Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Digital transformation through advances in artificial intelligence and machine learning
Guest editors: Hasmat Malik, Gopal Chaudhary and Smriti Srivastava
Article type: Research Article
Authors: Fatema, Nuzhata; b | Farkoush, Saeid Gholamic; * | Hasan, Mashhoodd | Malik, He
Affiliations: [a] Faculty of Business and Management, Universiti Sultan Zainal Abidin (UniSZA), Malaysia | [b] Intelligent Prognostic Private Limited, India | [c] Electrical Engineering Department Yeungnam University, South Korea | [d] Electrical Power Engineering Technology, College of Applied Industrial Technology, Jazan University, Kingdom of Saudi Arabia | [e] BEARS, University Town, NUS Campus, Singapore
Correspondence: [*] Corresponding author. Saeid Gholami Farkoush, Electrical Engineering Department Yeungnam University South Korea. E-mail: [email protected].
Abstract: In this paper, a novel hybrid approach for deterministic and probabilistic occupancy detection is proposed with a novel heuristic optimization and Back-Propagation (BP) based algorithms. Generally, PB based neural network (BPNN) suffers with the optimal value of weight, bias, trapping problem in local minima and sluggish convergence rate. In this paper, the GSA (Gravitational Search Algorithm) is implemented as a new training technique for BPNN is order to enhance the performance of the BPNN algorithm by decreasing the problem of trapping in local minima, enhance the convergence rate and optimize the weight and bias value to reduce the overall error. The experimental results of BPNN with and without GSA are demonstrated and presented for fair comparison and adoptability. The demonstrated results show that BPNNGSA has outperformance for training and testing phase in form of enhancement of processing speed, convergence rate and avoiding the trapping problem of standard BPNN. The whole study is analyzed and demonstrated by using R language open access platform. The proposed approach is validated with different hidden-layer neurons for both experimental studies based on BPNN and BPNNGSA.
Keywords: Gravitational search algorithm, back-propagation algorithm, neural network, machine learning, optimization, occupancy, smart building
DOI: 10.3233/JIFS-189748
Journal: Journal of Intelligent & Fuzzy Systems, vol. 42, no. 2, pp. 779-791, 2022
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]