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Abstract. With the approval of aducanumab on the “Accelerated Approval Pathway” and the recognition of amyloid load as
a surrogate marker, new successful therapeutic approaches will be driven by combination therapy as was the case in oncology
after the launch of immune checkpoint inhibitors. However, the sheer number of therapeutic combinations substantially
complicates the search for optimal combinations. Data-driven approaches based on large databases or electronic health
records can identify optimal combinations and often using artificial intelligence or machine learning to crunch through many
possible combinations but are limited to the pharmacology of existing marketed drugs and are highly dependent upon the
quality of the training sets. Knowledge-driven in silico modeling approaches use multi-scale biophysically realistic models
of neuroanatomy, physiology, and pathology and can be personalized with individual patient comedications, disease state,
and genotypes to create ‘virtual twin patients’. Such models simulate effects on action potential dynamics of anatomically
informed neuronal circuits driving functional clinical readouts. Informed by data-driven approaches this knowledge-driven
modeling could systematically and quantitatively simulate all possible target combinations for a maximal synergistic effect
on a clinically relevant functional outcome. This approach seamlessly integrates pharmacokinetic modeling of different
therapeutic modalities. A crucial requirement to constrain the parameters is the access to preferably anonymized individual
patient data from completed clinical trials with various selective compounds. We believe that the combination of data- and
knowledge driven modeling could be a game changer to find a cure for this devastating disease that affects the most complex
organ of the universe.
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INTRODUCTION: THE NEED FOR
COMBINATION THERAPY

Comorbidities in the aging brain

Many comorbidities converge in the aging Alz-
heimer’s disease (AD) brain. Although defined by
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the presence of amyloid plaques and neurofibrillary
tangles, by no means are these the only neuropatho-
logical findings documented in postmortem studies
of AD patients. For instance, it has been reported
that over 80% of AD brains show vascular pathology
to some degree [1]. While minor vascular patho-
logical signs are unlikely to contribute very much
to the clinical phenotype of full-blown AD, it is
conceivable that in earlier stages vascular pathol-
ogy contributes to the cognitive deterioration and the
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appearance of amyloid and tau pathology. Lewy body
pathology, a synucleinopathy is often associated not
only with Parkinson’s disease, Parkinson’s disease
with dementia, but also AD as they share common
clinical features [2]. Recently TDP-43 aggregates
have been detected in up to 30% of postmortem AD
brain [3] leading to the concept of limbic-dominated
age-related TDP-43 encephalopathy in the oldest-old
where primary TDP-43 is often observed together
with amyloid and tau pathology [4].

This leads to the conceptual question whether it
would be possible to identify relevant biomarkers
that could identify patient populations with a spe-
cific and unique pathology to which more targeted
and highly selective therapies could be developed.
For this concept to be successful, it then becomes cru-
cial to determine the optimal window of treatment for
the specific intervention that would address the single
triggering factor. However, it is very well conceivable
that even if specific forms of neurodegenerative dis-
eases are triggered by a unique pathology, additional
pathological factors play an increasingly important
role in driving the pathology and clinical phenotypes.

Polypharmacy in other indications

In many other CNS indications, interventions
aimed at restoring neuronal circuits by modulat-
ing multiple pathways have shown superior clinical
benefit compared to interventions focused on sin-
gle targets. For instance, successful antipsychotics
have been discovered in phenotypic assays, long
before even the targets were identified and almost all
of them have a rich pharmacology [5]. In contrast,
over the last 20 years, many selective drugs have
failed in clinical trials for schizophrenia [6]. Sim-
ilarly, anti-depressants whether based on serotonin
or norepinephrine transport inhibition affect a num-
ber of neuronal circuits through their indirect effects
on different subtypes of serotonin or noradrenergic
receptors. Along the same lines, drugs discovered
using target-agnostic phenotypic assays usually have
pleiotropic effects and are likely to be more first-in-
class [7]. As a prime example, the novel antipsychotic
SEP-363856 [8] was recently identified in a pheno-
typic in vivo assay and showed clinical efficacy in a
Phase II study in schizophrenia despite being devoid
of D2R antagonism.

In other non-CNS indications, combination ther-
apies are also common, such as in treatment of
Helicobacter pylori [9], HIV [10], and hypertension
[11].

De-risking novel R&D projects

An argument for de-risking new CNS R&D
projects can be made for new combinations between
a symptomatic and disease-modifying target. In such
a hypothetical scenario, short-term trials (24 weeks)
can be designed to test the symptomatic effect of the
combination, While the regulatory approval if suc-
cessful is ongoing, placebo patients can be switched
to active medication for the longer 2–3 year trials
in order to show benefit in a staggered trial design.
If the combination is indeed disease-modifying, the
patients who start active medication later are not sup-
posed to catch up. This also allows large longitudinal
data on biomarkers to be collected. In the most suc-
cessful scenario, the combination will be approved
and can be marketed before the long duration trials
read out. If there is clear evidence of disease modifi-
cation, the sponsor can then request a label change.
Whether such a combination therapy ideally consists
of a rationally designed single molecule or an actual
combination of two drugs, will be discussed in the
next section.

Amyloid modulating agents as background
therapy

With the approval of Aduhelm and the recognition
of amyloid load as a surrogate marker by the FDA,
many future clinical trials will see patients already
on these approved medications, raising important
questions about pharmacodynamic interactions with
novel investigative drugs. It is clear that amy-
loid reduction at best leads to modest changes in
clinical deterioration and that there is room for addi-
tional therapeutics to improve patient quality of life.
In addition, amyloid-related imaging abnormalities
side-effects need to be taken into account opening the
possibilities of dose-sparing with new combinations.

THE CHALLENGE OF COMBINATION
THERAPY IN ALZHEIMER’S DISEASE

No shortage of possible targets

A large number of targets are being pursued by
large and small companies (for a list, see the Alz-
forum database of therapeutics), broadly classified
in amyloid, tau, neuroinflammation, synaptic func-
tion, neuroprotection, cholesterol, metals, dietary
supplements, DNA/RNA based and symptomatic
treatment. In addition, large public-private consortia
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such as Accelerating Medicines Partnership for
AD (AMP-AD) have recently generated an addi-
tional list of nominated targets (https://agora.ampad
portal.org/genes/(genes-router:genes-list)) with var-
ying degrees of druggability. All these targets affect
a specific pathway deemed to be on a critical path
for the clinical phenotype, but their impact might
differ dependent upon the disease state, the comor-
bidities, the patient genotypes and likely also the
patient comedications. The challenge is to 1) pri-
oritize the targets in a rational way for the limited
amount of resources, 2) generate as much knowledge
from small clinical studies, and 3) to identify pos-
sible synergies between different pathways for each
patient subgroup.

An optimistic viewpoint is that each and every one
of these therapeutic approaches can be considered as
a unique pharmacological challenge of the human AD
brain and therefore can teach us something different
about the underlying response if we would have the
appropriate tools for reverse engineer the response
(see below).

Combinatorial explosion of possible
combinations

The number of possible combinations rapidly
increases to the point that performing actual exper-
iments, even preclinical ones become prohibitive.
Simple combinatorial mathematics suggest that there
are already 11 combinations for four combinations.
For 10 possible targets the number increases to 1,013
combinations and for 15 targets the number rapidly
increases to over 37,500. With every week new
hypotheses for reverting “Alzheimer” phenotypes in
diverse model organisms being published, the chal-
lenge is to prioritize these interventions, not only in
terms of impact on the human disease, but also in
terms of druggability and side-effects. Obviously, the
vast majority of the combinations will not be of inter-
est but finding those combinations with a substantial
degree of synergy is of utmost importance.

Polypharmacy is already prominent in current
clinical practice

AD patients are treated with a number of
comedications not only to address cognitive impair-
ment (standard-of-care) but also other comorbidities
with an estimated 40% on antidepressants and
20% on antipsychotics for behavioral disturbances
[12]. Current guidelines have been established for

pharmacokinetic (PK-PK) interactions whereby one
drug affects the metabolism of the other drugs
or where a specific genotype of the metabolizing
enzymes determines individual drug dose. However,
the often underappreciated pharmacodynamic inter-
actions (PD-PD) where drugs interact on the same
neuronal circuit are not very well studied in detail,
which often can lead to a less than optimal treatment
paradigm. For instance, the use of drugs with direct or
an indirect anticholinergic activity leads to a higher
risk of AD [13, 14]. The number of medications in
elderly patients is correlated with higher incidence
of unplanned hospitalization [15] and polypharmacy
is associated with lower cognitive performance [16].
In some cases neurocognitive effects of comedi-
cations have been linked to the failure of clinical
trials [17]. This significantly complicates the clini-
cal development of combination treatment, as many
pharmacokinetic and pharmacodynamic interactions
need to be controlled and mitigated.

Developing single drug with rational
polypharmacy or combination of different drugs?

An important question relates to the decision to
develop a single molecule with different pharma-
cological activities or developing a combination of
different single highly-specific drugs. In view of the
polypharmacy already present in clinical practice (see
above), it might make more sense to develop a single
drug as this would limit the number of PK-PK inter-
actions. However, the medicinal chemistry is more
complex and the objective of a rational polypharmacy
is in conflict with the usual highly selective, highly
potent strategy used for many decades in pharmaceu-
tical drug discovery [6].

Recent developments in artificial intelligence and
machine learning [18] are being applied to large
chemical databases and can speed up the discovery
of interesting hits, even with balanced polypharmacy.
The availability of many protein structures in the Pro-
tein Database (PDB) (https://www.wwpdb.org/) [19],
together with sophisticated and advanced computa-
tional docking molecular modeling techniques [20]
allows to screen large virtual libraries and speed up
the discovery of putative hits.

Further challenges abound with developing a cock-
tail of individual drugs, including 1) complex PK-PK
interaction studies, 2) demonstrating that all compo-
nents of such a combination are needed for the clinical
effect, or 3) providing evidence that the combination
has a synergistic effect.

https://www.wwpdb.org/
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Regulatory considerations

Traditionally, development of a fixed combination
of two medications A + B necessitates the proof that
the combination is superior to placebo, drug A in
isolation and drug B in isolation resulting in substan-
tial costs and resources. However, in 2013 the FDA
has issued an updated guidance for co-development
of two or more medications under strict conditions
without the need for an expensive and resource-
ful 2 × 2 design (https://www.fda.gov/media/80100/
download). Direct development of a combination is
to be discussed on a case-by case basis but can be
approved when each of the following conditions is
met: 1) the combination is intended to treat a serious
disease or condition; 2) there is a compelling bio-
logical rationale for the use of the combination; 3)
a preclinical model or short-term clinical study on
an established biomarker suggests that the combi-
nation has substantial activity and provides greater
than additive activity or a more durable response (e.g.,
delayed resistance) compared to the individual agents
alone; and 4) there is a compelling reason why the
agents cannot be developed individually. While this is
still a high threshold, at least in principle it allows for
an accelerated and relatively straightforward clinical
development plan.

Given the fact that preclinical animal models
do not recapitulate the complete pathology of AD
but only one or two aspects, it will be highly
challenging to demonstrate the superiority of a com-
bination over the two individual drugs in these animal
model systems. On the other hand, well-validated
human induced pluripotent stem cells (IPSC) and
3D organoid models might provide experimental evi-
dence for a synergistic effect of a combination therapy
focused on intracellular pathways. For all other com-
binations, more indirect evidence from predictive
computer models (see below) might provide a basis
for discussion.

KNOWLEDGE-DRIVEN
COMPUTATIONAL APPROACH FOR
UNDERSTANDING THE BIOLOGY

In order to identify the optimal combination of new
drugs, one has to better understand the interactions of
the many biological pathways driving the clinical tra-
jectory. While animal models still can provide ample
information, they suffer from a substantial lack of
translationability to the clinical situation [21]. The
new technology of neuronally differentiated human

IPSC partially and certainly the development of brain
organoids partially addresses this issue but suffers
from low throughput and issues with differentia-
tion and standardization. The previous discussion
has highlighted the absolute need for a better under-
standing of the complex pathology in clinical AD,
preferentially by using the information gathered from
the many clinical trials over the past decades.

We propose a novel simulation approach, called
quantitative systems pharmacology (QSP) that
expands upon data-driven systems biology by
combining the properties of a large number of phar-
maceutical interventions with a model of the biology
in a quantitative way, so that clinical data on disease
trajectory can be fully integrated.

Basically, this multi-level modeling approach [22]
integrates information about the underlying biol-
ogy and pathology in an actionable computer model
allowing for modeling biomarkers such as amyloid
and tau load. This is combined with a biophysi-
cal realistic simulation of neuronal activity using
Hodgkin-Huxley equations where action potential
dynamics is driven by changes in conductances of
voltage-gated ion channels [23]. The action potential
dynamics in these specific brain regions can drive
human behavior and is a proxy for clinical outcomes.
In particular, the stability of a memory trace in a work-
ing memory paradigm in cortical neuronal networks
after implementation of AD pathology has been cali-
brated with changes on clinically relevant scales such
as ADAS-Cog [24].

The current version of the QSP model for AD
includes a neuronal excitation-inhibition network
based on multicompartment model of pyramidal exci-
tatory and inhibitory GABA neurons with over 30
G-protein coupled receptors implemented, the dif-
ferential effect of various amyloid-� (A�) forms on
glutamatergic and nicotinic neurotransmission [25,
26] and the effect of oligomeric tau on voltage-gated
and compartment-specific Na + and K + channels
[27]. Amyloid aggregation dynamics, from synthesis,
enzymatic removal of monomers, primary and sec-
ondary nucleation, breakdown of large aggregates,
formation of protofibrils along an off-aggregation
pathway, and finally deposition into plaques together
with the clearance by activated microglia cells is
included [28]. Spatio-temporal progression of mis-
folded tau protein along neuronal projections is
implemented using preclinical and clinical data.
Especially the impact of amyloid modulating anti-
bodies is calibrated using clinical observations on the
surrogate cerebrospinal fluid biomarkers A�42 levels

https://www.fda.gov/media/80100/download
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Fig. 1. Schematic representation of the ‘seismology’ strategy for elucidating key pathways driving the AD phenotype. Using the concept of
AD pathology as a black box, each clinical trial (1 . . . N) with a drug acting on a specific target (here a few examples are given for which
clinical data in principle are available) can be considered a highly localized challenge that generates a perturbation inside the system and
generating a reaction captured as the clinical outcome of that intervention. This response is a highly complex combination of the underlying
pathology and the pharmacodynamic activity and pharmacokinetic profile of the drug. The challenge is to “deconvolute” this response so
as to generate actionable knowledge about the internal pathways and circuits triggered by this perturbation. Modeling these “interventions”
in an actionable computer model using available information about the pharmacology of the drug together with extensive biological and
genetic knowledge can significantly speed up this process. In principle, this would allow us to gradually document more and more complex
pathways and their interactions in the human patients.

and standardized uptake value ratio. The impact of
medications is calculated using the appropriate phar-
macology and level of target exposure often derived
from PET displacement studies [29]. Genotypes
such as the COMTVal158Met [29] and 5-HTTLPR
rs23351 [26, 30] can be included as well as they
impact neuronal firing and functional outcome.

AD pathology is implemented using a cholinergic
deficit and a progressive loss of neurons and synapses
over time, and the in silico readout of memory trace
stability is used as a proxy for cognitive performance.
The platform is calibrated with ADAS-Cog readouts
of 28 different drug-dose-duration clinical trials out-
comes, not only from standard-of-care procholinergic
medication but also with serotonergic interventions
[24].

The strategy is to use this platform to simulate
the outcome of a number of clinical trials with
highly selective drugs and to consider each of them
as perturbing a single pathway. By combining the
insights of a number of these trials, a more com-
plete picture of the complex underlying biology can
be formed. Figure 1 illustrates this strategy, which is

somewhat analogous to well-established seismology
approaches in geology to identify subterranean oil
fields. Here the properties of the reflected waves are
determined by the constitution of the different layers.
In the case of clinical AD, the “seismology waves”
consist of the different therapeutic approaches, each
one with their own very selective target that pertur-
bates part of the system at a particular point along
the disease trajectory of an individual patient. The
“reflection waves” can be defined as the clinical out-
come which is a complex combination of the pharma-
codynamics and pharmacokinetics of the therapeutic
intervention and the reaction of the underlying path-
ways or circuits to this therapeutic perturbation. The
aim is to use the QSP platform to generate informa-
tion about the underlying pathology by “deconvolut-
ing” this complex response using quantitative infor-
mation about the drug and the underlying biology.

Group average outcomes for clinical trials are
a good starting point, but the scope and dynamic
range of possibilities can be drastically extended by
studying individual patient responses. Physiology-
based pharmacokinetic modeling can simulate the
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effect of comedications and genotypes in metabo-
lizing enzymes on plasma levels and drug exposure.
By taking into account specific drug exposure and
pharmacodynamic interactions with comedications
and genotypes, the possible range of interventions
and outcomes can be drastically increased. Quanti-
tative systems pharmacology also allows to simulate
the impact of comedications (based on their known
pharmacology), common genotypes variants (based
on imaging) and disease status on a clinically relevant
cognitive readout [30]. This allows to optimally use as
many aspects of the actual trial design as possible for
reverse engineering, including some “confounding”
factors at the individual patient level to maximize the
information for deconvolution.

It has to be noted that this modeling approach is
not limited to AD but can be applied to other neu-
rodegenerative disorders, as they might share
pathological processes, such as spatio-temporal
progression of misfolded protein (for example alpha-
synuclein in Parkinson’s disease or tau protein in
primary tauopathies), neuroinflammation, oxidative
stress, mitochondrial dysfunction, and deficient pro-
tein degradation.

STRATEGIES FOR SELECTING BEST
COMBINATIONS

It is evident from the previous discussion that well
validated approaches with a large capacity are needed
to systematically screen and prioritize the many pos-
sible combinations. The most efficient approach is to
focus on pathways and circuits rather than single tar-
gets, as some drugs might affect the same pathway or
a very similar mode of action.

Experimental approaches

High-throughput screening approaches based on
high-content imaging [31] can possibly handle the
numerous combinations with some companies, like
CombinatorX, (now Zalicus) offering this service as
a Contract Research Organization. A freely avail-
able software platform allows for visualization and
quantification of synergistic effects [32]. Human
IPSC cell cultures can provide a strong translational
avenue for testing neuroprotective compounds. Such
an approach is basically target-agnostic and does not
rely on assumptions of the pharmacology of the drugs
to be tested. Drawbacks include the challenge to dif-
ferentiate the induced neuronal-type cells, the need
to physically acquire reference compounds for all the

pathways involved in the disease (which might be par-
tially mitigated by CRISPRi/a genetic approaches),
and the challenge of reproducing the right balance
between different cell types present in the human
brain, although 3D cultures can provide a more rel-
evant environment [33]. Another challenge is the
capacity and reproducibility of these cellular assays.
For instance, the expression of 3R and 4R tau iso-
forms is highly dependent upon maturation stage and
it may take several months with specific disease asso-
ciated mutations to achieve the right balance of 3R:4R
tau [34]. Finally, these experimental approaches at
this point in their development are not yet able to fully
reproduce the complex activity of neuronal circuits in
the human brain that is more directly associated with
clinical phenotype.

Other approaches using mouse chimeric models
with human IPSC cells [35], non-human primates,
especially marmosets [36] and sophisticated trans-
gene mouse models based on late-onset AD genes
[37] do reflect the complex interaction of many pro-
cesses involved and bridge some of the translational
gap, but are notoriously low-throughput and have
limited capacity.

Data-driven computational approaches

The availability of large longitudinal database
cohorts together with increased hardware capacity
and software sophistication has allowed for pat-
tern recognition type analytics and identification of
drivers for protection against cognitive worsening.
An innovative approach combined clinical data from
the Rush database with a computer model of the
microglia-dependent contribution to AD [38] and
resulted in a number of possible combinations of
existing and marketed drugs suggesting synergy.

A similar study used the National Alzheimer Coor-
dination Center data on 35,000 patients with 118,000
evaluations in clinical trials [39] and collapsing all
medications in 53 mechanism groups to address
the questions what interventions in healthy subjects
could delay the onset of dementia. While none of the
individual groups was found to have a major effect,
combinations of up to five active compounds were
found to be highly correlated with cognitive perfor-
mance and protection against dementia. The analysis
also identified medications that negatively affected
this trajectory.

An interesting approach [40] uses multi-model
imaging data (structural MRI, tau and amyloid
PET imaging, vascular imaging, functional BOLD
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Fig. 2. Possible flow-chart of knowledge-driven QSP identification of optimal treatment combinations. An existing QSP model that includes
amyloid-tau pathology modeling, neuroinflammation, and a functional ADAS-Cog calibrated neuronal circuit is informed by preclinical,
clinical observational and bio-informatics data. Target exposure of drugs currently tested in clinical trials is implemented using PBPK
modeling to derive the functional impact in the QSP model. Calibration and validation are then performed with available clinical data,
preferentially on individual patient outcomes. The validated QSP platform can then be used to systematically search all possible drug combi-
nations and rank orders the outcomes for an AD patient with pre-specified baseline conditions. This process can then be repeated for subjects
with varying baseline biomarkers conditions, allowing for more “targeted treatment” paradigm for certain baseline biomarkers signatures.

fMRI) from individualized patients to create a multi-
parameter relationship with cognition. Subsequently
a “cost function” is calculated to revert the “patholog-
ical” fingerprint back to the healthy case which leads
to the identification of combination of optimal high-
level interventions. By using imaging from individual
subjects this approach allows for individual finger-
print of interventions best suited to the particular
patient [41]. However, the lack of concrete examples
of drugs affecting these high-level pathways limits
the usefulness of this approach.

Knowledge-driven computational approaches for
repurposed drug combinations

Repurposing drugs is a fast and relatively inex-
pensive way for hypothesis testing in a clinical trial.
By identifying various pathways documented to be
relevant for AD, a combination of 8 available and
marketed drugs was proposed to reduce the transition
of amnestic MCI to AD [42], although no interaction
between the various pathways was assumed and no
specific dose or PK-PK interactions were explored.
The advantage of considering combinations of

existing drugs is that there is substantial knowl-
edge about side-effects, PK, and the corresponding
pharmacology. As an example a QSP model of
the basal ganglia motor circuit identified four non-
dopaminergic drugs from the Prestwick library, a
collection of off-patent FDA approved drugs for
tremor reduction in Parkinson’s disease [43].

Combining PBPK and QSP (Fig. 2) as described
above then allows to account for pharmacokinetic
and pharmacodynamic interactions of any new com-
bination and to ensure that all properties of putative
combinations are aligned for a synergistic effect. For
instance, it is of little use to combine two drugs that
have synergistic effects on their pharmacodynamic
readout but where one drug significantly reduces
exposure of the other drug.

Knowledge-driven computational approaches for
rationally designed polypharmacy drug
discovery

A possible limitation of drug repurposing strate-
gies is the reliance on existing approved medications
that might not have the optimal pharmacology or
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potency to affect the different pathways or come with
dose limitations based on their side-effect profiles.
Therefore, there is also a great need for in silico
screening approaches for identifying novel molecules
that act on the optimal combination of specific key
pathways with a distinct synergistic effect. Such an
approach is based on a sensitivity analysis or a reverse
engineering strategy to identify the pathways with the
biggest impact on the functional in silico outcome.
As an example, the QSP model for schizophrenia
efficacy (PANSS Total) used Design of Experiment
(DOE) strategy [44] to identify the pathways that
most importantly generate the clinical response of
the novel antipsychotic iloperidone. In this case, the
most important biological process was identified as
the interaction between D4 and AMPA-R on pyra-
midal cells, corresponding to one of the five SNPs
found using a traditional pharmacogenomics analysis
on responders versus non-responders [45].

Validation of predicted synergistic interactions

Validation of any assay system is crucial for wider
acceptance of these results. Many preclinical trans-
gene mouse models lack translationability to the
clinical situation for a number of reasons, including
incomplete pathology, mismatched drug exposure,
differences in key targes or pathways, and the lack
of comedications and genotypes. For computer mod-
els, an interesting strategy is to create virtual “mirror”
patients with the same characteristics as real patients
in longitudinal studies or clinical trials, predict the
functional clinical trajectory and compare the out-
come with the actual real data on an individual patient
basis. While ambitious. this ensures the model plat-
form will be ultimately constrained by clinical data
on real patients.

EXAMPLES OF RATIONAL
COMBINATION THERAPY

A large number of combination therapies have
been tested in clinical studies (for an excellent and
comprehensive review, see [46]). Most of the com-
binations were based upon ad-hoc arguments and so
far none have shown substantial synergy. The fol-
lowing lists a few non-obvious combinations that are
currently in clinical trials.

Amyloid-amyloid combinations. Because of the
availability of different modalities for amyloid modu-
lation, the first combination therapy included an anti-
body LY3002813, or N3pG mAb against aggregated

amyloid and a BACE inhibitor LY3202626. In Nov
2018, this trial was halted for undisclosed reasons,
although the single treatment arm with N3pG mAb
continued. However, the interest in combining anti-
body treatment with small-molecule BACE or GSI
was significantly decreased after a number of trials
reported a transient worsening when interfering with
the synthesis of A�.

Amyloid-tau modulation. With the approval of
aducanumab, a combination with tau-directed drugs
should in principle address the two major hallmarks
of AD. There are already a number of tau molecules
in clinical trial, most of them based on antibodies
against specific tau forms and the DIAN-TU study
now gears up to include a tau therapeutic arm [47].

Cross-sectional clinical evidence suggests an inter-
action between amyloid and reduced pathology,
a relationship that has been further confirmed in
intervention trials reducing amyloid load (for an
overview see [48]), On the other hand, therapeutic
anti-amyloid antibodies have been documented to
activate microglia cells [49] which is necessary to
clear substantial amounts of A�. The impact of acti-
vated microglia cells on tau pathology is complex
as preclinical studies suggest a beneficial effect of
TREM2 mediated activation on tau pathology only in
the presence of amyloid pathology [50] and TREM2
activation can exacerbate tau pathology in a pure
tauopathy model [51]. This complicates the timing
of combination therapy as microglia can switch to a
deleterious phenotype during the decrease in amyloid
load.

Other challenges remain as to the specific spatio-
temporal progression of tau pathology that might be
affected in a complex brain-region dependent way by
A� load [52] with specific implications on functional
outcome. Recent imaging studies suggest four differ-
ent tau pathology trajectories with varying degrees of
interaction with A� [53].

It is likely that qualitative arguments on the dif-
ferent course of these two pathologies need to be
complemented by more quantitative modeling to
account for the complex non-linear relationships
between these two processes.

PXT864 is a combination of baclofen, a deriva-
tive of GABA and acamprosate a compound used for
alcohol dependence currently in Phase II for AD. The
rationale is to restore the balance between excitation
and inhibition.

ALZT-OPT1 is a combination of dry power inhaled
cromolyn and oral ibuprofen that affects neuroinflam-
mation. Cromolyn is a mast-cell stabilizer that has
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been documented to reduce A� plaque formation,
while ibuprofen is a non-steroidal anti-inflammatory
medication.

AVP-923 combines dextromethorphan, an opioid-
type painkiller used in cough syrup with quinidine.
Dextrometorphan has weak NMDA antagonism and
agonism at the sigma-1 receptor, while quinidine
blocks the peripheral metabolism of dextromethor-
phan therefore increasing the brain permeability. The
drug is currently marketed as Nuedexta for pseu-
dobulbar affect and is currently in clinical trials for
behavioral problems such as agitation associated with
dementia.

AVP-786 is a second generation form of Nuedexta
with a deuterated (d6) version of dextromethor-
phan/quinidine combination. The deuteration is
supposed to make dextromethorphan more resistant
against CY2D6 mediated metabolization therefore
increasing the brain permeability. Initial data from a
Phase III study were encouraging and the compound
is in further development.

AMX0035 is a combination of two repurposed
drugs (sodium phenylbutyrate and taurursodiol) that
has shown great promise in a Phase II study in ALS
patents [54] resulting in a 6.5 month longer median
survival.

CONCLUSION

Despite the increased interest for combination
therapy in neurodegenerative diseases, the pharma-
ceutical challenges remain substantial. Not only is
there a need for identifying synergy in drug-drug
interactions, at the level of both pharmacokinetics and
pharmacodynamics, but the sheer number of possible
combinations preclude any systematic experimental
approach. This paper reports on a number of com-
putational modeling approaches that could support
this process in three ways: 1) prefiltering and rank
ordering possible combinations with the highest syn-
ergistic potential, 2) identify patient subgroups by
generating possible scientific insights related to these
potential synergies, and 3) identify the optimal clini-
cal trial design for testing this hypothesis.

By using such in silico models to systemati-
cally examine all possible combinations (including
dose) in different disease states, combinations can be
ranked according to the highest potential for positive
synergy before being tested in experimental assays
and clinical studies. These approaches can be applied
both to repurposing combinations of existing drugs

and to supporting rational polypharmacology novel
drug discovery.

In contrast to experimental high-throughput
approaches, this computational approach is heavily
based on clinical data, both with regard to therapeutic
interventions as well as imaging and biomarker stud-
ies. These in silico approaches might therefore not
cover the complete biology; however, they have the
advantage to take into account different comorbidities
and pathological processes, such as the interac-
tion between amyloid, tau and neuro-immunology
in a humanized context which are often difficult to
achieve in experimental in vivo models. At the same
time, they aim to optimally integrate the biological
knowledge from these preclinical models.

Obviously, these in silico models do not claim to
capture the full human biology and are based on a vast
number of assumptions and simplifications. Other
long-term academic endeavors are aimed at develop-
ing very comprehensive computer models of human
brain circuits with multiple cell types and complex
connections [55]. The long-term objective of the QSP
approach present here, is to develop relatively sim-
ple models of subcircuits that are relevant to clinical
outcomes and can be applied to actual clinical ques-
tions such as dosing, relative start of the selected
treatments, patient selection and trial duration. In that
sense there is always a trade-off between scope and
granularity on one hand and feasibility and speed on
the other hand to generate actionable outcomes that
can be useful in the real world.

Ultimately, a trade-off between theoretical opti-
mal outcome and realistic approaches that take into
account the full pharmacological and clinical con-
straints of the various proposed combinations often
needs to be made. For instance, combinations with
more than four components, while maybe better in
theory are much more difficult to test in clinical tri-
als. In this case, a possible alternative strategy would
be to identify subtypes of patients that can respond
to one of the “leaner” pharmacological profile (i.e.,
with less targets).

The real challenge of these approaches resides in
the validation of the models, and it is likely that a
number of iterations will be needed before achieving
sufficient confidence. As explained above, focusing
on comparing virtual “mirror” patients with actual
real clinical data will optimally constrain the model
for the systematic screening of relevant combination
therapies.

It might be worthwhile to look on how the oncology
field is addressing the issue of combination therapy
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after the “gold standard” of check point inhibition was
approved. Many combination therapies are now in
clinical trials. Interestingly, a pre-competitive consor-
tium on advanced quantitative systems pharmacology
models with 6 pharmaceutical companies [56, 57]
was successful in generating useful insights in com-
bination trials. Such an approach could be a template
for neuroscience in general and AD in particular.

These strategies that includes biological princi-
ples, provide a scientific framework hypothesizing
the anticipated synergy and can be extremely helpful
to convince stakeholders, such as sponsors, patients,
and regulatory agencies. In addition, they can be
used to optimize the clinical trial design, especially
with regard to possible negative pharmacokinetic and
pharmacodynamic interactions between the selected
combination and the allowed comedications.

In summary, this report provides a strategy using
advanced in silico computer models, not only to better
understand the complex neuropathology, but also to
address the major challenge of identifying the optimal
combination therapy for AD. Quantitative systems
pharmacology modeling, informed by a combination
of biological and clinical imaging data, allows to inte-
grate a large number of clinically relevant biological
processes and might be a powerful tool to support
actual combination trials.
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