis, univariate
tests were performed on the reduced model applied to
the original (not-dimension reduced) feature matrix
to identify the effects of predictors (i.e. PPT and esti-
mated VOpmax) on RSN spatial map intensities as
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Fig. 1. Spatial maps of eighteen RSN’ that were entered into the MANCOVA analysis. RSNs are grouped by their anatomical and functional
properties into the sensorimotor networks (SMN; ICs 19, 46 48, 54, and 62), the subcortical networks (SCN; ICs 24, and 35), the default-mode
networks (DMN; ICs 49, and 63), and the cognitive and attention networks (CAN; ICs 2, 17, 32, 40, 45, 47, 50, 53, and 75). Spatial maps
are plotted as r-statistics, thresholded at FWE-corrected p-value of 0.05 and displayed in neurological convention (right is right). The scale
bar, red-to-yellow, represents ¢-values of the strength of each voxel’s connectivity to the overall component time series. See Table 1 for MNI
coordinates of maxima and corresponding 7-values for each RSN. L, left; R, right.

detailed in [20]. In brief, partial correlation coeffi-
cients for each predictor were calculated from linear
regressions with the feature matrix as a dependent
variable while covarying out the effects of the other
predictors (the remaining regressors in the model).
Results from the univariate tests for RSN spatial map
intensities were corrected for multiple comparisons
using the false discovery rate (FDR) [55].

Functional network connectivity statistical
analysis

In addition to the network spatial features, we also
considered network temporal features, namely FNC.

FNC serves as a correlational value that measures the
functional connectivity (i.e., temporal dependencies)
among RSN time courses [20]. FNC was computed
as the Pearson’s correlation coefficient between RSN
time course pairs as detailed in [18]. In brief, subject-
specific time courses were detrended and de-spiked,
and a fifth-order Butterworth band-pass filter was
used to filter time courses with cut-off frequencies
at [0.01 — 0.15] Hz. FNC correlation values were
normalized using Fisher r-to-z transformation, i.e.,
z=atanh(r), where r is the pairwise correlation value
between RSN time courses. Results from the uni-
variate tests for FNC were corrected with a strict
control of false positives using the Bonferroni cor-
rection threshold of 0.003 (0.05/18).



84

B. Jarrahi et al. / Fitness and Brain Networks in PD

Table 1

Peak coordinates of 18 selected RSNs. The MNI (Montreal Neurological Institute) coordinates show the coordinates of the peak voxels with
negative x coordinates refer to left hemisphere activations. Brodmann’s area as indicated by the cytoarchitectonic maximum probability map
using the SPM-Anatomy toolbox developed by Eickhoff, et al. (2005) [49]. The quality index (Iq) associated with each component is listed
in parentheses next to the component number

1C Brain region Cluster size  tpax MNI Cytoarchitectonic
(voxels) coordinates Brodmann area
X y z (Probability, if available)
Sensorimotor Networks
(SMN)
IC 19 (0.98) Left Postcentral Gyrus 759 13.87 -60 -14 34 Area 1 (40%)
Ventral Area 3b (40%)
Somatosensory Network Left Precentral Gyrus same cluster 11.84 -54 -6 34 Area 4p (50%)
Area 6 (30%)
Right Postcentral Gyrus 649 11.86 50 -12 38 Area 3b (60%)
Area 4p (50%)
Right Precentral Gyrus same cluster 11.14 54 -6 38 Area 6 (40%)
Area 4p (40%)
IC 46 (0.98) Right Postcentral Gyrus 2493 1441 42 20 50 Area 3b (90%)
Right Dorsal Area 4a (40%)
Somatosensory Network Right Precentral Gyrus same cluster 1335 40 -24 62 Area 1 (40%)
Area 6 (40%)
1C 48 (0.96) Left Postcentral Gyrus 2225 1529 -36 40 56 Area 2 (50%)
Left Dorsal Somatosensory Area SPL (7PC) (40%)
Network Left Precentral Gyrus same cluster 14.40 -32 -26 56 Area 4p (40%)
Area 4a (40%)
IC 54 (0.98) Left SMA 4412 1793 0 -12 62 Area 6 (90%)
Motor Cortex Area 4a (10%)
Right SMA same cluster 13.93 8 2 72 Area 6 (80%)
Left Precentral Gyrus same cluster 12.86 -36 0 58
IC 62 (0.93) Left Supramarginal Gyrus 1145 13.28 58 -28 34 IPC (PFt) (60%)
Supramarginal IPC (PF) (40%)
Gyrus Right Supramarginal Gyrus 556 1285 58 -34 32 IPC (PF) (80%)
IPC (PFcm) (40%)
Subcortical Networks
(SCN)
IC 24 (0.98) Left ParaHippocampal Gyrus 361 873 -18 -10 22 Hipp (SUB) (60%)
Hippocampal Hipp (HATA) (40%)
Hipp (CA) (40%)
Right Hippocampus 160 1040 20 -10 -18 Hipp (SUB) (50%)
Amyg (SF) (50%)
Hipp (CA) (50%)
Right ParaHippocampal same cluster 7.74 20 -8 -26 Hipp (EC) (60%)
Gyrus Hipp (SUB) (40%)
Hipp (CA) (30%)
1C 35 (0.98) Right Putamen 2107 1290 28 6 -2
Basal Ganglia (BG) Left Amygdala same cluster 12.46 -22 0 -16 Amyg (SF) (70%)
Left Putamen same cluster 1234 -24 6 0
Left Thalamus same cluster 12.00 -6 20 6
Right Thalamus same cluster 11.57 8 20 4
Right Amygdala same cluster 11.56 26 2 -16 Amyg (SF) (30%)
Default-Mode Networks
(DMN)
1C 49 (0.97) Right Precuneus 3530 1894 4 52 24
Posterior Default Mode Left Posterior Cingulate same cluster 18.83 -2 44 32
Network (DMN) Cortex
Left Angular Gyrus 366 1124 -46 -62 26 IPC (PGp) (30%)
Left Inferior Parietal Lobule same cluster 844 -30 -56 40 hIP3 (50%)
Right Angular Gyrus 346 1253 44 -64 32 IPC (PGp) (70%)
1C 63 (0.96) Right Precuneus 541 1400 2 58 22
DMN Left Precuneus same cluster 1231 4 54 14
Left Middle Occipital Gyrus 491 10.64 42 -72 24 IPC (PGp) (60%)
Left Middle Temporal Gyrus ~ same cluster 1049 —-44 68 22 IPC (PGp) (50%)
Right Middle Temporal 396 10.04 46 -62 22 IPC (PGp) (50%)
Gyrus

(Continued)
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Table 1
(Continued)
IC Brain region Cluster size tmax MNI Cytoarchitectonic
(voxels) coordinates Brodmann area
X y z (Probability, if available)
Cognitive and Attention
Network (CAN)
IC 2 (0.98) Left Anterior Cingulate 1310 1359 -4 44 -2
Cortex
Self-Referential Left Mid Orbital Gyrus same cluster 1339 -2 48 -6
Network (SRN) Right Anterior Cingulate same cluster 12.09 8 34 10
Cortex
IC 17 (0.98) Right Anterior Cingulate 4850 1339 6 46 8
Cortex
Central Left Superior Medial Gyrus same cluster 1294 -2 54 10
Executive Network (CEN) Right Superior Frontal Gyrus ~ same cluster 12.06 24 58 14
IC 32 (0.98) Right Middle Temporal 1933 1472 52 20 -12
Gyrus
Ventral Attention Right Angular Gyrus same cluster 12.55 56 -56 24 IPC (PGa) (70%)
Network (VAN) Left Middle Temporal Gyrus 987 13.48 58 -38 -2
Left SupraMarginal Gyrus same cluster 10.17 52 -52 26 IPC (PGa) (40%)
IPC (PF) (30%)
Right Precuneus 174 10.33 6 58 46 SPL (7A) (40%)
SPL (7P) (10%)
IC 40 (0.98) Right Inferior Parietal Lobule 1395 1244 46 54 40 IPC (PGa) (40%)
Right CEN hIP1 (10%)
Right Inferior Frontal Gyrus 277 11.70 44 28 28
(p. Triangularis)
Right Middle Frontal Gyrus same cluster 10.15 46 36 22
Right Middle Frontal Gyrus 271 11.62 42 50 0
Right Inferior Frontal Gyrus same cluster 10.48 38 40 -18
(p. Orbitalis)
Right Superior Frontal Gyrus ~ same cluster 9.36 24 54 2
1C 45 (0.97) Left Inferior Parietal Lobule 1645 1429 -32 -72 40 IPC (PGp) (20%)
Left CEN Left Angular Gyrus same cluster 12.18 -36 —60 42 hIP1 (30%)
Left Middle Frontal Gyrus 188 11.30 44 12 46
Right Inferior Parietal Lobule 98 10.16 46 -56 46 IPC (PGa) (40%)
IC 47 (0.97) Right Inferior Parietal Lobule 5056 1447 50 -36 50 IPC (PFt) (40%)
Dorsal IPC (PFm) (30%)
Attention Network Right Superior Parietal same cluster 14.41 28 -60 50 hIP3 (30%)
(DAN) Lobule SPL (7A) (20%)
Right Angular Gyrus same cluster 12.88 30 —-60 44 hIP3 (30%)
Right SupraMarginal Gyrus same cluster 12.49 44 36 42 hIP2 (30%)
IPC (PF) (20%)
IC 50 (0.97) Left Insula Lobe 252 822 -32 18 -14
Salience Network (SN) Right Insula Lobe 235 9.76 46 2 —4 OP 4 (10%)
1C 53 (0.98) Left Inferior Frontal Gyrus 1874 13.61 48 14 14 Area 44 (40%)
SN (p. Opercularis)
Left Insula Lobe same cluster 10.81 -36 8 6 Area 44 (10%)
Right Inferior Frontal Gyrus 292 10.62 50 18 6 Area 44 (40%)
(p. Opercularis) Area 45 (30%)
Right Insula Lobe same cluster 823 40 6 0
Left Middle Temporal Gyrus 193 991 42 -52 14
Left Superior Temporal same cluster 8.54 56 48 18 IPC (PGa) (20%)
Gyrus
IC 75 (0.96) Left Anterior Cingulate 2316 14.67 -8 22 26
Cortex
SN Left Insula Lobe 83 10.67 —-46 10 -8
Right Insula Lobe 50 9.05 44 16 -8
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RESULTS
Demographic and clinical characteristics

PD individuals’ demographic and clinical infor-
mation is summarized in Table 2. Our PD cohort
had an average age of 65.5 years 9.6 years and
were approximately 4 to 5 years on average from
disease onset (average disease duration of 4.9 3.3
years), the average UPDRS part III was 24.6 9.0,
all 24 PD individuals were Hoehn and Yahr stage
II. The average adjusted (for age and sex) motor
skill fitness was PPT =27.88 4 3.24 (in terms of total
scores), and cardiorespiratory fitness was estimated
VOsmax =32.18 £3.08 ml kg~ ! min—!.

Multivariate analysis

A multivariate model selection strategy [20] was
applied to determine the association of fitness (CRF,
MSF) on ICA outcome measures (RSN spatial map
intensity and FNC). The associations of each fitness
type on the variability of the spatial map intensities
are shown in Supplementary Figure 1.

Univariate analysis

Association of fitness measurements
(Cardiorespiratory and Motor Skill) with RSN
spatial map intensities in PD

We found an association between higher fit-
ness levels and a number of RSNs that included
cognitive-attention (CAN), default-mode (DMN),
sensorimotor (SMN), and subcortical (SCN) net-
works. The univariate analysis demonstrated a

Table 2
Demographic information and clinical
characteristics of PD individuals

Variable PD subjects
n 24
Age 65.5 (9.6)
Sex, M/F 15/9
Years of diagnosis 4.9 (3.3)
UPDRS Part III 24.58 (8.99)
Hoehn & Yahr 24 Stage 11
Education, years 17.0 (2.1)
Handedness, R/L 23/1
Estimated VOopax 32.18 (3.08)
PPT 27.88 (3.24)

Data are means (SD) unless noted. PD =Par-
kinson’s disease, Estimated VOjn.x = Estimated
Maximal oxygen uptake, PPT =Physical Perfor-
mance Test total scores.

Summary of univariate test results for spatial map intensities. Peak coordinates of largest significant clusters from univariate tests on RSN
spatial map intensities are listed here

1C Average Average
RSN t-value  p-value

Brain region
of the largest cluster

A. Estimated VO2y,ax

1C 62 2.72 0.020 Left Supramarginal Gyrus

-2.37 0.031 Right Supramarginal Gyrus
IC 35 2.80 0.018 Left Putamen
Left Amygdala

IC 63 2.94 0.017**
IC 50 2.86 0.019**
IC 53 2.69 0.022

Right Precuneus
Right Insula Lobe
Left IFG (p. Opercularis)
-2.37 0.031 Left Temporal Pole

B. PPT
IC2 2.44 0.028
1C 47 2.52 0.026

Left Anterior Cingulate Cortex
Right Angular Gyrus

7(-) 193 -50 14 -6

Cluster Cluster Cluster MNI Cytoarchitectonic
size tmax coordinates™ Brodmann area
(voxels) (Probability, if available)
X y z
137 (+) 389 -64 -26 32 Area PFt (IPL) (46%)
Area PFop (IPL) (32%)
10 (—) 1.88 48 32 38 Area PFt (IPL) (45%)
Area 2 (24%)
388 (+) 420 -28 4 0
same cluster 290 -28 -6 16 Amygdala (AStr) (39%)

Amygdala (LB) (9%)

258 (+) 3.92 6 -56 22
159 (+) 578 42 4 -10
362 (+) 374 52 14 8

Area 44 (58%)
Area 45 (14%)
Area 45 (9%)

102 (+) 308 -2 46 2
579 (+) 3.49 28 =52 44

Area hIP3 (IPS) (23%)
Area hIP1 (IPS) (20%)

*The Cluster MNI (Montreal Neurological Institute) coordinates of the peak voxels with negative x coordinates refer to left hemisphere
activations. Brodmann’s area as indicated by the cytoarchitectonic maximum probability map using the SPM-Anatomy toolbox developed
by Eickhoff et al. (2005) [51]. **Represents RSN spatial map clusters that survived multiple comparison corrections (Bonferroni corrected,
p <0.003). IC RSN, independent component resting state network; VOamax, maximal oxygen uptake; PPT, Physical Performance Test total

Scores.
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Fig. 2. Univariate results summarizing the effects of estimated VOomax on RSN spatial map intensities. (A) 3D brain map depicting the
composite renderings of significant effects of estimated VO;max over all RSNs are displayed as the —sign(#)logo(p) (p < 0.05, uncorrected). (B)
Significant effects of estimated VOamax are shown in individual RSNs overlaid on their corresponding RSN template (purple) and displayed
as the —sign(H)logo(p) (p <0.05, uncorrected). (C) Scatter plots show the estimated VOomax effects for the largest significant cluster in each
affected RSN (indicated by yellow or blue circles on the RSN maps shown in representative orthogonal slices with corresponding MNI
coordinates) with the number of contributing voxels (V;), and the partial correlation coefficient (rj,). RSNs of significance are highlighted by
yellow boxes with dashed lines. See Table 3 for the associated statistics, anatomical extent, the 7-value of the maxima, and corresponding MNI
coordinates for the largest significant clusters. Estimated VOamax, maximal oxygen uptake; SMN, sensorimotor networks; SCN, subcortical
networks; DMN, default-mode networks; CAN, cognitive and attention networks; L, left; R, right.

significant association between estimated VOjpax
(CRF) and a trend with PPT (MSF) measures and
distinct RSN spatial map intensities detailed below.

Regarding the role of CRF, we found that increased
estimated VOomax Was significantly associated with
several spatial map intensities of distinct RSNs
(Table 3A). Specifically, estimated VOjmax Was
significantly associated with increased RSN spatial
map intensities with IC 63 (DMN; Peak activa-
tion cluster: bilateral precuneus), and with IC 50
(CAN/SN; Peak: right insula). These associations
were the only ones to survive the stringent FDR
correction for multiple comparisons. The remaining
associations show a trend for significance (p <0.03,
FDR corrected). Estimated VOymax Was positively
associated with increased RSN spatial map intensi-
ties of IC 35 (SCN/BG; Peak: left putamen and left
amygdala), IC 62 (SMN/supramarginal; Peak: left
supramarginal gyrus), and IC 53 (CAN/SN; Peak: left
inferior frontal gyrus). Negative associations were
found with RSN spatial map intensities of IC 62
(SMN; Peak: right supramarginal gyrus), and IC

53 (CAN/SN; Peak: left temporal pole). Figure 2
illustrates the regions of RSN spatial map whose
intensities were associated with estimated VOomax.
Associations were visualized by plotting the log of the
p value with the sign of the corresponding t-statistic
(i.e.,—sign(t)logio(p)) to provide information on both
the directionality and the statistical strength of the
result.

There were no significant associations between
PPT and RSN after stringent FDR multiple compar-
isons (Fig. 3). However, there was a trend for higher
levels of PPT and increased RSN spatial map inten-
sities with IC 2 (CAN/SRN; Peak: bilateral anterior
cingulate), and IC 47 (CAN/DAN; Peak: right angu-
lar gyrus) (p<.05, FDR uncorrected) (Table 3B).
Figure 3 illustrates the regions of RSN spatial map
whose intensities were associated with PPT. Associ-
ations were visualized by plotting the log of the p
value with the sign of the corresponding t-statistic
(i.e.,—sign(t)log1o(p)) to provide information on both
the directionality and the statistical strength of the
result.
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Fig. 3. Univariate results summarizing the effects of PPT on RSN spatial map intensities. (A) 3D brain map depicting the composite
renderings of significant effects of PPT over all RSN are displayed as the —sign(#)logo(p) (p <0.05, uncorrected). (B) Significant effects of
PPT are shown in individual RSNs overlaid on their corresponding RSN template (purple) and displayed as the —sign()log;o(p) (p <0.05,
uncorrected). (C) Scatter plots show the PPT effects for the largest significant cluster in each affected RSN (indicated by yellow or blue
circles on the RSN maps shown in representative orthogonal slices with corresponding MNI coordinates) with the number of contributing
voxels (V}), and the partial correlation coefficient (r,). See Table 3 for the associated statistics, anatomical extent, the z-value of the maxima,
and corresponding MNI coordinates for the largest significant clusters. PPT, Physical Performance Test total scores; SMN, sensorimotor
networks; SCN, subcortical networks; DMN, default-mode networks; CAN, cognitive and attention networks; L, left; R, right.

Functional network connectivity (FNC) analysis
Detailed information about the FNC pairs, and
effect sizes are summarized in Table 4. Connec-
tograms in Fig. 4 illustrate all of the pairwise FNC
results for both fitness types measured (p<0.05,
Bonferroni uncorrected). The only FNC correla-
tion that survived stringent multiple comparison
correction (p<0.003, Bonferroni corrected) was
an association between estimated VOjrmax and an
increase in FNC between IC 48 (SMN; Peak:
left dorsal somatosensory) and IC 49 (DMN; r), =
0.71, p=0.001). The remaining correlations showed
a trend towards significance. This included a
trend between increased estimated VOjpax and
increased pairwise FNC between RSNs IC 48 (SMN;
Peak: left dorsal somatosensory) and the follow-
ing networks: IC 63 (DMN; r,=0.59, p=0.007),

IC 40 (CAN/CEN; r,=0.59, p=0.008), and IC
32 (CAN/VAN) (r,=0.55, p=0.015). Estimated
VOomax also showed a tend towards a positive asso-
ciation in pairwise FNC between IC 19 (SMN; Peak:
bilateral ventral somatosensory) and the following
networks: IC 47 (CAN/DAN; r,=0.54, p=0.018),
IC 40 (CAN/CEN; r,=0.52, p=0.022) and IC
63 (DMN; r,=0.49, p=0.034). Estimated VO2max
was also associated with an increase in pairwise
FNC between IC 53 (CAN/SN) and the follow-
ing networks: IC 54 (SMN; Peak: motor cortex;
rp=0.56, p=0.012), IC 24 (SCN; Peak: hippocam-
pus; r,=0.47, p=0.041) and IC 46 (SMN; Peak:
right dorsal somatosensory) (r,=0.46, p=0.050).
Finally, estimated VOpmax Wwas associated with
an increase in FNC between IC 63 (DMN) and
IC 45 (CAN/CEN) (r,=0.49, p=0.032). Alterna-
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Table 4
Summary of univariate test results for functional network connectivity (FNC). FNC components that were significantly affected by covariates
of interests are listed here (p-value <0.05, uncorrected)

Measurement Positive IC pairs rp t-value p-value Negative IC pairs rp t-value p-value
PPT IC62-1C 17 0.55 2.71 0.015 IC24-1C35 -0.53 -2.61 0.018

IC47-1C53 0.56 2.79 0.012 IC32-1C45 —0.48 -2.27 0.037
VO2max IC46-1C 53 0.46 2.11 0.050 IC62-1C 17 -0.50 -2.36 0.030

IC24-1C53 0.47 221 0.041 IC62-1C 63 -0.47 -2.21 0.041

IC 19-1C 63 0.49 2.31 0.034

IC63-1C45 0.49 2.33 0.032

IC19-1C40 0.52 2.52 0.022

IC19-1C47 0.54 2.62 0.018

IC48-1C 32 0.55 2.70 0.015

IC54-1C53 0.56 2.80 0.012

IC 48 -1IC 40 0.59 2.98 0.008*

IC48-1C 63 0.59 3.04 0.007*

IC48-1C 49 0.71 4.23 0.001**

Estimated VOypax, maximal oxygen uptake; PPT, Physical Performance Test total scores; r,, partial correlation coefficient. **Represents FNC
correlations that are significant (Bonferroni corrected, p < 0.003). *Represents FNC correlations that show trend to significance (Bonferroni
corrected, p <0.009).
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Fig. 4. Differences in FNC correlations related to fitness measures. In each connectogram, FNC correlations are shown using bezier curves.
RSN within the same categories are shown in the same color. FNC, functional network connectivity; PPT, Physical Performance Test
total scores; estimated VOomax, maximal oxygen uptake; SMN, sensorimotor networks; SCN, subcortical networks; DMN, default-mode
networks; CAN, cognitive and attention networks. The “*” represents a statistically significant FNC after FDR corrections for multiple
comparisons.

tively, increased estimated VOomax Was negatively
associated with pairwise FNC between IC 62
(SMN/supramarginal) and the following networks:
IC 63 (DMN; r,=-0.50, p=0.030), and IC 17
(CAN/CEN; r, =—0.47, p=0.041).

No FNC correlation with PPT survived stringent
multiple comparison corrections (p <0.003, Bonfer-
roni corrected). A trend towards significance was seen
between increased PPT and a positive pairwise FNC

between IC 62 (SMN; Peak: supramarginal gyrus)
and IC 17 (CAN/CEN) (r,=0.55, p=0.015) and
between IC 47 (CAN/DAN) and IC 53 (CAN/SN)
(rp=0.56, p=0.012). Alternatively, increased PPT
was associated with reduced pairwise FNC between
IC 24 (SCN; Peak: hippocampus) and IC 35 (SCN;
Peak: basal ganglia) (r,=-0.53, p=0.018), and
between IC 32 (CAN/VAN) and IC 45 (CAN/CEN)
(rp=-0.48, p=0.037).
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DISCUSSION
Impact of fitness on resting state networks

Cardiorespiratory (CRF) and motor skill fitness
(MSF) have both been shown to be directly associated
with improved cognitive structure and function in
brain regions adversely affected by aging [5, 7]. These
findings support the hypothesis that fitness may have
its greatest impact on regions of the brain impacted
in aging and neurological disease and that fitness
level may serve as a valuable exercise parameter to
predict behavioral benefit. There are a number of cog-
nitive networks known to be affected in PD as shown
by fMRI studies including central executive (CEN),
default mode network (DMN), dorsal attentional net-
work (DAN) and salience network (SN) [2, 56].
While exercise has been shown to be beneficial in PD,
the relationship between fitness and functional brain
connectivity in these PD affected networks remains
to be elucidated. In this cross-sectional rs-fMRI study
we examined the relationship between two types
of fitness parameters (CRF and MSF) and within
network and between network functional network
connectivity (FNC) of established networks subserv-
ing cognitive function and impacted in PD. Our main
significant findings were that increased CRF (esti-
mated VOynmax) Was associated with increased within
network connectivity in cognitive networks subserv-
ing memory and executive function in the posterior
DMN and salience network (SN), respectively, which
are known to be impaired in PD. We also found trends
for an association between MSF (assessed by the
PPT) and increased within network connectivity in
cognitive networks subserving executive function and
attention in the self-referential network (SRN) and
dorsal attention network (DAN), respectively. Taken
together, fitness, particularly CRF is associated with
cognitive networks impacted in PD.

Impact of cardiorespiratory fitness (CRF) on
resting state networks

Specifically, we observed a significant association
between increased CRF and increased within network
spatial map intensity of the posterior DMN, local-
ized in the bilateral precuneus, and between increased
CRF and increased within network spatial map inten-
sity of the SN, with peak activation localized in the
right insula. Cross-sectional studies in older adults
have also demonstrated a significant association
between CRF and increased network connectivity

within the DMN and SN [5, 57]. Both the DMN and
SN have been shown to play an important role in
memory, and to be disrupted in older adults and in PD
[58, 59]. The DMN comprises the hippocampal for-
mation, medial temporal cortices, posterior cingulate
cortex (PCC) and adjacent midline parietal areas, the
precuneus, and the medial prefrontal cortex (mPFC)
[60]. The DMN is implicated in memory consolida-
tion, self-referential thought, mind-wandering, and
autobiographical memory [61]. Aberrant functional
connectivity of the DMN has been implicated in
a number of neurodegenerative disorders including
Alzheimer’s disease (AD), frontotemporal demen-
tia, Huntington’s disease, and PD [62-66]. In PD,
the DMN has emerged as a key functional substrate
for cognitive deficits [67, 68]. Recent meta-analysis
studies of the resting state functional connectivity
in PD similarly found alterations in regions con-
nected to the DMN [63]. The decreased functional
connectivity of DMN during resting state in PD
compared with healthy controls is reported to be sig-
nificantly correlated with cognitive parameters [64,
69, 70] but not with disease duration, motor impair-
ment, or levodopa therapy [70]. The SN has been
widely studied in rs-fMRI data since it has been found
to be a large scale network that mediates switch-
ing between the DMN and CEN, and to segregate
the most relevant among internal and extra-personal
stimuli in order to guide behavior [71]. Within the
SN, the anterior insula, anterior to mid-cingulate
cortex, middle frontal gyrus, and inferior parietal lob-
ule support episodic memory encoding and retrieval
by directing attention to relevant material, engaging
working memory, organizing (“controlling”) avail-
able information strategy, and adjusting motivation.
High functional connectivity in the SN has also been
associated with high memory performance in “super-
agers”, defined as older individuals who achieve a
youthful performance on a memory task [72]. Taken
together our results identify the potential role of CRF
for promoting increased connectivity within RSNs
which are known to sub-serve executive function and
memory in PD.

Impact of motor skill fitness (MSF) on resting
state networks

Withrespect to MSF, we observed a trend towards a
significant association (p < .05, uncorrected) between
increased PPT and increased within network spatial
map intensity of the DAN, specifically within the
inferior and superior regions of the parietal lobe. We
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also observed a trend towards a significant associ-
ation between increased PPT and increased within
network spatial map intensity of the SRN, including
the bilateral anterior cingulate cortex (ACC) and the
orbitofrontal cortex. The DAN is disrupted early in
PD and is integral for orchestrating top-down atten-
tional control, including participating in successful
goal-directed activities [73]. The SRN, particularly
the ACC, is important for self-focused attention and
internally generated information processing of one’s
current mental and physical state, conflict resolu-
tion, memories, emotions, and mood [74, 75]. In
PD, alterations in the ACC are associated with early
executive dysfunction as well as mood disorders,
including depression, commonly observed in this
disease [76]. While the association between higher
levels of cardiorespiratory fitness and activation of
top-down CEN and attention networks have been pre-
viously reported in older healthy adults [77, 78], our
study suggests the potential association between MSF
on cognitive networks sub-serving executive function
and attentional control in PD and supports the need
for future studies to explore the different fitness types
on cognitive network function and connectivity.

Impact of cardiorespiratory fitness (CRF) on
functional network connectivity (FNC)

Functional network connectivity (FNC) analysis
demonstrated that CRF is significantly associated
with increased network connectivity between the
left sensorimotor network (SMN) and the DMN.
Although not significant, there was a trend for an
association with CRF and FNC between SMN and
other cognitive networks including the CEN, DAN,
and VAN. While there was a trend for association with
MSF and FNC between SMN and CEN nothing sur-
vived multiple comparison correction. Overall, these
findings suggest a potential association between high
CRF and FNC between motor and cognitive net-
works.

Specifically, we found that high CRF was associ-
ated with FNC between the SMN (specifically the left
dorsolateral somatosensory network) and the poste-
rior DMN. There were also trends for increased CRF
and increased FNC between the SMN (specifically
the left dorsolateral and bilateral ventral somatosen-
sory network) and the attentional networks (VAN and
DAN), and between the SMN and the right CEN (right
frontal parietal lobe). Studies of rstMRI in PD have
reported a loss of connectivity within regions of the
SMN, such as a the SMA, and that DA replacement

therapy in general is associated with increased SMN
connectivity [3]. Therefore, CRF could augment this
in individuals with PD. While others have reported
the association of increased fitness and increased
brain connectivity within the SMN in healthy young
adults, our study is the first to report a potential asso-
ciation of CRF with the SMN and its connectivity to
associated cognitive networks sub-serving memory,
attention, and executive function in PD.

Mechanisms of exercise on plasticity and brain
health impacting connectivity

Studies in animal models of PD and aging are use-
ful for elucidating potential mechanisms underlying
exercise-induced neuroplasticity and repair. Specif-
ically, exercise studies in young and aging rodents
have reported increased expression of angiogenesis
and neurotrophic factors, especially brain-derive neu-
rotrophic factors (BDNF), as well as an increase
in neurogenesis and synaptogenesis [13, 14, 79,
80]. Furthermore, studies in our lab and others
have also shown exercise induced neuroplasticity
in animal models of neurodegeneration including
synaptogenesis and changes in dopamine and gluta-
mate neurotransmission, as well as changes in cellular
metabolism [12, 80-82]. Studies in animal mod-
els are also elucidating the contribution of different
forms of exercise, such as skill-based versus aerobic,
on aspects of neuroplasticity, including differences
in the distribution and degree of synaptogenesis
and angiogenesis. For example, Greenough and col-
leagues reported that aerobic exercise that promotes
cardiorespiratory fitness enhances angiogenesis in
the cerebral cortex of rodents, while activities that
target motor skill fitness, such as acrobatic activi-
ties (beam walking and ladders in the home cage),
induce synaptogenesis [83]. Relevant to the differen-
tial contribution of motor skill fitness on the CEN
and SMN are findings previously reported by our
group in the 6-hydroxydopamine rodent model of PD.
Rodents trained for 4 weeks in a skilled motor task
(running in a wheel with irregularly spaced rungs)
exhibited greater regional cerebral blood flow in both
medial prefrontal cortex and sensorimotor cortices
when imaged at rest than animals trained in a non-
skilled motor task (running in a wheel with smooth
surface) [15]. This finding was accentuated when
animals were imaged during a locomotor challenge,
with concomitant skill-related increases in functional
connectivity between medial prefrontal cortex and
sensorimotor cortices. Taken together, these studies
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support that while exercise effects on brain circuitry
may involve a number of different mechanisms, the
predominance by any one of these physiological pro-
cesses may be dictated in part by the type of exercise.

Limitations of these studies

Our findings should be interpreted in light of sev-
eral potential limitations. First, our analysis was
based on a cross-sectional analysis of a modest num-
ber of individuals with PD. Thus, these neuroimaging
findings deserve replication with a larger sample size
and over a longer period of time. This study did
not include healthy age-matched controls, but age
effects were controlled for in the analysis. The PD
individuals were assessed after having received their
usual anti-parkinsonian medication (“best on” state)
and dopaminergic medication may have influenced
some of the connectivity patterns as previously shown
[84]. Furthermore, while we measured PPT and the
estimated VOomax, we did not directly assess the dura-
tion, intensity or type of exercise individuals engaged
in. Future studies with “off” medication PD individu-
als, as well as detailed activity logs will provide more
accurate information about the different dimensions
of fitness (e.g., motor skill and cardiorespiratory)
on the resting state networks without the potential
confound of medication masking some symptoms.
This study did not include cognitive behavior anal-
ysis; however, a strength is that it did examine a
wide spectrum of cognitive networks thus providing
rationale for future studies to explore the interac-
tions of fitness with parameters of cognitive behavior.
There is also a possibility of false negatives due to
low thresholding, and lack of multiple comparisons
because of small power, and small sample size. How-
ever, as a strong point of this study, we emphasize
that we used ICA as a model free approach with
no bias in selecting the brain regions. To add to the
fidelity of our results, we particularly followed the
ICA procedure that is suggested from the literature
to yield more robust and reliable components (e.g.,
75-IC decomposition, GICA-3 dual-regression algo-
rithm [41], intensity normalization in preprocessing,
and 100 re-runs of ICA algorithm with random initia-
tion in ICASSO [43] and strict image quality control
with MRIQC. Another strength of our study was the
observational approach to evaluating exercise in PD
individuals within the framework of their daily lives.
This naturalistic approach suggests that our findings
may be more broadly applicable, and that activity lev-
els described are within the scope of what a person

could practically implement within his or her daily
schedule.

CONCLUSIONS

Our study demonstrates the potential neuromod-
ulatory role of cardiorespiratory fitness (estimated
VOomax test) and motor skill fitness (PPT) on intrinsic
resting state networks (RSNs) impacting cognition
in individuals with PD. This study provides impor-
tant new empirical data to examine the association
between the different types of fitness and multiple
RSNs using a multivariate analysis approach. Con-
sidering the effect of PD on the intrinsic architecture
of the brain, linking exercise related fitness parame-
ters to RSN connectivity will help provide a means
to monitor the effects of exercise on brain plastic-
ity and to better understand the underlying neuronal
mechanisms of plasticity to promote repair and treat
cognitive and motor dysfunctions in PD.
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