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Abstract. In this study, we develop a new algorithm based on fractional operators of variable-order in order to enhance 
image quality. First, three kinds of popular high-order discrete formulas are adopted to obtain the coefficients, and 
subsequently, a mask optimization method for selecting the fractional order adaptively is applied to construct a variable-order 
fractional differential mask along with the coefficients generated from the first step. We carry out experiments on OCT 
thoracic aorta images and some nature images with low contrast and noise, demonstrating that the high-order discrete method 
leads to significantly better performance in enhancing the edge information nonlinearly compared to the standard first-order 
discrete method. Moreover, the optimized mask with variable-order of the fractional derivative not only can preserve the 
edge information of the processed images adequately, but it also effectively suppresses the noise in the smooth area. 
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1. Introduction 

Since the OCT (Optical Coherence Tomography) technology can provide noninvasive, in vivo, three 
dimensional cross-sectional imaging of tissue microstructure, it has been widely used in the diagnosis 
of retinal and intra-arterial disease (e.g. thoracic aortic aneurysm) applications [1, 2]. However, the 
quality of OCT images is usually affected by speckle noise introduced in the imaging procedure, which 
degrades the contrast by obscuring small and low intensity features [3]. Therefore, speckle noise blurs 
the boundaries between different tissues, and thus seriously reduces the accuracy of image 
segmentation and pattern recognition in OCT image.  

To overcome the disturbance of speckle noise and obtain a good quality of OCT image is still an 
extremely challenging problem in the image processing field. Previously, a number of image 
enhancement methods for OCT images have been proposed. These methods can be broadly classified 
into three types: machine learning-based filtering method, PDE-based linear or nonlinear anisotropic 
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diffusion method, and fractional differential operator based method. Mohammad, et al. [4] developed a 
segment-wise image de-noising method that adopted the Artificial Neural Network (ANN) method to 
estimate the noise parameters and sigma of Rayleigh distribution for the modeling of noise in the 
image, then generated the noise model image through solving the inverse Rayleigh function by 
numerical method. However, this method is prone to being influenced by training sample data and has 
a high computational complexity. To our knowledge, the non-linear anisotropic diffusion method has 
been applied to MRI image enhancement as early as 1992, but more recently, Harry, et al. [5] first 
developed a PDE-based complex nonlinear diffusion method for OCT image enhancement, which 
introduced a directional diffusion coefficient (phase angle) to remove speckle noise from the edges 
while preserving the structure similarity without the “staircasing effect”. Despite this progress, none of 
the aforementioned methods can capture the non-linear, non-causal, non-Gaussian, non-even and non-
integral differential features of the speckle noise.  

Therefore, to better deal with the above OCT image enhancement problem, fractional-order PDEs 
based modeling method has been looked as a potentially powerful and effective tool for solving these 
problems in recent years. In earlier work, Marko, et al. [6] presented a fully fractional anisotropic 
diffusion equation for noise removal combined with both spatial and temporal fractional derivatives. It 
performs better than the baseline anisotropic diffusion methods. Hesthaven, et al. [7] developed an 
algorithm based on the fractional Laplacian operator approximated by hp-finite element numerical 
method, which can enhance the noisy image in different portions independently. On the base of two 
commonly used definitions for fractional differential (Grünwald–Letnikov and Riemann-Liouville), Pu, 
et al. [8] developed the so-called  YIFEIPU-1 algorithm that adopted the coefficients of factional 
differential derivative to generate five different kinds of  masks for image filtering, but their approach 
suffers from  distortion while dealing with color images in the RGB space. Yu, et al. [9] improved the 
original YIFEIPU-1 method on texture enhancement by using a second-order Riesz fractional 
differential operator, with obvious improvements both for grayscale image enhancement as well as 
color image enhancement. However, how to adapt the fractional order according to the complexity of 
features in different portions of the image is a big challenge at present. To this end, Hu, et al. [10] 
adopted a cross-based local support region construction approach to accomplish adaptive image 
texture enhancement with a non-integer fractional differential step and order. However, the 
discretization error is usually ignored in this method, which will inevitably influence the image 
enhancement results to a great extent as well.  

This paper will mainly focus on different discrete formulas for the coefficients of mask and adaptive 
fractional derivative order selection method for constructing the mask, and is organized as follows. 
Section 2 firstly recalls on some basic theoretical background of fractional differential and derivative, 
then three different types of discrete formulas are given to generate the coefficients of mask, and a 
mask optimization process is implemented to construct a variable-order fractional mask. Results from 
our experiments and analysis are presented in Section 3. Finally, we summarize the work in Section 4. 

2. Image enhancement based on variable-order fractional differential operators 

In this section, a new image enhancement method based on variable-order fractional differential 
operators is presented. As shown in Figure 1, the proposed method contains four main steps: 1) 
Fractional derivative discretization, 2) Fractional mask construction, 3) Mask optimization and 4) 
Convolution with original image. Once the discretization coefficients � �, 0,1v

mC v�  of fractional  
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Fig. 1. Flow chart of the proposed method. 

 
derivatives are obtained by adopting discretization formulas � � iD , where i= 1,2,3,4,5, a fractional 

differential mask (or operator) � �  , , ,iM v m D G  of size m can be constructed. In addition, a gradient 
(G) based mask optimization function is used to optimize the order v of the fractional differential 
derivative adaptively, which results in different values of v  and v

mC  in each direction of the masks 
eventually.  

2.1. Fractional derivative definition 

The fractional integral (or the Riemann–Liouville integral) [11] with order 0v �  of the given 

function � �f t  is defined as Eq. (1). 
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where (.)
  is Euler’s gamma function. Following this the definition of left and right Riemann–

Liouville (RL) derivatives with order 1n v n� � �  of a given function � �f x  in a finite domain [ , ]a b  
are given by Eqs. (2) and (3), respectively: 
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Note that when v n	 , the fractional derivative is equivalent to an integer-order differential 

derivative.  

2.2. Coefficient generation based on different discrete formulas 
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For the discrete characteristic of digital images, when the fractional differential derivative in Eq. (2) 
above is applied in image processing, it should be transformed into discrete format. The discretization 
of the R-L fractional differential derivative at the point of jx x	 can be generalized as Eq. (4). 
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where h  is the step size, v is the order of fractional differential derivative, v

jC  is the coefficient that 
determines the discretization order p of the R-L fractional operator. In existing fractional differential 
based image enhancement approaches, the selection of discretization method is usually ignored; 
however, different discretization formulas will generate different coefficients for the mask, which will 
have an influence on the performance of image enhancement as well. Most of the existing fractional 
mask based image enhancement methods rarely adopt high-order discretization formulas for the 
coefficients generation of the mask. Therefore, three different types of high-order discretization 
formulas are given below for the generation of coefficients that are used for the construction of 
convolution masks in section 2.3. 

2.2.1 Case 1: Fractional backward difference formula of order p (FBDF-p) 
For the discretization scheme FBDF with order of p, the coefficients v

jC  in Eq. (4) can be 
obtained by a recurrence equation [12] as Eq. (5). 
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where ju  satisfies the following equation  
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2.2.2 Case 2: Weighted (shifted) Grunwald-Letnikov formula I (WG-I) 
For the second-order WSG-I, the coefficients v

jC in Eq. (4) satisfies [13] 
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2.2.3 Case 3: Weighted (shifted) Grunwald-Letnikov formula II (WG-II) 
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For the second-order WSG-II, the coefficients v
jC in Eq. (4) satisfies [13] 
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2.3. Fractional mask construction and optimization 

Similar to the construction of integer-order differential operators, for a fractional differential 
operator construction, the coefficients generated from the above three different types of discretization 
formulas are used here. The fractional mask with a size of (2 1) (2 1)m m� � �  can be defined as 
follows:  

Note that for computing convenience, all the elements in the fractional mask matrix are normalized 

by dividing by the term � �
0

0,1,...,
m

v
j

j
Sum C j m

	

	 	�  to make the sum of elements in the new mask 

equal to 1. In addition, the 8 symmetric directions in the mask with same structures lead to an anti-
directional capability, which can enhance the image from different directions simultaneously, thus it 
can efficiently avoid the disadvantage of standard first-order differential operators (e.g. Sobel, Robert, 
Prewitte, etc.) that can only enhance the boundaries of image in specific directions. It can be observed 
that the orders of fractional derivative in all 8 directions are completely equal in Figure 2. However, 
owing to the frequency response of a fractional differential operator, which can be viewed as a 
nonlinear filter in image processing, the high-pass ability is stronger as the order of the fractional 
derivative v  increases. In other words, the noise will be also enhanced along with the edges enhanced 
in the image when the order of fractional derivative v  is large. Thus it is better to obtain a good quality 
of image by means of applying different orders of fractional derivative to enhance the smooth area in 
low frequency regions and sharp area in high frequency like edge or noise, so as to preserve the details 
of image without loss of important edge information, as well as suppressing the noise within the 

 

 
Fig. 2. Fractional differential mask construction in 8 directions. 
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smooth area simultaneously.  Thus, to deal with this problem, a gradient-adaptive indicator function is 
applied to optimize the mask for adjusting the order of fractional derivative in 8 different directions. 

3. Experimental results and analysis 

In this section, some experiements and comparisons for the proposed method are carried out on 
OCT images and nature image from the open database “MIT-Adobe FiveK Dataset [14]”. Figure 3 
shows a comparison result of image enhacement by using 5 different kinds of discrete formulas with 
5*5 mask. It can be observed from Figure 3 that the FBDF-p discrete method can provide much more 
clear details in the enhanced image, followed by the WG-I and WG-II method in sequence. Figure 4 
gives the average gradient and constrast comparisons for the image quality evaluation of the image 
enhaned by 5 discrete methods respectively. This provides evidence that the FBDF-p discrete method 
has a better performance in preserving the details and edge information than the other two second-
order discrete methods (WG-I and WG-II). However, it can be found that the smooth area is enhanced 
excessively while the edge is enhanced clearly in the plot (c) of Figure 3. Thus, mask optimization is 
used to solve this problem. The optimized variable-order mask and uniform-order mask are shown, 
respectively, in Figure 5. 

When the optimized mask is applied to implement OCT image enhancement, the result is shown in 
Figure 6(d). The optimized mask can enhance the outer wall and lumen boundary of the vessel, but 
without enhancing the speckle noise in the background. 

 

   
(a) Original image                      (b) FPDF-1by 0.6	v                (c) FPDF-2 by 0.8	v       

    
(d) FPDF-3 by 0.5	v                  (e) WG-I by 0.6	v                   (f) WG-II by 0.7	v         

Fig. 3. Image enhancement results based on FBDF-p (p =1, 2, 3), WG-II, WG-I method with different order of fractional 
derivative without mask optimization. 
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Fig. 4. Average gradient and Contrast results based on five different discrete formulas. 

  
(a) mask without optimization                               (b) mask after optimization                

Fig. 5. Fractional mask constructed by uniform order ( 0.7	v ) and variable-order fractional order.   

   
                   (a) original image                                               (b) FPDF-2 wih 0.4	v  

   
(c) FPDF-2 wih 0.8	v                                   (d) FPDF-2 wih variable-order mask 

Fig. 6. OCT image enhancement with optimized mask based on FBDF-3 with 5*5 mask. 
 

Table 1 

PSNR comparison results 

Noise standard 
variance  

Tang’s method [14] FCD-1 
Method [9] 

Tian’s method [13] Our methods 

25 28.1793 29.5032 31.6094 34.1209 
35 27.0385 28.3981 29.7250 33.4588 
45 26.3121 27.0427 28.4824 29.0612 
55 25.6314 26.3359 27.5676 28.8872 
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In order to analyze the proposed method in performing effectively noise reduction, the Lena image 
is chosen as a standard test image. We first add white noise to the Lena image with standard variance 
�  = 25, 35, 45, 55. A non-fractional differential based image enhancement method (Tang, et al. [14]) 
and another two fractional based methods (Tian’s method [13], FCD-1 method [9]) are used to 
perform comparisons with our proposed method. The PSNR (peak signal-to-noise ratio) measure is 
adopted to evaluate the quality of the enhanced image, which is defined as follows:  
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where MSE  is the mean squared error of original image and enhanced image, f  is a M N�  input 
image and g  represents the enhanced image that is of the same size with f , and PSNR  can be 

defined by the MSE  and 
f

MAX , which is the maximum possible pixel value of the image. 
It can be clearly seen from Table 1 that the fractional operator methods have a better performance 

than the non-fractional differential based method, because they can enhance the edge information and 
preserve the texture details within the smooth areas nonlinearly in accord with the original nonlinear 
characteristic of image signal. In addition, the proposed method based on variable-order fractional 
differential operator with mask size of 5*5 obtains a high PSNR relative to the last two methods 
(FCD-1 and Tian’s method). 

4. Discussion 

According to the experimental results and analysis above, the FPDF-2 discrete formula outperforms 
the other four different discretization formulas. Both of the two evaluation standards in Figure 4 show 
that the FPDF-3 method has a worse performance compared with FPDF-2. The reason is that the first 
few coefficients will increase along with the rising discrete order of the fractional differential 
derivative; in other words, there will be a higher peak value at the central point of the mask by using 
FPDF-3 than FPDF-2. When this mask is used to enhance the detail information of the image, it will 
enlarge the noise existed in smooth areas due to the high peak values in the mask, just as Figure 4 
shows that the contrast for FPDF-3 starts to turn around when fractional order v  is around 0.8. 
Therefore, we can conclude that a discrete order beyond a certain maximum threshold will have a 
negative effect on the performance of image enhancement. However, how to determine the specific 
maximum threshold for the discrete order is still a problem to be investigated in future work. In 
addition, the fractional differential order is also a key factor that determines the final quality of the 
enhanced image, for the reason that its value has a great influence on the size of coefficients of the 
fractional differential mask, the same as the discrete order, whereas an extremely high fractional order 
will lead to bad quality of the enhanced image. Hence, variable-order fractional differential operators 
(or masks) combined with detailed image information may provide synergistic means to solve this 
problem. 
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5. Conclusion 

Fractional differential based methods have experienced a rapid development in the recent years, and 
fractional modeling has received wide attention from different research areas. In this paper, a variable- 
order fractional differential operator based approach is proposed for image enhancement. Moreover, 
the influence of five different discrete methods to image enhancement has been studied. The 
experiements show that  the FBDF-p discrete method has a good performance for preserving the 
texture information while filtering the image, and the optimized mask can greatly reduce the image 
noise in smooth area resulted from the enhacement with uniform-order operator. 

Acknowledgments 

This work was supported by the National Science-technology Support Plan (2014BAI17B02) and 
Fundamental Research Funds for the Central Universities under grant N140402003. Partial support 
was provided by NIH grant (1U01HL116323) while the first author was visiting Brown University. 

References 

[1] M. Adhi and J.S. Duker, Optical coherence tomography--current and future applications, Current Opinion in 
Ophthalmology 24 (2013), 213-221. 

[2] E. Real, E. Alma and P. Alejandro, Optical coherence tomography assessment of vessel wall degradation in thoracic 
aortic aneurysms, Journal of Biomedical Optics 18 (2013), 126003. 

[3] N. Padmasini, K.S. Abbirame and S.M. Yacin, Speckle noise reduction in spectral domain optical coherence tomography 
retinal images using anisotropic diffusion filtering, IEEE International Conference on Science Engineering and 
Management Research (ICSEMR) 12 (2014), 1-5. 

[4] M.R. Avanaki, M.J. Marques and A. Bradu, A new algorithm for speckle reduction of optical coherence tomography 
images, Proceedings of SPIE in Optical Coherence Tomography and Coherence Domain Optical Methods in 
Biomedicine XVIII 8934 (2014), 893437. 

[5] H.M. Salinas and D.C. Fernández, Comparison of PDE-based nonlinear diffusion approaches for image enhancement 
and denoising in optical coherence tomography, IEEE Transactions on Medical Imaging 26 (2007), 761-771. 

[6] M. Janev, S. Pilipović and T. Atanacković, Fully fractional anisotropic diffusion for image denoising, Mathematical and 
Computer Modelling 54 (2011), 729-741. 

[7] P. Gatto and J.S. Hesthaven, Numerical approximation of the fractional Laplacian via hp-finite elements, with an 
application to image denoising, Journal of Scientific Computing 10 (2014), 1-22. 

[8] Y.F. Pu, J.L. Zhou and X. Yuan, Fractional differential mask: A fractional differential-based approach for multiscale 
texture enhancement, IEEE Transactions on Image Processing 19 (2010), 491-511. 

[9] Q. Yu, F. Liu and I. Turner, The use of a Riesz fractional differential-based approach for texture enhancement in image 
processing, Australian and New Zealand Industrial and Applied Mathematics Journal 54 (2013), C590-C607. 

[10] F. Hu, S. Si, and H.S. Wong, An adaptive approach for texture enhancement based on a fractional differential operator 
with non-integer step and order, Neurocomputing 12 (2015), 295-306. 

[11] C. Li and F. Zeng, Finite difference methods for fractional differential equations, International Journal of Bifurcation and 
Chaos 22 (2012), 1230014. 

[12] C. Li and F. Zeng, The finite difference methods for fractional ordinary differential equations, Numerical Functional 
Analysis and Optimization 34 (2013), 149-179. 

[13] W. Tian, H. Zhou and W. Deng, A class of second order difference approximations for solving space fractional diffusion 
equations, Mathematics of Computation, 2015. (in press) 

[14] J.R. Tang and N.A.M. Isa, Adaptive image enhancement based on bi-histogram equalization with a clipping limit, 
Computers & Electrical Engineering 40 (2014), 86-103. 

M. Xu et al. / An image-enhancement method based on variable-order fractional differential operators S1333


