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Abstract. With the adoption of the 2030 Agenda for Sustainable Development, the production of high quality disaggregated
estimates of Sustainable Development Goal (SDG) indicators has taken greater significance. In this context, sample surveys are
characterized by samples that are either not large enough to guarantee reliable direct estimates for all relevant sub-populations, or
that do not cover all possible disaggregation domains. To address these issues, indirect estimation approaches such as small area
estimation (SAE) techniques can be adopted.
The literature on the use of SAE in official statistics is broad and in continuous progress, yet the number of case studies on SAE
methods applied to SDG indicators can still be expanded. After a brief review of the main SAE approaches available along with
their principal fields of application, the present paper aims contributing to fill this gap by presenting a case study on SAE to
produce disaggregated estimates of SDG Indicator 2.3.1, measuring average labour productivity of small-scale food producers.
The discussed empirical exercise is based on a Fay-Herriot area-level SAE model, integrating survey data with area-level auxiliary
information retrieved from multiple trustworthy geospatial information systems. Area-level SAE models have the advantage of
being easy to implement and do not require accessing survey microdata and unit-level auxiliary information. These characteristics,
jointly with the great potentials offered by modern geospatial information systems, offer the possibility of producing good quality
disaggregated estimates of SDG indicators at high frequency and granular disaggregation level.
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1. Introduction

In an era characterized by the proliferation of new
data sources and an unprecedented data revolution, the
2030 Agenda for Sustainable Development and the
overall goal of leaving no-one behind (LNOB) have
generated a tremendous increase in the demand of dis-
aggregated data and statistics. In particular, in order to
operationalize the overarching requirement of data dis-
aggregation in the development of the Global SDG In-
dicator framework, the United Nations Statistical Com-
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mission postulated that “SDG Indicators should be dis-
aggregated, where relevant, by income, sex, age, race,
ethnicity, migratory status, disability and geographic
location, or other characteristics, in accordance with
the Fundamental Principles of Official Statistics”.

In this framework, traditional sample surveys imple-
mented by National Statistical Offices (NSOs) can pro-
vide important information on the social, economic and
environmental dimensions of target populations, repre-
senting the essential data source to produce the official
estimates of about the 30% of Sustainable Development
Goal (SDG) Indicators.1 However, these data sources

1This figure was presented in a mapping prepared by the Intersec-
retariat Working Group on Household Surveys and discussed at the
50th Session of the United Nation Statistical Commission in 2019.
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alone are not enough to realize the ambitious goal of
monitoring SDG Indicators by all relevant disaggrega-
tion dimensions and geographical areas. Indeed, despite
collecting detailed information at relatively high fre-
quency, most sample surveys are characterized by sam-
ple sizes that are either not large enough to guarantee
reliable direct estimates for all sub-populations or that
do not cover all possible disaggregation domains [1].

Issues of this kind can be addressed at different stages
of the statistical production process. They can be tack-
led at the design stage, by adopting sampling strate-
gies guaranteeing an observed set of sampling units
for every disaggregation domain. Although potentially
optimal, this approach normally results in an exponen-
tial increase of the sampling size and survey costs and
complexity [2]. Furthermore, it is important to realize
that, in practice, the anticipation of all possible future
uses of survey data is virtually impossible, as “the client
will always require more than is specified at the design
stage” [3]. Alternatively, data disaggregation can be ad-
dressed at the data analysis stage, by adopting indirect
estimation approaches borrowing strength from related
disaggregation domains and/or time periods, thus result-
ing in an increase of the effective sample size [4]. Small
area estimation (SAE) methods are among the possible
indirect estimation approaches that can be adopted to
deal with data disaggregation at the analysis stage. SAE
techniques allow combining survey data with auxiliary
information coming from additional data sources that
are not affected by sampling error. Traditionally, SAE
have relied on the integration of survey microdata with
information from population and agricultural censuses
or administrative records through explicit models link-
ing the variable of interest to a set of auxiliary variables.
However, with more and more data made available to
National Statistical Systems (NSSs) from multiple in-
novative data sources, relying exclusively on auxiliary
variables from traditional statistical sources for the pro-
duction of small area estimates of SDG indicators is
not considered as an efficient solution. In this respect,
the 2030 Agenda explicitly stresses the need for new
and enhanced data integration strategies, including the
exploitation of the potential contribution to be made
by geospatial information systems and other big data
sources.

Within this framework, the present paper makes the
case for the adoption of SAE and other indirect esti-
mation methods to produce granular disaggregated es-
timates of SDG indicators, by integrating survey mi-
crodata with auxiliary information retrieved from “in-
novative” data sources, such as earth observation data.

Indeed, relying on suitably implemented indirect esti-
mation techniques such as SAE allows obtaining reli-
able disaggregated estimates of SDG indicators while
managing survey costs and complexity. In particular,
the integration of survey microdata with data from non-
traditional sources offers the potential of producing
timelier and more disaggregated statistics at higher fre-
quencies than what allowed by traditional data sources
alone. The paper is structured as follows. Distinguish-
ing between area-level and unit-level SAE models, Sec-
tion 2 presents a brief overview of these two approaches
along with their relevant notation, context of usabil-
ity, and potential source of auxiliary data. This section
also discusses the main strengths and elements of cau-
tions related to the use of geospatial auxiliary variables.
Then, Section 3 presents some of the main fields of SAE
application in official statistics, highlighting the few
initiatives and examples of SAE for data disaggregation
of official SDG indicators. To fill the gap of SDG rele-
vant studies, Section 4 presents a practical case study
on SDG indicator 2.3.1, measuring the average volume
of production per labour unit of small-scale food pro-
ducers, based on the Fay-Herriot (FH) [5] area-level
model and combining the official integrated household
survey of Mali with auxiliary variables retrieved from
multiple geospatial information systems. The results of
the case study highlight that, implementing the consid-
ered SAE approach, estimates precision is improved
and predictions for out-of-sample domains can be pro-
duced. Finally, the main conclusions and ways forward
are presented in Section 5.

2. Integrating survey data with additional data
sources through small area estimation

Sample surveys, which are regarded as cost-effective
means to collect detailed information at relatively high
frequency over time, have a long history in the field
of official statistics, and can be used to produce reli-
able estimates of parameters referred to total popula-
tions or to broad disaggregation domains. In this con-
text, direct domain estimates of target parameters are
statistics based solely on domain-specific sample data.
Direct estimators are also known as design-based es-
timators, since they make use of sampling weights to
produce inference on the target population [6]. One of
the main requirements to achieve reliable disaggregated
estimates by direct estimators is the presence of a suffi-
cient domain sample size to yield adequate precision,
or, in other words, a small estimated variance. When
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this circumstance is not verified, we are in the presence
of so-called small-areas, i.e. disaggregation domains for
which too little or no sampling observations are avail-
able [4]. It should be noted that, in practical statistical
applications, it is quite rare to have an overall sampling
size that is large enough to guarantee a sufficient num-
ber of observations for every possible disaggregation
domain. Therefore, the use of indirect estimation tech-
niques that “borrow strength” from auxiliary informa-
tion on the population of interest [7] is often necessary.
The range of possible approaches to produce indirect
estimators is vast and goes from the implementation of
design-based model-assisted approaches, such as the
generalized regression estimator ([8,9]) or the projec-
tion estimator ( [10,11]), to model-based approaches
such as SAE ([4,5,12]). Contrarily to direct and model-
assisted approaches, SAE model-based methods rely
on explicit models and, consequently, the properties
of resulting estimators are assessed under the adopted
model assumptions. In particular, traditional SAE mod-
els are mixed models with area-specific random effects
accounting for the variability between different areas
not explained by auxiliary variables [4].

Although different in their specification, all SAE ap-
proaches share the same notation framework that is here
introduced for the clarity of following sections. Let us
consider a finite population U of N units that can be
partitioned into D estimation domains U1, . . . , UD of
sizes N1, . . . , ND. With d we denote the dth disaggre-
gation domain, while i specifies the ith unit of the pop-
ulation. Let us now consider a random sample s ∈ S
of size n (with S being the set of all possible sample
s of size n that can be selected from U ) and proba-
bility p(s), the units of which can be used to produce
direct estimates θ̂d of target disaggregation parameters
θd related to a variable of interest y. Typical examples
of disaggregation parameters θd that are usually esti-
mated for continuous variables are the domain total
Yd =

∑
i∈Ud

yi and mean Ȳd = Yd/Nd. The well-known

Horvitz-Thompson (HT) estimator of Yd and Ȳd can
be expressed as Ŷd =

∑
i∈sd

wiyi and ˆ̄Yd = Ȳd/
∑
i∈sd

wi,

with wi = 1/πi denoting the sampling weighs and
πi =

∑
{s:i∈s}

p(s) the inclusion probability of unit i. It

should be noted that ˆ̄Yd has the functional form of a
ratio estimator, as both its numerator and denominator
are sampling estimates. The HT estimator of the total is
design unbiased, while the one for the ratio is affected
by a bias that tends to 0 with increasing values of nd.
This means that their expected values are or tend to

be equal to the parameter to be estimated [13]. As a
consequence, their reliability is assessed only in terms
of their precision, i.e. by the extent of their variance.

Direct HT estimators θ̂d are usually characterized
by unknown variance V (θ̂d) that needs to be esti-
mated with adequate estimators v̂(θ̂d), for a complete
overview of which we refer to [9,13,14]. When the es-
timated variance is unacceptably high, SAE and other
indirect estimation approaches can be used to increase
estimates precision. Model-based SAE approaches al-
low considering the unexplained heterogeneity among
domains, and have the potential of providing estimates
that are more efficient than those produced with di-
rect estimation methods. In addition, relying on SAE
it is possible to predict indicator values also in out-of-
sample domains. The literature on SAE classifies its
models into two broad categories identified as area-level
and unit-level models, which are briefly discussed in
the two sections below. While area-level approaches
relate a small area direct estimator θ̂d to area-specific
auxiliary information and can be adopted also when
unit-level data is not available, unit-level models require
access to microdata at the unit level, as they relate the
unit values yi to unit-specific covariates [9].

Despite their increasing popularity, resorting to SAE
should not be considered as the solution to any data
disaggregation problem, and there are various consider-
ations that NSOs should make before engaging in the
production of indirect estimates. First of all, model-
based approaches have stricter data requirements than
direct estimation methods, with unit-level models being
more data intensive than area-level ones. In this respect,
the access to microdata on individual units may be lim-
ited by confidentiality concerns that need to be taken
into account. Being based on models, after implement-
ing SAE approaches, the underlying assumptions need
to be carefully validated through adequate diagnostic
techniques [27]. In addition, the bias of small area esti-
mates needs to be measured to assess estimates reliabil-
ity. This is generally done by means of the mean square
error (MSE), which provides a combined indicator of
estimates precision (variance) and accuracy (bias).

2.1. Area-level SAE models

The FH model [5], which is by far the most popular
area-level SAE approach, is often used for the produc-
tion of small area estimates in official statistics and re-
search thanks to its intuitive application and interpreta-
tion. This approach combines a sampling model, assum-
ing that the unknown parameter θd and the direct esti-
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mate θ̂d differ by a sampling error ed with mean 0 and
known variance σ2

e,d, and a linking model specifying a
linear relationship between the population value θd and
a set of domain-level auxiliary information. Consider-
ing the union of these two models leads to the mixed
area level model

θd = xTd β + ud + ed, d = 1, . . . , D (1)

where β = (β1, . . . , βP ) is the vector of unknown re-
gression parameters and ud are domain specific random
effects which are supposed to be normally distributed
with mean 0 and variance σ2

u.
The unknown parameters of Eq. (1) to be estimated

are the fixed-effects parameters β and the variance of
random effects σ2

u. In this respect, common estimation
approaches used in the statistical practice are the em-
pirical best linear unbiased prediction (EBLUP) [15],
the empirical Bayesian (EB) [16], and the hierarchical
Bayesian (HB) methods [17]. In particular, the EBLUP
estimator, which is implemented under the classical fre-
quentist framework, can be expressed as a weighted
average of the direct estimate and a regression synthetic
component θ̂EBLUP

d = γ̂dθ̂d + (1− γ̂d)xTd β̂, where β̂ is
the weighted least squares estimators of the regression
parameters and γ̂d =

σ̂2
u

σ̂2
u+σ̂

2
e,d

is the so-called shrinkage
factor for domain d which weights the direct estimate
and the regression-synthetic part, and decreases with
increasing sampling variance σ2

e,d. It should be noted
that, when nd = 0 – i.e. in correspondence of out-of-
sample domains – SAE estimates are produced using
only the regression synthetic part xTd β̂ of θ̂EBLUP

d .
One of the FH fundamental assumptions of known

variances σ2
e,d is often very restrictive in practical appli-

cations [4]. However, this can be relaxed by estimating
the σ2

e,d from the unit level sample data and then sta-
bilize them by means of smoothing techniques such as
the generalized variance function (GVF) approach [14].
Several extensions of the basic area level model are
available in the literature and can be adopted to address
special situations such as the presence of spatial [18] or
spatio-temporal [19] correlation, heteroscedasticity of
random effects [20], influential outliers [21], and aux-
iliary variables – such as those retrieved from big data
sources – affected by measurement errors [22].

2.2. Unit-level SAE models

Contrarily to area-level approaches, unit-level SAE
models require the availability of unit-level microdata
for both the variable of interest ydi and the set of aux-
iliary variables xdi considered to have a good predic-

tive power for the phenomena of interest.2 Unit-level
models are particularly popular in poverty mapping,
which is one of the typical applications of small area
estimation [23]. The basic unit-level model, also known
as nested error linear regression model [12], has the
following structure:

ydi = xTdiβ + ud + edi; d = 1, . . . , D;
(2)

i = 1, . . . , nd,

where

xdi = (x1,di, . . . , xp,di, . . . , xP,di).

The model in Eq. (2) contains independent and iden-
tically distributed (iid) domain-specific random effects
ud, with ud ∼ N(0, σ2

u), and unit-level error terms
edi ∼ N(0, σ2

e). As in Section 2.1, besides the error
variance σ2

e , the unknown parameters are the fixed-
effect parameters β and the variance of random effects
σ2
u, which are typically estimated with EBLUP, EB, and

HB methods.
Under the EBLUP approach, the SAE estimator can

be formalized as a linear combination of the survey
regression estimator and a regression-synthetic compo-
nent:

θ̂EBLUP
d = γ̂d[ȳd + (X̄T

d β̂ − x̄Td β̂)]

+ (1− ŷd)X̄T
d β̂

Where ȳd is the sample mean of the variable of inter-
est for domain d, X̄T

d and x̄Td are the means of the aux-
iliary information from the additional data source and
the survey, respectively, and β̂, σ̂2

u, σ̂2
e are the estimated

parameters. The weight

γ̂d =
σ̂2
u

σ̂2
u +

σ̂2
e,d

nd

measures the amount of unexplained between-area vari-
ability to the total variability, and gives more impor-
tance to the survey regression component of the estima-
tor with increasing domain sample size nd.

Similarly to what seen for area-level models, various
extensions of the basic unit-level approach are avail-
able in the literature. In particular, while the model in
Eq. (2) only supports the estimation of means and totals,
approaches relying on nested error linear regression
models allow the estimation of non-linear indicators
([24,25]). These extensions are particularly relevant in

2For the estimation of the domain total or mean and in order to
implement basic unit-level SAE models, the selected auxiliary data
source only needs to provide exact values of the domain means x̄d.
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the context of the SDG monitoring framework, where
many of the indicators are expressed as ratios and pro-
portions. Additional extensions allow to include sam-
pling weights in the estimation process [26], address
the presence of heteroscedasticity in the error term [20],
and produce estimates which are robust to influential
outliers [21].

2.3. Some practical considerations on SAE
implementation with different types of auxiliary
data

An important prerequisite for the construction of
SAE models with satisfactory predictive power is the
availability of good quality auxiliary variables that can
properly explain the phenomenon under study. Tradi-
tionally, this additional information for SAE implemen-
tation has been extracted from population and agricul-
tural censuses or administrative records. Census data
have the advantage of providing a complete coverage of
the target population and can offer valid socio-economic
predictors of the variable of interest. However, the low
frequency at which censuses are normally implemented
limits their use for the production of disaggregated
statistics on an annual basis. On the other hand, ad-
ministrative records, which are often generated as side
product of government operations, do not suffer from
this drawback. However, this second type of data are
not produced with the primary purpose of computing
official statistics, and, as a consequence, their accuracy,
coverage, content, and characteristics need to be care-
fully assessed before them being used for statistical pur-
poses [28]. The merits and demerits of administrative
data in the production of official statistics are exten-
sively discussed in [29]. Some examples of applica-
tions of SAE based on administrative records are given
in [4,28,30].

The huge amount of digital and geospatial informa-
tion produced by a wide range of tools and technolo-
gies nowadays offers good alternative sources of aux-
iliary variables for SAE production. These rich large-
scale datasets, often referred to as big data, generally
cover a vast portion of the population within a territory,
often reaching nationwide coverage. Potential sources
of big data are geospatial information systems, social
networks, and records generated by human transac-
tions and interactions. These “new” or “alternative” data
sources can complement traditional surveys and cen-
suses to reduce the time and resources needed for data
production, hence contributing to fill the SDG data gap.
For example, latest available geospatial technologies

can not only provide the auxiliary information to im-
plement SAE or other indirect estimation approaches,
but can also help improving the construction of mas-
ter sampling frames and producing direct estimates of
selected SDG indicators (e.g. indicator 15.1.1 on the
percentage of forest area on total area, and indicator
15.4.2 measuring changes in the mountain green cover).

Examples of studies relying on the use of big data
and geospatial information for the implementation of
SAE techniques are presented in [31–34]. In particular,
in [31], the authors discuss the challenges opened by
the extension of SAE covariates to include variables
generated by big data sources and provides some so-
lutions to address them. Specifically, besides requiring
the availability of advanced statistical and IT know-
how, the quality of data from these “new” data sources
is often uncertain and rarely documented in compre-
hensive metadata files. In this respect, attention should
be paid to the fact that basic SAE approaches are im-
plemented under the assumption that auxiliary vari-
ables are measured without error, or, in other words,
that they are available for all areas and they come from
archives covering the entire population of interest. How-
ever, data coming from big data sources are often af-
fected by measurement errors and bias. Various authors
(e.g. [22,35]) have addressed this issue by developing
SAE approaches accounting for the presence of mea-
surement errors in the covariates.

When using big data retrieved by earth observation
systems, particular attention should be paid at the defi-
nition and computation of the covariates included in the
model. Indeed, geospatial variables are usually avail-
able at the levels of the cells of regular grids of differ-
ent resolutions, and need to be rescaled in order to be
attributed either to individual sampling units (for unit-
level approaches) or to the irregular polygons represent-
ing the estimation domains (for area-level approaches).
Hence, when implementing area-level models such as
the one summarized by expression (1), the value xp,d
of the geographical variable xp in area d can be ex-
pressed as the mean or the total of cell values belong-
ing to the considered estimation domain. On the other
hand, in unit-level models such as the one in expression
(2), the unit-level values xp,di are needed. In these cir-
cumstances, a straightforward approach can be that of
considering xp,di = xp,d, thus taking a uniform value
of geospatial variables for all units belonging to the
small area d. Alternatively, when georeferenced sur-
vey microdata is available, the values xp,di can be de-
fined as the mean or total of xp in smaller areas around
the considered sampling unit (e.g. at the level of the
enumeration area or the cell of the considered regular
grid).
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3. Use of small area estimation approaches for
data disaggregation of SDG indicators

The empirical literature on SAE is very broad, with
applications in many different fields of official statistics
such as income and poverty, labour, health and agri-
culture. However, despite the great emphasis placed on
data disaggregation in the context of the SDG moni-
toring framework and its overarching LNOB pledge,3

the number of examples of SAE techniques applied to
official SDG indicators is still limited.

Being poverty mapping among the main applications
of SAE, several case studies and references are avail-
able for the disaggregation of indicators related to Goal
1 on ending poverty. In particular, SAE techniques have
been implemented to produce official sub-national esti-
mates of SDG indicators 1.1.1 and 1.2.14 in countries
such as Albania, Bolivia, Bulgaria, Cambodia, Chile,
Ecuador, Indonesia, Mexico, Morocco and Sri Lanka
( [23,36]). Other applications relevant to income and
poverty analysis, yet without a direct link with SDG
indicators, can be found, for example, in Tanzania [37]
and the United States [38].

Concerning Goal 2, aiming at ending hunger, achiev-
ing food security, improving nutrition and promot-
ing sustainable agriculture, applications of SAE rele-
vant to food security and malnutrition were found in
Nepal [39], Ethiopia [40], and the United States [41].
However, the only application of indirect estimation
techniques targeting specifically an indicator under
Goal 2 was developed by the Food and Agriculture Or-
ganization of the United Nations (FAO) for indicator
2.1.2 on the prevalence of moderate and severe food
insecurity in the population based on the food insecurity
experience scale ([1,11]). Concerning the agricultural
component of Goal 2, evidence of empirical applica-
tions of SAE targeting SDG indicators under this goal
were not found. Indeed, while SAE approaches have ex-
tensively been used to produce disaggregated estimates
of crop yield and production measures (see [33,34]

3Since its creation, the Inter-Agency and Expert Group on SDG
Indicators (IAEG-SDGs), which was tasked with developing and
implementing the SDG Global Indicator Framework, has included
work on data disaggregation on its annual activities. In particular, the
IAEG-SDGs formed a working group on data disaggregation and a
task force on small area estimation for SDG indicators, with the pur-
pose of developing standards and guidelines on data disaggregation
and SAE for the SDGs.

4SDG indicators 1.1.1 and 1.2.1 respectively measure the propor-
tion of population living below the international and national poverty
lines.

for some examples), the use of indirect estimation ap-
proaches to produce disaggregated measures of agricul-
tural labour productivity (indicator 2.3.1) or agricultural
sustainability (2.4.1) are not a common practice.

Finally, a limited number of applications of SAE on
indicators under Goal 4 [42], 5 [43], and 8 [44] were
identified.

4. Empirical application of SAE on SDG Indicator
2.3.1 with the use of geospatial auxiliary
variables

Target 2.3 of the 2030 Agenda for Sustainable Devel-
opment aims to double the agricultural productivity and
incomes of small-scale food producers by the end of the
monitoring period. Progress towards the achievement
of this target is monitored by two official SDG indica-
tors, namely indicator 2.3.1 – measuring the average
value of agricultural production per labour unit5 – and
indicator 2.3.2 – estimating the average income from
agricultural production activities of small-scale food
producers. Indicator 2.3.1, which is the object of the
presented case study, provides a measure of average
partial factor productivity of agricultural holdings in a
given year, and is currently disaggregated by the sex of
the holding’s head and the size of the farm (small versus
non-small). In particular, small-scale food producers are
identified through an official definition developed by
the FAO and endorsed by the Inter-Agency and Expert
Group on SDG Indicators in September 2018 [45] in
order to enhance international comparability. Although
disaggregation at the subnational level is not among
the mandatory disaggregation dimensions for reporting
indicators under target 2.3, local estimates of indica-
tors 2.3.1 and 2.3.2 may prove to be way more relevant
than national aggregates for effective monitoring and
decision making at the country level.

The typical data sources used to estimate SDG in-
dicators on small-scale food producers are agricultural
surveys, or household surveys integrated with mod-
ules on households’ agricultural activities. Being based
on sample data, the production of reliable estimates
of these two indicators at granular subnational level
is usually not possible with standard design-based ap-
proaches, and –consequently – indirect estimation ap-
proaches need to be explored. As discussed in Section
3, the literature on small area income estimation is con-

5For the purpose of monitoring indicator 2.3.1, a labour unit is
defined as one day of full time work.
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Table 1
Sampling size information for Mali’s Enquête Agricole de Conjoncture Intégreée aux Conditions de Vie de Ménages (EAC-I) 2017

Region Number of circle Sample size by regio Sample size of small-scale
food producers by regio

Average num. of sampled small-scale
food producers by circle

Kaye 7 431 384 55
Koulikor 7 381 282 40
Sikass 7 368 206 29
Sego 7 436 295 42
Mopt 8 326 221 28
Tombouctou 5 137 126 63
Ga 3 110 101 34
Kida 4 (out of sample – – –
Menaka 4 (out of sample – – –
∗Bamako 1 (Bamako) 22 22 22

siderably wide, even if not necessarily targeting the
estimation of incomes generated through agricultural
production activities. Contrarily, the body of work on
SAE approaches applied to indicators of labour produc-
tivity measures is still very little. In order to fill this gap,
this section explores the application of a FH area-level
model to produce small area estimates of SDG indicator
2.3.1 at the second administrative level (circles) of Mali,
considering the integration of household survey data
with area-level auxiliary information retrieved by multi-
ple trustworthy geospatial information systems. Specif-
ically, the presented SAE application is based on micro-
data from the Enquête Agricole de Conjoncture Inté-
grée aux Conditions de Vie de Ménages (EAC-I) 2017.
The EAC-I is a multi-thematic cross-sectional house-
hold survey, implemented under the World Bank Liv-
ing Standard Measurement Study (LSMS) programme,
based on a nationally representative sample of about
8,390 households and with a specific focus on agricul-
ture. In 2017, the sample units were divided into two
groups, one of 3,813 households that received the full
questionnaire, and one with remaining households that
received a light version of the same questionnaire. For
the purpose of this application, only the group of house-
holds that completed the full questionnaire could been
considered, since this included the necessary variables
to identify small-scale food producers and compute the
targeted indicator. Considering that indicator 2.3.1 has
a disaggregation dimension already embedded in its
definition, i.e. the size of the farm, the sample that could
be used to produce small area estimates for small scale
food producers included only 1,637 households. Ta-
ble 1 provides a summary of the sample size by region
and circle, and the number of out-of-sample circles. In
particular, the entire region of Kidal was left outside of
the sample due to security reasons. In addition, the new
region of Menaka had not been officially announced yet
at the time of the survey and, for this reason, was not
included in the sample.

Table 1 provides information on the sampling size by
region and circles.

4.1. Parameter of interest, selection of SAE approach,
and considered geospatial auxiliary variables

Going back to notation introduced in Section 2,
the average volume of production per labour unit to
be estimated in each small area can be formalized as
Ȳ2.3.1,d =

∑Nd
i=1 y2.3.1,i
Nd

, with y2.3.1,i being the labour
productivity of the ith small-scale food producer in cir-
cle d. The direct HT estimator of indicator 2.3.1 in the
dth small area is ˆ̄Y2.3.1,d =

∑
i∈sd

wiy2.3.1,i∑
i∈sd

wi
, where the

sampling weights are defined as in Section 2.
The accuracy of direct estimates, measured in terms

of the estimated coefficient of variation (CV), was as-
sessed against the same accuracy measure produced
for EBLUP small area estimates obtained with the FH
model in expression (1). This approach was selected in
place of a unit-level method in order to produce a case
study on SAE based on a model of simple implementa-
tion, only requiring access to area-level direct estimates
and auxiliary information. In addition, as seen in Sec-
tion 2.1, the EBLUP area-level estimator obtained from
the model presented in expression (1) can be formulated
as a linear combination of area-level direct and syn-
thetic estimates, giving more weight to the former with
increasing sampling size. Hence, using the FH SAE
model can intuitively be seen as a way of improving
direct estimates through a synthetic component based
on external information. On the other hand, unit-level
estimators, such as the one introduced in expression
2.2, do not take into account direct estimates and – as a
consequence – the sampling design.

As area-level auxiliary variables for the implementa-
tion of the small area estimation model, various geospa-
tial covariates were considered among the vast amount
of publicly available candidates according to their po-
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Table 2
Spatio-temporal resolution and sources of geospatial area-level covariates

Variable name
Spatial

resolution
Temporal
resolution Source

Vol. fraction of coarse fragments 1 × 1 km Static ISRIC: World Soil Information
Nitrogen 1 × 1 km Static
Sand 1 × 1 km Static
Silt 1 × 1 km Static
Clay 1 × 1 km Static
Soil organic carbon 1 × 1 km Static
Minimum temperature 4.5 × 4.5 km Monthly WorldCilm: Historical monthly weather data
Maximum temperature 4.5 × 4.5 km Monthly
Precipitation 4.5 × 4.5 km Monthly
Direct normal irradiation (Long-term yearly average) 0.3 × 0.3 km 1994-2018 Solargis
Diffuse horizontal irradiation (Long-term yearly average) 0.3 × 0.3 km 1994–2018
Air temperature (Long-term yearly average) 1 × 1 km 1999–2018
Vegetation indexes 5.5 × 5.5 km Monthly NASA EarthData
Elevation 1 × 1 km Static CGIAR CSI
Cropland 1 × 1 km Annual Zenodo
Bare ground 1 × 1 km Annual
Built-up 1 × 1 km Annual
Harvested area (major crops) 1 × 1 km Annual MAPSPAM
Production (major crops) 1 × 1 km Annual

Table 3
Results of step-wise regression

Variable name Unit of measure lmg (%)
Production of cotton (Metric ton) 24.0
Direct normal irradiation (kWh/m2) 16.1
Production of wheat (Metric ton) 14.6
Production of rice (Metric ton) 11.7
Production of sorghum (Metric ton) 11.4
Vol. fraction of coarse fragments (%) 9.8
Soil organic carbon (g kg-1) 8.7
Harvested area of rice (hectare) 3.7

tential capability of being good predictors for the av-
erage labour productivity in agriculture. In particular,
covariates included in the first stage of selection were
providing information on the following domains:

– Soil characteristics: volume fraction of coarse
fragments (> 2 mm), content of nitrogen, salt, silt,
clary, and soil organic carbon.

– Weather and climate: minimum and maximum
temperature, precipitation quantity, direct normal
irradiation, diffuse horizontal irradiation, air tem-
perature, vegetation indexes.

– Land cover: elevation, cover fraction of cropland,
bare ground and extent of built up areas.

– Harvested area and production of major crops
(cotton, rice, sorghum, and wheat).

Table 2 presents the spatial and temporal resolution
of each auxiliary variable along with the related source.

Values of considered geospatial predictor were ini-
tially available at the level of the cells of regular grids
of different resolutions (spanning from 1 × 1 km to 5.5
× 5.5 km). Hence, being the basic FH approach based

on auxiliary information referred to the small area of in-
terest, data have been pre-processed in order to produce
aggregates (totals or means depending on the variable)
for the irregular polygons defining Mali’s circles.6

The initial set of potential predictors was then re-
duced adopting a stepwise regression, which was imple-
mented using the area-level direct estimates of indicator
2.3.1 as dependent variable and the geospatial covari-
ates as regressors.7 As result of the step-wise regression,
only 8 auxiliary variables were retained (see Table 3)
according to the Lindeman Merenda and Gold (LMG)
factor, which represents a measure of the relative con-
tribution of each predictor to the overall R square of the
model. It is interesting to notice that most of the covari-
ates considered as important by the selection approach
provide information on either the quantity produced or
the area harvested of Mali’s major crops. Other vari-
ables retained by the stepwise procedure measure the
average direct normal irradiation, the average volume
fraction of coarse fragments, and the average quantity
of organic carbon in the soil.

4.2. Smoothing variance of direct estimates

As seen in Section 2, among the necessary inputs to
produce EBLUP small area estimates there are the esti-

6All pre-processing data manipulations were performed with the
R package “raster”.

7An initial set of variables was eliminated due to their high cor-
relation (above 0.9) with other covariates considered important, in
order to avoid multicollinearity issues.
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Fig. 1. Small area estimates of indicator 2.3.1 in Mali disaggregated by circle (second administrative division).

mated variances of direct estimates σ̂2
ei . Being based on

few sampling observations, these estimates often need
to be stabilized by means of some smoothing technique.
For this case study, the approach based on the GVF with
design effects [14] was adopted. Since the estimated
design effects were far from being constant, the estima-
tion domains were grouped into clusters with the objec-
tive of finding groups with similar design effects and
inter-cluster correlations. The grouping was performed
using the k-means clustering approach, which led to
the identification of three groups with homogeneous
design effects. The smoothed variances were used as
input to the SAE model in place of the original variance
of direct estimates. This process led to the elimination
of the domain of Bamako, which was considered as
out of sample due to an unacceptably high value of the
smoothed variance.

4.3. Results assessment and model validation

The map presented in Fig. 1 displays the obtained
small area estimate for each circle of Mali (including
out of sample circles, which are identified with ticker
borders). Values of indicator 2.3.1 range from 906 West
African CFA Franc per labour unit in the circle of Kayes
to 6387 in Niono, with the highest values of agricultural
labour productivity predicted in northern and central

Fig. 2. Boxplot of direct (left) and small area (right) estimates.

circles. The two boxplots presented in Fig. 2 provide
a first evidence of the fact that the obtained small area
estimates (boxplot on the right) have a much lower
variability compared to direct ones (boxplot on the left).

The four graphs presented in Fig. 3 allow comparing
the accuracy of direct and indirect estimates in terms
of their CVs, and assessing the presence or absence of



888 C.A. Khalil et al. / Integrating surveys with geospatial data through small area estimation to disaggregate SDG indicators

Fig. 3. Accuracy of direct and small area estimates and assessment of their linear relationship.

linear relationship between the two groups of statistics.
In particular, the two boxplots in the top-left quadrant
of Fig. 3 display the distribution of CVs of direct and
model-based estimates and highlights the higher accu-
racy of small area estimates compared to their design-
based counterpart. Indeed, small area estimates’ CVs
falls below the 20% in 3/4 of the cases, while the same
threshold is surpassed by more than the 50% of direct
estimates. Similar evidence is provided by the plot on
the top-right corner, where direct and indirect estimates
are ordered by increasing values of their CV. This pro-
vides a visual indication of the fact that the CV of small
area estimates falls always below the same variabil-
ity measure referred to direct estimates, except in the
very few cases where the domain direct estimates were
already showing a high accuracy (i.e. CV below 15%).

The graph on the bottom-left corner allows assess-
ing the linear relationship between direct and indirect
estimates. Generally speaking, especially in correspon-
dence of domains with sufficient sampling size, direct
and indirect estimates are expected to be correlated,
meaning the two approaches should produce similar
estimation results. In the considered case, the graphs
illustrate a fairly strong linear relationships between
estimates produced with the two approaches, with cor-
relation equal to 0.88.

After assessing estimates accuracy, an important
component of SAE implementation is the validation
of fundamental assumptions underlying the model, i.e.
the normality of residuals and random effects. To that
purpose, Fig. 4 presents the QQ plots of both the error
term and the random effects, which does not provide
any significant proof of deviation from the normality
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Fig. 4. Residuals and random effects of SAE model.

assumption. This was also confirmed by the Shapiro-
Wilk test, which resulted in p-values above 0.05 for
both the residuals and the random effects, leading to
accept the null hypothesis of normality.

5. Conclusions and way forward

Monitoring the implementation of the 2030 Agenda
for Sustainable Development and its overarching pledge
to leave no one behind calls for more disaggregated
data and SDG indicators than what available in most
countries. In this context, sample surveys are the pre-
ferred data source for about the 30% of indicators in
the SDG monitoring framework and can offer valuable
information to measure the social, economic and en-
vironmental dimensions of sustainable development.
However, traditional households and agricultural sur-
veys are usually characterized by sampling sizes that
are either too small to produce precise estimates, or
that do not cover all disaggregation domains of inter-
est. Hence, indirect estimation approaches such as SAE
techniques can represent a valuable tool for NSOs and
international organization to produce timely and granu-
lar disaggregated estimates of SDG indicators, allowing
to contain the cost and complexity otherwise generated
by the increase of sampling sizes. In particular, with the
proliferation of new data sources such as geospatial and
big data information systems, SAE models can be im-

plemented by combining survey data with a vast amount
of auxiliary information available at no or limited cost
and at high frequency. In this respect, the body of litera-
ture and the number of case studies on SAE techniques
applied to SDG Indicators can still be expanded. After
a brief review of the main SAE approaches available
along with their principal domains of application, this
paper presents a case study based on the Fay-Herriot
area-level SAE model to produce subnational estimates
of SDG Indicator 2.3.1 on the average volume of pro-
duction per labour unit obtained by small-scale food
producers. This is done by integrating survey data with
area-level auxiliary information retrieved from multi-
ple geospatial information systems. The presented case
study shows how the small area estimates of indicator
2.3.1 in Mali’s circles reach greater precision compared
to direct estimates. In addition, adopting the consid-
ered indirect estimation approach, estimates for out of
sample areas can also be produced.

The FH area-level model was selected in place of a
unit-level method in order to provide a simple exam-
ple of SAE based on an SDG indicator related to the
agricultural sector development, only requiring access
to area-level direct estimates and auxiliary information.
In addition, using an indirect estimator – such as the
area-level EBLUP – expressed as a linear combination
of area-level direct and synthetic estimates, the SAE
approach can intuitively be interpreted as a way of im-
proving direct estimates through a synthetic component
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based on external information correlated with the phe-
nomenon of interest. Future extensions of this study
will compare the results obtained with the here consid-
ered area-level model with those produced by a unit-
level approach. In this circumstance, both unit-level and
sub-area (e.g. the enumeration area of the cell of a reg-
ular grid) level auxiliary variables will be considered as
regressors.

Acknowledgments

The authors are thankful to Stefano Falorsi, Senior
Statistician and Chief of Unit at the Italian National
Institute of Statistics (ISTAT), who provided relevant
technical advice on models and software tools to im-
prove the case study.

References

[1] Falorsi PD, Donmez A, Khalil CA, Di Candia S, Gennari P.
Alternative Methods for Disaggregating Sustainable Develop-
ment Goal Indicators Using Survey Data. Statistical Journal of
the IAOS. 2022. doi: 10.3233/SJI-210901.

[2] Asian Development Bank. Introduction to Small Area Esti-
mation Techniques. A Practical Guide for National Statistical
Offices. Manila, Philippines; 2020.

[3] Fuller WA. Environmental surveys over time. Journal of Agri-
cultural, Biological and Environmental Statistics. 1999; 4:
331–345.

[4] Rao JNK, Molina I. Small Area Estimation. Second Edition.
Wiley. New York; 2015.

[5] Fay RE, Herriot RA. Estimates of income for small places: An
application of james-stein procedures to census data. Journal of
the American Statistical Association. 1979; 74(366): 269–277.

[6] FAO. Guidelines for data disaggregation of SDG indicators
using survey data. Rome. Italy. 2021.

[7] Giusti C, Masserini L, Pratesi M. Local comparisons of small
area estimates of poverty: An application within the tuscany
region in Italy. Soc Indic Res. 2017; 131: 235–254.

[8] Cassel CM, Sarndal CE, Wretman JH. Some results on gener-
alized difference estimation and generalized regression estima-
tion for finite populations. Biometrika. 1976; 63(3): 615–620.

[9] Särndal CE, Swensson B, Wretman J. Model Assisted Survey
Sampling. Springer-Verlag; 1992.

[10] Kim JK, Rao JNK. Combining data from two independent
surveys: A model-assisted approach. Biometrika. 2012; 99(1):
85–100.

[11] FAO. An indirect estimation approach for disaggregating SDG
Indicators using survey data. A case study based on SDG
Indicator 2.1.2. Rome, Italy. 2022.

[12] Battese GE, Harter RM, Fuller WA. An error-components
model for prediction of county crop areas using survey and
satellite data. Journal of the American Statistical Association.
1988; 83(401): 28–36.

[13] Cochran WG. Sampling Techniques. New York City, USA,
John Wiley & Sons; 1977.

[14] Wolter KM. Introduction to Variance Estimation. Second edi-
tion. New York. Springer-Verlag; 2007.

[15] Harville DA. Comment. Statistical Science. 1991; 6: 35–39.
[16] Morris CN. Parametric empirical bayes inference: Theory and

applications. Journal of the American Statistical Association.
1983b; 78: 47–54.

[17] Browne WJ, Draper D. A comparison of bayesian and
likelihood-based methods for fitting multilevel models.
Bayesian Analysis. 2006; 1: 473–514.

[18] Petrucci A, Salvati N. Small Area Estimation for spatial cor-
relation in watershed erosion assessment. Journal of Agricul-
tural, Biological and Environmental Statistics. 2006; 11(2):
169–182.

[19] Marhuenda Y, Molina I, Morales D. Small area estimation with
spatio-temporal Fay-Herriot models. Computational Statistics
and Data Analysis. 2013; 58: 308–325.

[20] Breidenbach J, Magnussen S, Rahlfa J, Astrupa R. Unit-level
and area-level small area estimation under heteroscedasticity
using digital aerial photogrammetry data. Remote Sensing of
Environment. 2018; 212: 199–211.

[21] Schoch T. Robust unit-level small area estimation: A fast algo-
rithm for large dara sets. Austrian Journal of Statistics. 2012;
41(4): 243–265.

[22] Ybarra LMR, Lohr SL. Small area estimation when auxiliary
information is measured with error. Biometrika. 2012; 95(4):
919–931.

[23] Bedi T, Coudouel A, Simler K. More Than a Pretty Picture:
Using Poverty Maps to Design Better Policies and Interven-
tions. Washington DC. World Bank. 2007.

[24] Elbers C, Lanjouw J, Lanjouw P. Micro-level estimation of
poverty and inequality. Econometrica. 2003; 71: 355–364.

[25] Molina I, Rao JNK. Small area estimation of poverty indica-
tors. The Canadian Journal of Statistics. 2010; 38: 369–385.

[26] You Y, Rao JNK. A pseudo empirical best linear unbiased pre-
diction approach to small area estimation using survey weights.
The Canadian Journal of Statistics. 2002; 30: 431–439.

[27] Eurostat. Guidelines on small area estimation for city statistics
and other functional geographies. European Union. 2019.

[28] Erciulescu AL, Franco C, Lahiri P. Use of administrative
records in small area estimation. Administrative records for
survey methodology. John Wiley & Sons, Inc.; 2021; 231–267.

[29] Brackstone GJ. Small Area Data: Policy Issues and Technical
Challenges. In R. Platek, J.N.K. Rao, C.-E. Sarndall, and M.P.
Singh (Eds.), Small Area Statistics. New York. John Wiley &
Sons, Inc.; 1987. pp. 3–20.

[30] Zhang LC, Giusti C. Small Area Methods and Administrative
Data Integration. In: Analysis of Poverty Data by Small Area
Estimation. John Wiley & Sons, Ltd; 2016.

[31] Marchetti S, Giusti C, Pratesi M, Salvati N, Giovannotti F,
Pedreschi D, Rinzivillo S, Pappalardo L, Gabrielli L. Small
area model-based estimation using big data sources. Journal of
Official Statistics. 2015; 31(2): 263–281.

[32] Porter AT, Holan SH, Wikle CK, Cressie N. Spatial fay-herriot
models for small area estimation with functional covariates.
Spatial Statistics. 2014; 10: 27–42.

[33] Ambrosio Flores L, Iglesias Martínez L. Land cover estimation
in small areas using ground survey and remote sensing. Remote
Sensing of Environment. 2000; 74(2): 240–248.

[34] Singh R, Semwal DP, Rai A, Chhikara RS. Small area estima-
tion of crop yield using remote sensing satellite data. Interna-
tional Journal of Remote Sensing. 2002; 23(1).

[35] Arima S, Bell WR, Datta GS, Franco C, Liseo B. Multivariate
Fay-Herriot Bayesian estimation of small area means under



C.A. Khalil et al. / Integrating surveys with geospatial data through small area estimation to disaggregate SDG indicators 891

functional measurement error model. Journal of the Royal
Statistical Sociery – Series A. 2018; 180(4): 1191–1209.

[36] Casas-Cordero Valencia C, Encina J, Lahiri P. Poverty Map-
ping for chilean Comunas. In: Analysis of Poverty Data by
Small Area Estimation. John Wiley & Sons, Ltd.

[37] Masaki T, Newhouse D, Silwal AR, Bedada A, Engstrom R.
Small Area Estimation of non-monetary poverty with geospa-
tial data. Policy Research Working Paper 9383. Poverty and
Equity Global practice. The World Bank Group. 2020.

[38] Bell WR, Basel WW, Maples JJ. An Overview of the US Cen-
sus Bureau’s Small Area Income and Poverty Estimates Pro-
gram. In: Analysis of Poverty Data by Small Area Estimation.
John Wiley & Sons, Ltd.

[39] Haslett S, Jones G, Isidro M, Sefton A. Small Area Estima-
tion of Food Insecurity and Undernutrition in Nepal, Central
Bureau of Statistics, National Planning Commissions Secre-
tariat, World Food Programme, UNICEF and World Bank,
Kathmandu, Nepal, December. 2014.

[40] Shiferaw YA. Model-based Estimation of Small Area Food
Insecurity Measures in Ethiopia Using the Fay-Herriot EBLUP
Estimator. Statistical Journal of the IAOS. 1 Jan. 2020; 177–
187.

[41] Zhang X, Onufrak S, Holt JB, Croft JB. A multilevel approach
to estimating small area childhood obesity prevalence at the
census block-group level. Preventing Chronic Disease. 2013;
10: 120252.

[42] Schmid T, Bruckschen F, Salvati N, Zbiranski T. Constructing
sociodemographic indicators for national statistical institutes
by using mobile phone data: estimating literacy rates in Sene-
gal. Journal of the Royal Statistical Society. J. R. Statisti. Soc.
A. 2017.

[43] FAO. Using small area estimation for data disaggregation of
SDG indicators – Case study based on SDG Indicator 5.a.1.
Rome. Italy. 2022.

[44] D’Alò M, Di Consiglio L, Falorsi S, Ranalli MG, Solari F. Use
of spatial information in small area models for unemployment
rate estimation at sub-provincial areas in Italy. Journal of the
Indian Society of Agricultural Statistics. 2012; 66(1): 43–53.

[45] Khalil CA, Conforti P, Ergin I, Gennari P. Defining small-scale
food producers to monitor target 2.3 of the 2030 Agenda for
Sustainable Development. Working Paper Series. ESS/17-12.
FAO Statistics Division. 2017.


