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Abstract. Ontology matching establishes correspondences between entities of related ontologies, with applications ranging from
enabling semantic interoperability to supporting ontology and knowledge graph development. Its demand within the Semantic
Web community is on the rise, as the popularity of knowledge graph supporting information systems or artificial intelligence
applications continues to increase.

In this article, we showcase AgreementMakerLight (AML), an ontology matching system in continuous development since
2013, with demonstrated performance over nine editions of the Ontology Alignment Evaluation Initiative (OAEI), and a history
of real-world applications across a variety of domains. We overview AML’s architecture and algorithms, its user interfaces and
functionalities, its performance, and its impact.

AML has participated in more OAEI tracks since 2013 than any other matching system, has a median rank by F-measure
between 1 and 2 across all tracks in every year since 2014, and a rank by run time between 3 and 4. Thus, it offers a combination
of range, quality and efficiency that few matching systems can rival. Moreover, AML’s impact can be gauged by the 263 (non-
self) publications that cite one or more of its papers, among which we count 34 real-world applications.
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1. Introduction

Ontologies are a cornerstone of the Semantic Web, serving as knowledge models for describing data on the web,
namely under knowledge graphs [4]. They are also critical for the realization of the FAIR data principles [27] as they
provide the means for enabling findability, interoperability and reusability of (meta)data. Yet, ontologies represent
particular points of view of their domains, reflecting the concrete application that motivated their development. Thus,
distinct ontologies may overlap in domain but differ substantially in how they model that domain, with respect
to terminology, granularity and/or structure. When related datasets are described using distinct but overlapping
ontologies, we have a semantic interoperability problem, which can be addressed by establishing mappings between
the ontologies [5].
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Ontology matching is the process of finding correspondences between entities of ontologies that overlap in do-
main [5]. This is essential to a full realization of the Semantic Web vision, as it links entities from different on-
tologies while still maintaining the distributed nature of semantic resources. It is also highly relevant for ontology
development, as it is facilitates the common practice of creating explicit mappings to existing ontologies in the form
of cross-references, as well as the reuse and integration of existing ontologies.

Ontology matching can be performed (semi-)automatically through the use of ontology matching systems that
identify potential mappings based on the various features of ontology entities. The annual Ontology Alignment Eval-
uation Initiative (OAEI) [21] serves as a testing ground for these systems, by providing a wide range of benchmarks
and homogeneous testing conditions.

In this article, we showcase AgreementMakerLight (AML), one of the most successful ontology matching sys-
tems with respect to performance in the OAEI as well as use in real-world applications. Originally released in
2013 [9], AML has been in continuous development since, and features numerous new functionalities.

The rest of the article is organized as follows: Section 2 details the key concepts in ontology matching; Section 3
overviews AML’s architecture, algorithms and user interface; Section 4 reviews its evaluation results; Section 5
compiles its impact and its applications to real-world ontology matching problems; and Section 6 concludes the
article with our perspective on the present and future of AML.

2. Background

In its traditional form, the ontology matching process takes as input two ontologies – source and target – and
outputs a set of correspondences between their entities, called an alignment [5]. A correspondence establishes a
directional link between two ontology entities, typically in the form of a 4-tuple 〈es, et , r, c〉, where es and et are
the source and target entities, r is the semantic relation between them, and c represents an optional confidence score
that usually reflects a measure of similarity between the entities. We can distinguish three main sub-categories of
ontology matching: schema matching, where the entities to match are classes and/or properties; instance matching,
where the entities to match are ontology individuals; and instance-to-schema matching where the goal is to match
instance-level data to an ontology schema, namely by assigning individuals to classes. Moreover, we can distinguish
between automatic ontology matching, where the process is carried out by an ontology matching system without
user intervention (though manual validation of the resulting alignment can still take place); interactive matching,
where user input during the matching process contributes to the configuration or decisions of the ontology matching
system; and, evidently, manual matching, where no ontology matching system is involved. Variants of the ontology
matching process include complex matching [22,24,26], where correspondences can feature class and property
expressions and other semantic constructs instead of plain ontology entities, and holistic matching [15], where more
than two input ontologies are matched, but both are beyond the scope of this work.

Ontology matching systems typically employ three types of algorithms: pre-processing algorithms, which load
the input ontologies and extract and process the information that will be used to match them (e.g. by normalizing
labels and synonyms); matching algorithms (or matchers) which exploit the information of the ontologies to generate
candidate correspondences between them, resulting in preliminary alignments; and filtering algorithms (or filters)
which remove candidate correspondences from preliminary alignments according to predefined criteria, to increase
the quality of the final alignment. In some systems, matching and filtering are meshed together.

Matchers can be classified according to the ontology features they rely on: terminological matchers rely on lexical
information (i.e. annotations such as labels and synonyms); structural matchers rely on the relations between entities;
semantic matchers interpret the semantics of the ontologies, usually using a reasoner; and data matchers rely on
attributive information (i.e. the data values that characterize individuals).

Filters can be classified according to the principles that guide them, including: similarity, cardinality, coherence,
conservativity, and locality. Similarity filters simply filter mappings below a given confidence score threshold. Car-
dinality filters aim to ensure or approximate a maximum cardinality in the alignment (i.e., a maximum number of
correspondences per entity), generally 1-to-1. Coherence filters, or alignment repair algorithms, remove mappings
that cause unsatisfiabilities or incoherences when the ontologies are considered together with the alignment [16].
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Conservativily filters exclude correspondences that would lead to novel axioms being inferred when the ontolo-
gies are considered together with the alignment, such as two classes from the source ontology being inferred as
equivalent if in the alignment they are equivalent to the same class of the target ontology [14]. Thus, these filters
encompass strict 1-to-1 cardinality filtering. Finally, locality filters are predicated on the assumption that correspon-
dences should be co-located within the structure of the ontologies, and can be either high level if they look to the top
branches or blocks of the ontology, or low level if they look to the direct vicinity of mappings [14]. High level local-
ity filtering, or blocking, can be performed a priori (i.e., before full matching) in the case of very large ontologies,
to reduce the dimension of the matching space.

Ontology alignments can be stored independently from the ontologies or incorporated into them, and can have
varying degrees of semantic enforcing. The de facto standard is to encode them as external files using the RDF
Alignment format,1 but they can also be encoded in OWL either semantically (e.g. with equivalent class or subclass
axioms) or no semantics (e.g. with annotations such as cross-references).

As an example, let us consider the OAEI’s Anatomy test case: a schema matching task that consists of matching
mouse anatomic structures (represented as classes) from the Mouse Adult Gross Anatomy Ontology to the corre-
sponding human anatomic structures (again represented as classes) from a subset of the NCI Thesaurus [3]. These
ontologies include respectively 2737 and 3298 classes, making this a relatively small matching problem for the
biomedical domain. On the lexical front, each class is annotated with a label and some are also annotated with
synonyms (11% and 29% of the classes, respectively). Structurally, the ontologies include respectively 1807 and
3761 subclass relations between their classes (not counting subclasses of ‘owl:Thing’) but importantly, also respec-
tively 1637 and 1662 ‘part of’ relations (represented as existential restrictions on the ‘part of’ property) denoting
part-whole relations between anatomic structures (e.g. the brain is part of the central nervous system). Thus, while
the terminological component is at the forefront of this matching task, with many anatomic structures having an
equivalent or similar between mouse and human, the structural component is also highly relevant, with the caveat
that both the subclass hierarchy and the ‘part of’ hierarchy should be considered. The manually curated reference
alignment for this test case contains 1516 mappings between 1497 source classes and 1509 target classes, meaning
the cardinality is approximately but not strictly 1-to-1, and therefore the conservativity principle is not observed in
this test case. The coherence principle, however, is observed, as there are no unsatisfiable classes when the ontolo-
gies are merged with the alignment even though they would be possible (since the NCI Thesaurus includes disjoint
class axioms). Figure 1 depicts an excerpt from this test case with examples of typical mappings found by AML.
We will refer to this example throughout Section 3 to illustrate AML’s algorithms.

3. AgreementMakerLight

AML is an ontology matching system that can perform schema and/or instance matching either automatically or
interactively. It can also be used to perform repair of an existing ontology alignment and for alignment validation.
AML is a Java open source project2 under the Apache License 2.0, featuring both a command line interface and a
graphical user interface.

3.1. Core architecture

AML comprises four main modules: data, pre-processing, matching, and filtering (Fig. 2).

3.1.1. Data
The data module comprises AML’s data structures for representing ontology and alignment information. These

are key-value tabular data structures geared to enable O(n) matching, by making use of inverted indexing [7]. The
chief data structures in AML are the following:

1https://moex.gitlabpages.inria.fr/alignapi/format.html, accessed April 14th 2022.
2https://github.com/AgreementMakerLight/AML-Project

https://moex.gitlabpages.inria.fr/alignapi/format.html
https://github.com/AgreementMakerLight/AML-Project
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Fig. 1. A subset of mappings between the Mouse Adult Gross Anatomy Ontology and the NCI thesaurus captured by different AML matching
algorithms.

– The URIMap stores the URIs and corresponding integer indexes assigned by AML to all entities of the two
input ontologies.

– The RelationshipMap encompasses all semantic relations between the entities of the two input ontologies, in-
cluding: subclass and equivalence relations between classes as well as class relations encoded in the ontologies
through either existential or universal property restrictions (such as the part of relations displayed in our exam-
ple), all of which are stored with transitive closure that also contemplates properties declared as transitive and
property chains; disjoint classes; property domains and ranges; subproperty and equivalent property relations
between properties; instance relations between individuals and classes; and relations between individuals.

– The Lexicon contains the lexical data of an ontology by language, including the local name of entities (when
it is not an alphanumeric code), annotations of entities with lexical annotation properties (including estab-
lished properties such as rdf:label, skos:prefLabel, skos:altLabel, oboInOwl:hasExactSynonym, oboInOwl:ha-
sOtherSynonym, as well as any annotation property with local name containing ‘synonym’ or ‘SYN’ except
oboInOwl:hasNarrowSynonym and oboInOwl:hasBroadSynonym which are explicitly excluded), and data val-
ues of individuals for data properties that have a local name or label ending on ‘name’ or ‘title’. All Lexicon
entries are assigned one of five categories and a corresponding weight which reflects the expected precision
of the property, as empirically determined from the analysis and matching of several existing ontologies [20]:
local name > label > exact synonym > other synonym > formula. The latter is used for any lexical entry that
AML determines not to be a word-based name, including chemical formulas, numbers, and short acronyms. In
our example in Fig. 1, each class is identified by its label but the class labeled “temporal lobe” also features
an other synonym “temporal cortex”. Each ontology has its own instance of Lexicon, including background
knowledge ontologies.

– The ValueMap holds all attributes (i.e. data properties and their data values) for the individuals of an ontol-
ogy, other than those placed in the Lexicon (i.e. name and title properties). Unlike the Lexicon, entries in the
ValueMap are not normalized. Each ontology has its own instance of ValueMap.

– The ReferenceMap stores cross references and logical definitions of classes [10], which are common in biomed-
ical ontologies. Each ontology has its own instance of ReferenceMap, including background knowledge on-
tologies.

– The Alignment represents an ontology alignment, storing all correspondences between entities in both a list
(to enable sorting) and a key-valued table (to enable efficient search and reasoning). Each of AML’s matching
algorithms will produce an instance of Alignment, and these can be combined through standard set operations –
union, intersection and difference – as well as by adding only non-conflicting correspondences (i.e. those where
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Fig. 2. AML architecture. The pre-processing module handles the loading of ontologies and extracting all the relevant information to populate
AML’s data structures. It also handles the profiling of the matching task, which configures which matching and filtering algorithms will compose
AML’s matching pipeline, as well as their settings. Question marks indicate conditional steps.

neither entity is already present in the alignment) or only better correspondences (i.e. those with a higher
confidence score than existing correspondences for either of the entities in the correspondence).

3.1.2. Pre-processing
The pre-processing module handles the loading of the input ontologies into memory, their profiling to configure

the matching problem, and when necessary, their translation.
Ontology loading is mediated by the OWL API [12], which can read OWL ontologies in all official serializations,

constructing an object-oriented ontology representation in Java. AML extracts from the latter all relevant infor-
mation for ontology matching, populating its data structures. With respect to lexical information, all entries in the
Lexicon except those detected as formulas (i.e. non-Latin-alphabet-word-based entries) are normalized by removing
most non-word non-number characters, removing all diacritics, introducing spaces when case-changes or non-word
characters are used as word separators, and converting all characters to lower case.

After loading, the transitive closure of class relations in the RelationshipMap is computed via the Semi-Naive
algorithm [2], and two lexicon extender algorithms are applied to enrich the Lexicons of the two ontologies by
generating synonyms for all lexical through the removal of all stop words (listed in AML’s StopList.txt file) and,
separately, of all substrings within parenthesis.

The matching problem is then profiled by computing parameters that enable AML to decide on the matching
strategy to use, including whether the ontologies need to be translated, which type(s) of entities should be matched
and which matching algorithms to employ, and whether to match individuals only of the same class. The profil-
ing parameters computed include: the number of entities in the ontologies, the proportion of entities of each type
(classes, properties and individuals), the language(s) of their Lexicon entries, and classes in common between the
input ontologies (in the case of instance matching problems). Default matching settings can be overridden either by
declaring them in AML’s config.ini file or when running AML’s manual matcher via the graphical user interface.

Finally, when the ontologies to match do not have significant overlap between their language(s), AML per-
forms automatic translation using Microsoft® Translator. The translation is done for each ontology, by querying



CORRECTED  P
ROOF

6 D. Faria et al. / AgreementMakerLight

Microsoft® Translator for each lexical entry (the full entry, rather than word-by-word) and translating it both into
the primary language of the other ontology and into English. To improve performance, AML stores locally all trans-
lation results in dictionary files, and queries the Translator only when no stored translation is found. Users that wish
to make use of this feature of AML are required to register their own instance of Microsoft® Translator and place a
file with their authentication token in AML’s ‘store/’ folder.

3.1.3. Matching
The matching module encompasses AML’s matchers, which leverage the data in AML’s data structures from the

input ontologies and/or external knowledge sources, to produce mappings between ontology entities. Each AML
matcher can be classified in three dimensions: its matching strategy, the entity type(s) which it can match; and the
matching mode(s) it supports. Additionally, matchers can be self-contained or be ensembles of other matchers.

With respect to matching strategy, matchers can be divided into pairwise and hash-based, with the former requir-
ing an explicit pairwise comparison of the entities of the two ontologies and therefore having O(n2) time complexity,
and the latter relying on hash maps with inverted indices to enable entity lookup across ontologies and therefore
having O(n) time complexity. For example, in the Anatomy test case, a pairwise matcher would attempt to match
each of the 2737 mouse anatomy classes against each of the 3298 human anatomy classes by comparing each source
class with each target class. In contrast, a hash-based matcher would only check whether each feature (e.g. lexical
entry) from the source ontology exists in the target ontology. Some hash-based matchers are two-staged, employing
a hash-based strategy to compute a preliminary alignment then refining it using a more sensitive pairwise strategy.
They are still considered hash-based since the pairwise strategy is not employed globally, but only to recompute
the similarity of a restricted set of candidate correspondences. We note also that all AML pairwise matchers are
parallelized and will use all available CPU cores, to mitigate their lower scalability.

Concerning entity types, matchers can apply to classes and/or properties and/or individuals, with each matcher
storing the entity types it can match, and requiring a choice of entity type when called to match two ontologies.
Some matchers are exclusively for a single type while others are transversal.

Matchers can implement one or more of the following matching modes: primary matcher, secondary matcher,
rematcher, and lexicon extender. In primary matcher mode, the matcher performs a complete match, assessing all
entities of the specified type of the two ontologies. In secondary matcher mode, an input alignment is required,
and only entities (of the specified type) that are not in that alignment will be matched. Some matchers match all
non-aligned entities in this mode, whereas others match only entity pairs in the vicinity of the correspondences in
the input alignment, which improves both efficiency and precision. In rematcher mode, an input alignment is also
required, but the matcher will only match the entities (of the specified type) that are already in correspondences
in that alignment, by computing new confidence scores for the correspondence according to the metric employed
by the matcher. This mode is useful for refining mappings, namely in two-stage matching algorithms where a first
efficient global search determines the pairs of entities to match, then a more computationally-intensive algorithm
is used to calculate the similarity of each of pair. In lexicon extender mode, instead of matching the ontologies,
the algorithm extends their lexicons with additional synonyms, which can then be used by other matchers to match
the ontologies. This mode is available for matchers involving background knowledge as a scalable way to enable
inexact matching with string or word similarity algorithms: rather than use these algorithms to compare each input
ontology with the background knowledge source, if the background knowledge source is used to enrich the input
ontologies, the algorithms can be applied only between them, reducing the computational cost. Note that lexicon
extenders are only considered as part of the matching stage when they involve matching the input ontologies against
background knowledge sources; lexicon extenders that rely only on internal ontology information are considered
part of the pre-processing stage (wherein they were listed).

The matchers currently available in AML are the following:

– LexicalMatcher: a hash-based primary matcher that finds string equivalent Lexicon entries between the ontolo-
gies and can be used for any entity type. Correspondences are scored by the product of the lexical weights of
the lexical entities, so label-based correspondences such a “brain” ≡ “brain” in our example will have a higher
score than the correspondences involving synonyms, such as “temporal cortex” ≡ “temporal lobe”. If several
entities of the same type share the same name (e.g. if the label of one class is the synonym of another class of
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the same ontology) correspondences based on that name will receive a penalty to the score proportional to the
number of entities that share the name, since the name is not discriminating.

– SpacelessLexicalMatcher: a matcher that is equivalent to the LexicalMatcher in all aspects except that it re-
moves all spaces from all Lexicon entries (from clones of the Lexicons) in order to compute hash-based string
equivalence ignoring spaces. This enables capturing mappings involving spaced versus agglutinated spelling
variants of the same name, such as “hindbrain” ≡ “hind brain” from our example, which are fairly common,
and would otherwise require computationally more intensive string matching to uncover them.

– WordMatcher: a two-staged hash-based matcher that computes name similarity through a weighted Jaccard
index of the words in the Lexicon entries of ontology entities of any entity type. It can compute similarity by
entity (hash-based), where all Lexicon entries of the entity are treated as a single bag of words for the Jaccard
index, or by name (pairwise), where each lexical entry of the entity is treated as an independent bag of words,
as well as by combining the two and taking the maximum or average. It enables capturing mappings involving
spelling variants with translocated words, such as “spinal cord gray matter” ≡ “grey matter of the spinal cord”
from our example. It can be used as a primary matcher, secondary matcher or rematcher.

– StringMatcher: a pairwise matcher that computes string similarity between the Lexicon entries of ontology
entities of any entity type. Several traditional string similarity metrics are implemented, with the ISub met-
ric [25] being used by default. It enables finding other minor spelling variants, such as “crura cerebri” ≡ “crus
cerebri” from our example. It can be used as a primary matcher, secondary matcher or rematcher, but since it
is a pairwise algorithm, use as a primary matcher will be time intensive for large ontologies. Thus its default
mode for large scale class-matching problems is secondary matcher mode, which is local, meaning it will only
attempt to match classes in the vicinity of classes already matched (contemplating subclass and other relations
between classes); this improves both scalability and precision.

– DirectXRefMatcher: a hash-based primary matcher for classes that finds direct cross-references between the
ontologies (i.e. when the cross-reference in the Reference Map of one ontology is a class in the other ontology)
and shared Reference Map entries (i.e. when classes of the source and target ontologies have a cross-reference
in common to a class of an external ontology, or have the same logical definition).

– MediatingMatcher: a hash-based primary matcher and lexicon extender for classes that relies on an external
background knowledge ontology as a mediator, using the LexicalMatcher to compute correspondences between
the mediator and both the input ontologies, and then matching each source and target class that correspond to
the same mediator class. It enables finding matches that have low lexical similarity by exploiting the termi-
nological knowledge encoded in external ontologies, such as the mapping “aqueduct of sylvius” ≡ “cerebral
aqueduct” from our example, which can be found using the UBERON ontology as a mediator. The minimum
score between the source-mediator correspondence and the mediator-target correspondence is used for the re-
sulting source-target correspondence. In case the mediator class is promiscuous and would result in multiple
source-target correspondences, the highest scoring is chosen if there is a single highest-scoring; or the mediator
class is skipped entirely otherwise.

– MediatingXRefMatcher: a hash-based primary matcher and lexical extender for classes that relies on an external
background knowledge ontology as a mediator by looking for direct cross-references between the mediator
ontology and the two input ontologies, and complementing these with LexicalMatcher correspondences. As
in the case of the MediatingMatcher, correspondences are made between each source and target class that
correspond to the same mediator class. Promiscuous mediator classes, that have cross-references to more than
one class of either of the input ontologies take a penalty to the matching score proportional to the number of
classes they reference.

– WordNetMatcher: a hash-based primary matcher and lexical extender for classes that employs WordNet to
extend (clones of) the Lexicons of the input ontologies with synonyms of each whole lexical entry and then
finds string equivalent entries between the lexicons (analogously to the LexicalMatcher) that involve at least
one WordNet synonym. It can only be used with English language Lexicon entries.

– BackgroundKnowledgeMatcher: a hash-based primary matcher for classes that is an ensemble of background
knowledge algorithms. It tests the usefulness of all available knowledge sources using the MediatingXRef-
Matcher for background knowledge ontologies and the MediatingMatcher for external Lexicon files, as well as
testing the WordNetMatcher, using the mapping gain algorithm described in [8].
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– ThesaurusMatcher: a hash-based primary matcher that extends (clones of) the Lexicons of the input ontologies
using synonyms inferred from lexical analysis of the entries in the Lexicons as detailed in [20] (e.g. infer-
ring that the words ‘stomach’ and ‘gastric’ are synonymous because ‘stomach serosa’ and ‘gastric serosa’ are
Lexicon entries for the same class, and then using this knowledge to generate new synonyms for all entries
that include either ‘stomach’ or ‘gastric’) and then finds string equivalent entries between the ontologies that
include at least one such synonym (analogously to the WordNetMatcher).

– AcronymMatcher: a pairwise matcher that aims to match an acronym and the corresponding full name in
Lexicon entries of any entity type. It can be used as a primary matcher or secondary matcher, but the latter is
recommended since the algorithm is evidently imprecise and should only be attempted in cases where all other
lexical approaches fail to find a correspondence.

– HybridStringMatcher: a pairwise matcher that computes string similarity between Lexicon entries of any entity
type through a hybrid approach combining word overlap (analogously to the WordMatcher) with WordNet
synonyms (word by word, instead of whole name like the WordNetMatcher) and the ISub metric. It can be used
as a primary matcher, secondary matcher or rematcher, but use as a primary matcher will be time intensive for
large ontologies.

– MultiWordMatcher: a pairwise primary matcher based on the Wu-Palmer similarity [28] between two-worded
Lexicon entries where one word is shared and the other is related through WordNet.

– NeighborSimilarityMatcher: a pairwise structural matcher that computes similarity between classes based on
the fraction of their subclasses and superclasses that are mapped in an input alignment. It can be used as a
secondary matcher or rematcher.

– BlockRematcher: a pairwise structural matcher that computes similarity between classes based on the overlap
between blocks (high-level divisions) of the ontologies in an input alignment. It can only be used as a rematcher.

– InstanceBasedClassMatcher: a hash-based primary class matcher that computes similarity between classes
based on the overlap between their instances, measured through a Jaccard index.

– ValueMatcher: a hash-based instance matcher that finds string equivalent literals in the ValueMaps of the two
input ontologies that are values for the same data property or for matching data properties and matches the
individuals that have the matching values. That is to say, it finds individuals that have the same value for the
same or corresponding property. It can be used as a primary or secondary matcher.

– ValueStringMatcher: a pairwise instance matcher that employs the same algorithm as the HybridStringMatcher
to measure string similarity between literals in the ValueMaps of the two input ontologies that are values for the
same data property or for matching data properties and matches the individuals that have the matching values.
That is to say, it finds individuals that have a similar value for the same or corresponding property. It can be
used as a primary or secondary matcher.

– Value2LexiconMatcher: a pairwise instance matcher that also employs the same algorithm as the HybridString-
Matcher but compares ValueMap entries of one ontology with Lexicon entries of the other (in both directions),
to capture cases where one ontology uses annotation properties to describe aspects that another describes with
data properties. It can be used as a primary or secondary matcher.

– ProcessMatcher: a pairwise instance matcher that employs the same algorithm as the HybridStringMatcher in
a preliminary step to identify individuals with similar Lexicon entries, then propagates similarity across the
individuals related to those individuals in an approach analogous to similarity flooding [17]. It was developed
specifically for matching process models, where individuals are linked in a workflow. It can be used only as a
primary matcher.

3.1.4. Filtering
AML’s filtering module encompasses its filters, which are responsible for producing a final high-quality alignment

from the preliminary alignment produced by the matching module. AML includes two modes for filtering: filterer
and flagger. The filterer mode is aimed at automatic use, as the algorithms automatically classify mappings as
incorrect, whereas the flagger mode is intended for manual use, as the problematic mappings are ‘flagged’ which
highlights them in the user interface for user validation. AML’s filters and their principles are the following:

– Selector: a cardinality filter that uses a greedy heuristic to select correspondences sorted by descending con-
fidence score as long as they do not conflict with already selected correspondences, so as to produce a (near)
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Fig. 3. AML’s graphical user interface displaying the alignment panel with alignment validation functionalities. Mappings highlighted in orange
were flagged automatically by AML’s filters.

1-to-1 alignment. In strict mode, no conflicts are allowed; in permissive mode, conflicts where the confidence
score is tied are allowed (i.e. both mappings are returned instead of choosing arbitrarily between them); in
hybrid mode, all mappings above 0.7 confidence score are allowed and below that threshold selection is made
as in permissive mode.

– CardinalitySelector: a cardinality filter that uses the same greedy heuristic as the Selector but allows up to n

conflicts per mapping, where n is specified as an argument, with the goal of producing an n-to-n alignment.
– Repairer: a coherence filter that removes correspondences that would cause unsatisfiable classes using mod-

ularization to compute the latter efficiently and a selection heuristic to determine which correspondences to
remove, as detailed in [23].

– DomainAndRangeFilterer: a coherence filter that removes property correspondences that do not have compat-
ible domain and range declarations (i.e. the domains are not the same, equivalent, or subsumed considering
existing class correspondences).

– ObsoleteFilterer: a deprecation filter that removes correspondences involving obsolete/deprecated classes.

3.2. User interfaces & functionalities

AML features both a command line interface (CLI) and a graphical user interface (GUI) [19], with the latter
being called when the AML jar is executed with no arguments, and the former being called when command line
arguments are given.

The CLI is intended for automatic use of AML, either to match two ontologies or to repair an existing ontology
alignment, with command line options detailed in a README file. Match settings can be configured through a
‘config.ini’ file.

The GUI supports automatic or custom ontology matching, automatic filtering (including repair) of an input
alignment, and manual alignment validation. To support the latter, AML provides two views of the alignment:
a primary list view of the whole alignment, where mappings can be classified by the user with color-coding, as
displayed in Fig. 3; and secondary a mapping panel with a local graph view of the alignment and information about
the mapped classes, including conflicting mappings, which can be accessed by clicking on a mapping. AML’s filters
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can be run in flag mode, which highlights the problem-causing mappings in orange, deferring to the user the decision
on which to remove. Alignments can be saved in either RDF and TSV, including information on the classification
of each correspondence, which allows alignment validation to be carried out over multiple sessions.

With respect to the use of background knowledge, AML automatically checks the ‘store/knowledge’ folder for
available ontologies, so users can place any ontologies they desire to use as background knowledge in this folder.
By default, AML will evaluate all background knowledge sources available using the algorithm described in [8],
selecting only those that are relevant for the matching problem at hand, but the list of sources to test can be manually
configured either via the GUI in custom matching mode or through the ‘config.ini’ file.

4. Performance

AML’s performance in ontology matching can be assessed through its results in the OAEI, where it has entered in
all editions between 2013 and 2021. Its range is evidenced by the fact that, since 2016, when AML was extended with
instance matching capabilities, it participated in more distinct OAEI tracks (14) than any other matching system,
spanning the variety of types and domains summarized in Table 1. It is rivaled in OAEI participation and range only
by LogMap [13] which was the only other system that entered in all OAEI editions in this period, and participated
in 13 distinct tracks. No other matching system participated in more than 8 distinct tracks.

With respect to the quality of its results, as summarized in Table 2, AML had a median rank by F-measure across
all OAEI tasks it participated in between 1 and 2 since 2014. Concerning efficiency, it had a median rank by run
time between 3 and 4 in all OAEI editions. These results highlight that AML is an all-purpose ontology matching
system, capable of tackling a variety of tasks efficiently and with high quality, again rivaled only by LogMap [13].

Table 1

Recurring OAEI tracks in which AML participated, classified by type and domain

Track Type Domain Participations

Anatomy Schema matching Biomedical 2013–2021 (9)

Large biomedical ontologies Schema matching Biomedical 2013–2021 (9)

Disease & phenotype Schema matching Biomedical 2016–2021 (6)

Biodiversity & ecology Schema matching Biomedical 2018–2021 (4)

Conference Schema matching Conferences 2013–2021 (9)

Interactive matching Interactive schema matching Multiple 2013–2021 (9)

Multifarm Multilingual schema matching Conferences 2013–2021 (9)

Library Multilingual thesauri matching Libraries 2013–2014 (2)

Benchmark Schema matching Multiple 2013–2016 (4)

Process model Instance matching Process models 2016–2017 (2)

DOREMUS Instance matching Music 2016–2017 (2)

SPIMBENCH Instance matching Creative works 2017–2021 (5)

Link discovery Link discovery & spatial matching Path coordinates 2017–2021 (5)

Knowledge graph Schema & instance matching Fandom wikis 2018–2021 (4)

Table 2

AML’s OAEI participation and results across the years

2013 2014 2015 2016 2017 2018 2019 2020 2021

Total tracks 7/8 7/8 6/7 9/9 9/9 11/11 10/11 10/12 10/13

Total matching tasks 12 14 12 25 20 22 21 21 19

New tasks - 2 1 14 4 6 0 2 0

Median F-measure 0.73 0.75 0.71 0.74 0.83 0.76 0.73 0.78 0.78

Median rank by F-measure 4 1 1 2 1 1.5 1 1.5 1

Median rank by run time 3 3.5 3.5 3 3 4 4 4 4
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Fig. 4. Domain distribution of publications citing AML.

5. Impact and use

AML has also been one of the ontology matching systems with the greatest impact in research and beyond, as
evidenced by the number of citations of its previous publications as well as by the several applications for which it
was used.

We classified the 263 unique publications that cite one or more of AML’s previous publications3 in three dimen-
sions: by type of publication, by type of citation, and by application domain. With respect to type of publication,
we count 208 research articles, 40 theses, 7 review articles, 7 OAEI system papers and 1 book chapter. Regarding
the type of citation, 123 publications merely mention AML, usually as part of the state of the art in ontology match-
ing, 102 publications use AML as a benchmark against which a proposed algorithm is compared, 4 publications
propose extensions to AML (external to the AML team) and 34 publications apply AML in real-world ontology
matching problems. While 141 publications are domain agnostic, 122 focus on a specific application domain, with
the distribution displayed in Fig. 4.

Many of the application domains under which AML is cited or applied reflect its successes in the OAEI, including
the two most frequent domains, the life & health sciences and translation & cross-lingual matching, but also Business
Processes and the Geospatial domain. Others, however, are domains in which we had never tested AML, including
the Internet of Things (IoT) & Smart Cities, Humanities & Society, Information Technology (IT) & Electronics, and
Air Traffic Management (ATM) & Aeronautics.

Among real-world problems to which AML was applied, we highlight the integration of agricultural thesauri
under the Global Agricultural Concept Space for the Food and Agricultural Organization of the United Nations
(FAO) [1], the creation of a knowledge graph for ecotoxicology risk assessment [18], and the alignment of ATM
ontologies from the Single European Sky ATM Research (SESAR) and the National Aeronautics and Space Admin-
istration (NASA) [11].

Last but not least, further evidence of the impact and use of AML comes from the statistics of its GitHub reposi-
tory, which was forked 31 times and starred 38 times.4

6. Conclusions and future work

AML is one of the most successful ontology matching systems, both in terms of its results in the OAEI and in
terms of its impact in real-world applications. It evolved from a matching system focusing mainly on the biomedical

3Citations were collected through Google Scholar on April 14th 2022, with self-citations excluded.
4Statistics collected on April 14th 2022.
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domain to an all-purpose system with wide applicability, thanks to both a continuous development effort and a core
architecture designed with extensibility in mind.

The future development of AML will contemplate new challenges arising in ontology matching, as we endeavor
to keep it on the forefront of the field.

As the Semantic Web evolves, we are witnessing the proliferation of huge knowledge graphs supporting online
information systems as well as AI applications, which will increase demand for ontology matching, both to support
the construction of knowledge graphs from existing data and ontologies, and to enable interoperability between in-
formation systems relying on related knowledge graphs. These applications place additional emphasis on scalability,
and may require taking ontology matching beyond the pairwise paradigm, and into holistic matching.

But by far the greatest standing challenge in ontology matching is complex matching, which requires identifying
complex semantic relations between ontology entities, involving expressions such as property restrictions. Such
mappings offer a solution to the problem of reconciling logical coherence with alignment completeness in ontology
matching, yet detecting them automatically with reasonable accuracy is still beyond the state of the art, as our
preliminary efforts have revealed [6].
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