
Semantic Web 14 (2023) 491–526 491
DOI 10.3233/SW-222903
IOS Press

Characteristic sets profile features: Estimation
and application to SPARQL query planning
Lars Heling a,* and Maribel Acosta b

a AIFB, Karlsruhe Institute of Technology, Germany
E-mail: lars.heling@stardog.com
b Faculty of Computer Science, Ruhr University Bochum, Germany
E-mail: maribel.acosta@rub.de

Editors: Sabrina Kirrane, Vienna University of Economics and Business, Austria; Axel-Cyrille Ngonga Ngomo, Paderborn University,
Germany
Solicited reviews: Ruben Taelman, IDLab, Ghent University, Belgium; Olaf Hartig, Linköping University, Sweeden; Juan Reutter, Pontificia
Universidad Católica de Chile, Chile; one anonymous reviewer

Abstract. RDF dataset profiling is the task of extracting a formal representation of a dataset’s features. Such features may cover
various aspects of the RDF dataset ranging from information on licensing and provenance to statistical descriptors of the data
distribution and its semantics. In this work, we focus on the characteristics sets profile features that capture both structural and
semantic information of an RDF dataset, making them a valuable resource for different downstream applications. While previous
research demonstrated the benefits of characteristic sets in centralized and federated query processing, access to these fine-grained
statistics is taken for granted. However, especially in federated query processing, computing this profile feature is challenging as
it can be difficult and/or costly to access and process the entire data from all federation members. We address this shortcoming
by introducing the concept of a profile feature estimation and propose a sampling-based approach to generate estimations for the
characteristic sets profile feature. In addition, we showcase the applicability of these feature estimations in federated querying by
proposing a query planning approach that is specifically designed to leverage these feature estimations. In our first experimental
study, we intrinsically evaluate our approach on the representativeness of the feature estimation. The results show that even
small samples of just 0.5% of the original graph’s entities allow for estimating both structural and statistical properties of the
characteristic sets profile features. Our second experimental study extrinsically evaluates the estimations by investigating their
applicability in our query planner using the well-known FedBench benchmark. The results of the experiments show that the
estimated profile features allow for obtaining efficient query plans.

Keywords: RDF dataset profiling, sampling, query processing, federations

1. Introduction

In recent years, the amount of information published as Linked Open Data has steadily increased as new RDF
datasets are published and existing datasets are growing.1 Simultaneously, Semantic Web technologies are more
and more used in companies to integrate data from heterogeneous sources using Knowledge Graphs and Semantic
Data Lakes [22,30,31]. In order to support applications that leverage these large corpora of semantic data, we

*Corresponding author. E-mail: lars.heling@stardog.com.
1https://lod-cloud.net/

1570-0844 © 2023 – The authors. Published by IOS Press. This is an Open Access article distributed under the terms of the
Creative Commons Attribution License (CC BY 4.0).

mailto:lars.heling@stardog.com
mailto:maribel.acosta@rub.de
mailto:lars.heling@stardog.com
https://lod-cloud.net/
https://creativecommons.org/licenses/by/4.0/

492 L. Heling and M. Acosta / Characteristic sets profile features: Estimation and application to SPARQL query planning

require means to extract high-level information on the content, the quality, and the structure of the data provided
by these sources. To this end, a variety of approaches have been proposed to summarize semantic graphs [9],
assess their quality [43] and extract various features in dataset profiles [13]. Similar to the field of databases, where
“Data profiling refers to the activity of creating small but informative summaries of a database” [19], RDF dataset
profiling aims to formally represent a set of features of an RDF dataset to aid downstream tasks [12]. RDF dataset
profiles typically consist of several profile features that capture information that ranges from licensing, provenance to
statistical characteristics of the dataset [13]. The cost to acquire statistical features depend on their granularity as well
as the size of and the means to access the RDF dataset. Dataset profiling techniques typically assume local access
to the entire datasets such that the features can be computed more efficiently. Upon creation, RDF dataset profiles
support applications such as entity linking, entity retrieval, distributed search and (federated) query processing [13].
In particular, centralized and federated query engines rely on fine-grained dataset profiles to obtain efficient query
plans [4,10,15,26,27,32,35,36]. For instance, characteristic sets are often used to estimate join cardinalities in query
plan optimization [25–27,32].

In this work, we focus on the Characteristic Sets Profile Feature (CSPF) [17], which is a statistical feature
of RDF datasets that includes the characteristic sets, their occurrence distribution, and the multiplicity of their
predicates. We focus on this particular profile features as an informative statistical characterization of RDF datasets
due to the following reasons. First, CSPFs implicitly captures structural features of the data, such as the mean
out-degree, distinct number of subjects, and the set of predicates including their counts. Second, characteristic
sets implicitly reflect the schema of an RDF dataset as they capture semantic information on its entities. Finally,
CSPFs are well suited to be leveraged by (decentralized) query planning approaches for cardinality estimations and
other downstream tasks as they provide insights into the predicate co-occurrence. While the CSPFs provide rich
information that is beneficial for various applications, obtaining the profile feature can be a challenging task. For
instance, the federated query planning approach Odyssey [26] exploits information on the characteristic sets and
how they are linked across datasets to estimate intermediate results when optimizing query plans. Yet, especially
in federated query processing, it can be difficult and/or costly to access the entire RDF datasets of all members in
the federation and, subsequently, compute these fine-grained statistics. First, data dumps are not always available in
federated querying as data publisher may choose different Linked Data Fragments (LDFs) to publish their data [40].
For example, the datasets may only be partially accessed via SPARQL endpoints or Triple Pattern Fragment servers.
Moreover, in the case of public resources, the statistics need to be obtained while respecting the fair use policies of
the publisher [39]. Second, to build the characteristic sets for an RDF dataset requires scanning the entire dataset.
This computational effort can be an additional restriction, especially for very large and evolving datasets, such as
DBpedia2 or Wikidata3 with more than a billion triples that are updated frequently

Addressing these limitations, we propose an approach that estimates accurate statistical profile features based on
characteristic sets and that relies only on a small sample of the original dataset. Our sample-based approach allevi-
ates the necessity of having access to the entire dataset and also reduces the cost of computing the profile feature.
Given an RDF dataset, our approach employs an entity-enteric sampling method and computes the characteristic
sets of the entities to build the CSPF of the sample. Then, we apply a projection function to extrapolate the statistics
observed in the sample to estimate the original dataset’s CSPF. As the statistics of the characteristic sets are sen-
sitive to the structure of the datasets and the sample, this extrapolation step can be challenging. Take for example
the following characteristic sets S1, S2 and S3 from the LinkedMDB datasets and the number of associated subjects
(count) in Table 1.4

We observe that the characteristic set S1 differs only by a single predicate from both S2 and S3. However, the count
values differ significantly as S1 occurs almost 2000 times more often than S2 but only about 14 times more often
than S3. The example shows the challenge of estimating the count statistic accurately, as the semi-structured nature
of RDF datasets can lead to situations where small differences between characteristic sets result in large changes in
their occurrence. Therefore, we investigate which sampling and extrapolation approaches are less prone to potential
estimation errors. In addition, we want to understand to which extent the estimated CSPF can be leveraged in

2https://www.dbpedia.org/
3https://www.wikidata.org/
4In the remainder of this work, we assume prefixes as given in https://prefix.cc.

https://www.dbpedia.org/
https://www.wikidata.org/
https://prefix.cc

L. Heling and M. Acosta / Characteristic sets profile features: Estimation and application to SPARQL query planning 493

Table 1

LinkedMDB: Example characteristic sets

Characteristic Set count

S1 {owl:sameAs,dbp:hasPhotoCollection} 9838

S2 {owl:sameAs,dbp:hasPhotoCollection,lmdb:relatedBook} 5

S3 {owl:sameAs,dbp:hasPhotoCollection,foaf:page} 697

federated query processing. We, therefore, propose a federated query planning approach that is specifically designed
to make use of estimated CSPF to obtain query plans. To this end, we investigate the following research questions.

RQ 1 Which steps are sufficient for accurately estimating RDF dataset profile features? First, we want to investi-
gate how we can estimate profile features without requiring access to the entire dataset. In particular, we study which
sampling methods are suitable to obtain a representative sample for the specific characteristic sets profile feature.
Based on samples, we investigate how the information captured in the sample can be extrapolated to the original
dataset. The goal of this research question is, therefore, to understand the impact of different sampling methods,
sample sizes, and extrapolation techniques on the profile feature estimation.

RQ 2 How can we assess the effectiveness of estimated profile features? Given the original profile feature and
an estimation, we need means to assess the accuracy of the estimation. As we focus on the characteristic sets
profile features that capture various characteristics of the dataset, we investigate how the representativeness of an
estimation with respect to those characteristics can be measured. Moreover, with this question, we also want to
understand which characteristics are more difficult to estimate and how the structure of the original dataset impacts
the estimations.

RQ 3 How can we leverage estimated profile features to support downstream applications such as federated query
processing? This question aims to investigate how estimated profile features still support applications that rely on
these features. As we focus on the characteristic sets profile feature, we consider applications that leverage this
information and where the computation of the complete statistics may not be feasible. Therefore, we investigate
how a federated query planning approach can leverage the estimated profile features. Specifically, we study how
source selection, query decomposition, and join ordering is affected by different estimations. Finally, we want to
understand to which extent the effectiveness of the estimation (c.f. RQ 2) is reflected in the performance of the query
plans.

Contributions This paper builds on a previous work of ours [17], which focuses on a sampling-based approach for
estimating characteristic sets for RDF dataset profiles. We extend this work regarding two major aspects. First, we
expand our experimental evaluation about CSPF estimations by studying additional datasets and providing a more
fine-grained analysis of the results. Second, we address a central aspect of the profile feature estimations, which is
their application in downstream tasks. Particularly, we propose a novel federated query planning approach based on
the profile feature estimations. Finally, we evaluate this approach in an experimental study. In summary, the novel
contributions of this work are as follows.

C 1 An extensive experimental study of our Characteristic Sets Profile Feature estimation approach on eight new
datasets,

C 2 a fine-grained analysis of the results to understand the effectiveness of our CSPF estimation approach and its
components,

C 3 a new estimations-based query planner to showcase the application of the estimations in federated query
processing,

C 4 an experimental study of our query planner on the well-known FedBench benchmark, and
C 5 a detailed evaluation of the results to understand the benefits and limitations of the query planner.

Structure of this paper The remainder of this work is organized as follows. In Section 2, we introduce RDF
dataset profiling and present our problem definition for estimating profile features. We define characteristic sets
profile features and present our sampling-based approach to estimate them in Section 3. In Section 4, we present an
application of the estimated profile features in federated query planning. We evaluate our profile feature estimation

494 L. Heling and M. Acosta / Characteristic sets profile features: Estimation and application to SPARQL query planning

and estimation-based query approaches in Section 5. Related work on statistical profiling, graph sampling, and
federated query processing is discussed in Section 6. Finally, we conclude our work with remarks on future work in
Section 7.

2. RDF dataset profiling

The Resource Description Framework (RDF) is a graph-based data model. The atomic elements in RDF are
triples, which are statements represented as 3-tuple of RDF terms: t = (s, p, o) ∈ (I ∪ B) × I × (I ∪ B ∪ L)

with s the subject, p the predicate, and o the object of the triple. Each term of an RDF triple comes from one of the
pairwise disjoint sets of Internationalized Resource Identifiers (IRIs) I , blank nodes B, or literals L. A set of triples
allows for constructing a directed labeled graph, where the triples’ subjects and objects are nodes connected by the
predicates as directed labeled edges. A set of RDF triples is called an RDF graph G and we denote the universe of
RDF graphs by G . The set of subjects in an RDF graph is often referred to as its entities. According to the RDF 1.1
specification of the W3C,5 a collection of RDF graphs is called an RDF dataset where all but one graph are named
graphs associated with a graph name (IRI or blank node), and the unnamed default graph. For the sake of simplicity,
in the remainder of this work, we consider, RDF datasets with just the default graph and use the terms RDF graph
and RDF dataset interchangeably.

2.1. Profile features

RDF datasets are summarized in RDF dataset profiles that consist of profile features describing the characteristics
and entities of the dataset. In the area of traditional relational database theory, a statistical profile is defined as a
“complex object composed of quantitative descriptors” that “summarizes the instances of a database” [23]. These
quantitative descriptors can cover different characteristics of the instances, for example:

– central tendency (e.g., mean),
– dispersion, (e.g., coefficient of variation),
– size (e.g., number of instances), and
– frequency distribution (e.g., uniformity).

The specific characteristics covered in such profiles depend on the downstream application, for example, the sta-
tistical features required by a query optimizer that uses the profile to devise efficient query plans. Similar to relational
databases, statistic profiles are also commonly used for a variety of applications in the realm of RDF datasets. These
applications range from centralized RDF data management solutions [28] and RDF graph compression [14] to query
optimization for both centralized and federated query processing [16,24,26]. For instance, a common application of
such statistical profiles in query optimization is the estimation of join cardinalities for subqueries.

The terminology for such statistical profiles varies according to their application [9,13,43]. In this work, we follow
the terminology introduced by Ellefi et al. [13]: An RDF dataset profile is a formal representation of a set of dataset
profile features. Moreover, we focus on statistical profile features and define them as follows.

Definition 2.1 (Profile Feature [17]). Given an RDF graph G, a profile feature F(G) is defined as a characteristic
describing a statistical feature F of graph G.

As previously mentioned, computing these profile features can be challenging because accessing and processing
the entire datasets is difficult and/or costly. Therefore, we investigate profile feature estimation without requiring
access to the complete RDF graph.

5https://www.w3.org/TR/rdf11-datasets/

https://www.w3.org/TR/rdf11-datasets/

L. Heling and M. Acosta / Characteristic sets profile features: Estimation and application to SPARQL query planning 495

2.2. Profile feature estimation

Addressing the limitation of requiring access to the entire RDF dataset for computing statistical profile features,
we propose the concept of Profile Feature Estimation. Profile feature estimations aim to estimate a statistical profile
features of RDF datasets using a subset of the data only. The goal is to generate a profile feature estimation that is as
similar as possible to the original profile feature while requiring access to a subset of the dataset only. In particular,
we propose an approach that relies on a sample from the original RDF graph in combination with a projection
function to extrapolate the true profile feature. Consequently, we define a profile feature estimation as follows.

Definition 2.2 (Profile Feature Estimation [17]). Given an RDF graph G, a projection function φ, a subgraph
H ⊂ G, and the profile feature F(·), a profile feature estimation F̂ (·) for G is defined as

F̂ (G) := φ
(
F(H)

)

In an ideal situation, the estimated profile feature is identical to the true original profile feature (computed over
the complete RDF graph). However, the profile feature to be estimated and the properties of both the subgraph H

and the projection function φ may affect the differences between the true and the estimated feature. For example,
given a larger subgraph, the estimation might be more accurate than for a smaller subgraph, as the larger subgraph
potentially covers more characteristics of the original graph. The problem is finding an estimation for the profile
feature which maximizes the similarity to the profile feature of the original RDF graph. To this aim, we introduce the
concept of a similarity function δ that maps two profile features to a similarity value. The profile feature estimation
problem is given as finding a profile feature estimation that maximizes the similarity to the original profile feature.

Definition 2.3 (Profile Feature Estimation Problem [17]). Given an RDF graph G and a profile feature F(·), the
problem of profile feature estimation is defined as follows. Determine a profile feature estimation F̂ (·), such that
F̂ (G) = φ(F (H)) and

max
F̂∈F̂

δ
(
F(G), F̂ (G)

)

with |H | � |G|, F̂ the universe of profile feature estimations, and δ a function assessing the similarity of two
profile features.

In order to maximize the similarity, the sampling algorithm for obtaining H and the projection function φ need
to be chosen appropriately. The particular method to measure the similarity δ depends on the actual profile feature
to be estimated with potentially several similarity functions for the same profile feature. Take for example a profile
feature F(G) that counts all literal values in an RDF dataset and F̂ (G) estimating the count based on a sample of G.
The similarity to determine how well the count is estimated could be calculated as the absolute difference or the
relative difference between the true count and the estimated count. In other words, the similarity function measures
the representativeness of the profile feature estimation F̂ with respect to F . In network theory, the representativeness
of a sample is commonly assessed by how well it captures the structural properties of the original graph [5,21,33].
As we focus on a more comprehensive profile feature based on the characteristic sets – which capture structural
and semantic features of the graph’s entities– considering only structural features of the sample and the graph may
not be sufficient to assess how representative a sample is and, thus, a feature estimation for an RDF graph is. Note
that in the remainder of this work, we only focus on this specific profile feature and investigate how the estimated
profile feature can be leveraged in federated query processing. Nonetheless, the presented approach can be adapted
and applied to other statistical profile features potentially supporting other applications as well.

3. Characteristic sets profile feature estimation

We now present our sampling-based approach to estimate profile features based on the characteristics sets of
RDF graphs. In this section, we first introduce the concept of characteristics sets and define the corresponding

496 L. Heling and M. Acosta / Characteristic sets profile features: Estimation and application to SPARQL query planning

Characteristic Sets Profile Feature. Thereafter, we present our approach that combines RDF graph sampling with
projection functions to estimate the Characteristic Sets Profile Feature. Finally, we propose structural and statistical
similarity measures to assess the representativeness of these estimations.

3.1. Characteristic sets profile feature

The concept of characteristic sets for RDF graphs was introduced by Neumann et al. [27]. In their work, the
authors used characteristics sets for query planning as they capture the co-occurrences of predicates in RDF graphs.
The idea of characteristic sets is describing semantically similar entities by grouping them according to the set of
predicates the entities share. Furthermore, the number of entities in each group are counted as well as the average us-
age of their predicates. As a result, the characteristic sets capture both statistical information on the data distribution
as well as semantic information on the entities in an RDF graph.

Definition 3.1 (Characteristic Sets [27]). The characteristic set of an entity s in an RDF graph G is given by:
SC(s) := {p | ∃o : (s, p, o) ∈ G}. Furthermore, for a given RDF graph G, the set of characteristic sets is given by
SC(G) := {SC(s) | ∃p, o : (s, p, o) ∈ G}

In an RDF graph, the statistical information determined for the characteristic sets typically includes the number
of occurrences (count) of a given characteristic set as well as the multiplicities of the predicates within each char-
acteristic set. These statistics are used in both centralized triple stores and federated query engines because they
allow to determine exact join cardinalities for specific DISTINCT queries and to compute cardinality estimations for
non-distinct queries [16,24,26,27]. Similar to Neumann et al. [27], we define the number of occurrences count(S)

of a characteristic set S = {p1, p2, . . . } in an RDF graph G as

∣∣{s | ∃p, o : (s, p, o) ∈ G ∧ SC(s) = S
}∣∣ (1)

In addition, in this work, we focus on the occurrences of predicates in characteristic sets by considering their
mean multiplicity. The mean multiplicity multiplicity(pi, S) for pi in S is given by

|{(s, pi, o) | (s, pi, o) ∈ G ∧ SC(s) = S}|
count(S)

(2)

In other words, for a given characteristic set, the multiplicity measures how often each predicate occurs on av-
erage. Combining the count and mean multiplicity statistics of a characteristic set, we can compute the number of
triples that are covered by it. The relative coverage coverage(S,G) of a characteristic set S ∈ SC(G) in an RDF
graph G is computed as

∑
p∈S multiplicity(p, S) · count(S)

|G| (3)

For example, consider the characteristic set S1 = {lmdb:hasPhotoCollection, owl:sameAs} from our introduc-
tory example taken from LinkedMDB with

– count(S1) = 9838,
– multiplicity(lmdb:hasPhotoCollection, S1) = 1,
– multiplicity(owl:sameAs, S1) = 2,
– coverage(S1, LinkedMDB) = 0.5%.

The statistics indicate that 9838 entities in the LinkedMDB graph belong to S1 and each of those entities has ex-
actly one lmdb:hasPhotoCollection and on average two owl:sameAs predicates. Moreover, the coverage indicates
that 0.5% of the triples in LinkedMDB belong to entities with S1 as their characteristic set.

Finally, we introduce the notion of exclusive characteristic sets. An exclusive characteristic set occurs only once
in an RDF graph and is defined as the following.

L. Heling and M. Acosta / Characteristic sets profile features: Estimation and application to SPARQL query planning 497

Fig. 1. Overview of the approach: a sample H is taken from the original graph G. The profile feature F(G) is created and projected to obtain the
profile feature estimation φ(F (H)) = F̂ (G). . . (based on [17]).

Definition 3.2 (Exclusive Characteristic Sets [17]). Given the characteristic sets SC(G) of graph G. The set of
exclusive characteristic sets S 1 is defined as

S 1 := {
S ∈ SC(G) | count(S) = 1

}

For example, in the LinkedMDB graph there exists only one entity with the predicates lmdb:relatedBook and
lmdb:language. Therefore, the characteristics set S4 = {lmdb:relatedBook, lmdb:language} is an exclusive char-
acteristic set.

Based on these definitions, the statistical aspects of characteristics sets can be combined to formally define the
characteristic sets profile feature (CSPF) as follows.

Definition 3.3 (Characteristic Sets Profile Feature (CSPF) [17]). Given a RDF graph G, the characteristic sets
profile feature F(G) is a 3-tuple (S , c,m) with:

– S = SC(G), the set of characteristic sets in G,
– c : S → N, a function for the count as defined in Equation (1), and
– m : I × S → R

+, a function for the multiplicity as defined in Equation (2).

We now present the individual steps of our approach for estimating the CSPF of a given RDF graph.

Overview of the approach We propose a sampling-based approach that is shown in Fig. 1. Given a graph G, the
approach generates a sample H ⊂ G using an RDF graph sampling method. We present the sampling methods in
Section 3.2. Thereafter, the approach computes the CSPF F(H) for the sample H (Section 3.3). Finally, a projection
function φ is applied to extrapolate the feature observed in H to an estimation φ(F (H)) for F(G) of the original
graph. We propose different projection functions tailored to the CSPF in Section 3.4. Moreover, to assess the rep-
resentativeness of the feature estimations, we propose a selection of structural and statistical similarity measures in
Section 3.6.

3.2. Graph sampling

The first step of our approach is obtaining a representative sample of the original RDF graph that provides a
suitable foundation for estimating the profile feature. Before collecting data from a population in a sample, an ap-
propriate sampling method needs to be chosen. Accordingly, we focus on sampling methods suitable for estimating
the CSPF. Since characteristic sets capture the attributes of the entities in an RDF graph, we focus on entity-centered
sampling methods in the following. Each entity (i.e., subject) is associated with exactly one characteristic set, thus,
we define the population to be sampled from as the set of entities in the given graph: E := {s | (s, p, o) ∈ G}.
The input of the sampling method is an RDF graph G and a sample size n′ and its output is a subgraph H induced
by n′ entities of G. Let E′ ⊂ E be the set of sampled entities with |E′| = n′, then the sample H is given as
H := {(s, p, o) | (s, p, o) ∈ G ∧ s ∈ E′}. We present three entity-centered sampling methods differing in the prob-
abilities of an entity being sampled. Thus, they allow for exploring different parts of the search space of possible
characteristic sets during sampling.

498 L. Heling and M. Acosta / Characteristic sets profile features: Estimation and application to SPARQL query planning

Unweighted sampling The unweighted sampling method selects n′ entities with equal probability from the popu-
lation E. Thus, the probability Pr(e) of e ∈ E being a part of the sample is independent of any other property of the
entity with

Pr(e) = 1

|E| .

Weighted sampling The weighted sampling method is a biased sampling method, where the probability of an entity
to be part of the sample is proportional to its out-degree. As a result, the more central an entity is in the graph with
respect to its out-degree centrality [29], the more likely it is part of the sample. In this way, entities that appear in
many triples of the graph in the subject position, have a higher probability of being selected. The out-degree of each
entity e given by deg+(e) := |{(e, p, o) | (e, p, o) ∈ G}|. The probability Pr(e) of e ∈ E being sampled is given as

Pr(e) = deg+(e)

|G| .

Hybrid sampling The hybrid sampling method combines the previous two sampling methods. From the original
graph, β · n′ entities are selected using the unweighted method and (1 − β) · n′ entities using the weighted method.
Accordingly, the probability Pr(e) of entity e being selected is given as

Pr(e) = β · 1

|E| + (1 − β) · deg+(e)

|G| , β ∈ [0, 1].

The β parameter allows for favoring either the weighted or the unweighted method.

3.3. Profile feature creation

After obtaining a subgraph H using a sampling method, the characteristic sets profile feature F(H) is computed.
Similar to [24], we compute F(H) by first sorting the triples in H by subjects and then iterating all triples. While
iterating the triples, we determine the characteristic set for each subject in H and compute the count and multiplicity
values for them. For details, please refer to the Appendix.

3.4. Profile feature projection

Given the profile feature F(H), the goal of a projection function is to extrapolate the statistical properties observed
in sample H to the target population, which is the original graph G. Given the profile feature F(H) = (S , c,m), the
projection profile feature is applied to F(H) to obtain an estimation of the original profile feature F̂ (G) = φ(F (H)).
In the case of the characteristic sets profile feature (CSPF), the projection function aims to extrapolate the counts c

of the observed characteristic sets to estimate the counts in the original graph. The multiplicity statistic m does not
need to be extrapolated by the projection function, as it is a relative measure that captures the mean occurrence of a
predicate in a characteristic set.

We now present two classes of projection functions for the count values of the characteristic sets in the sample.
The first class, which we denote basic projection functions, only relies on information contained within the sample
and the size of the original graph. The second class, which we denote as statistics-enhanced projection functions
also relies on high-level information on the original dataset in addition to the information contained in the sample.

Basic projection function The basic projection function extrapolates the count values for the given characteristic
sets profile feature F(H) based on the relative size of the sample. The relative sample size rt is given as the ratio of
the number of triples in the original graphs and in the sample rt := |G|

|H | . We define the projection function φ1 as

φ1
(
F(H)

) := (S , rt · c,m)

L. Heling and M. Acosta / Characteristic sets profile features: Estimation and application to SPARQL query planning 499

The assumption of the basic projection function is that the characteristic sets observed in a sample occur propor-
tionally more often in the original graph. However, as exemplified in the introduction, the distributions of the counts
may be potentially skewed which is not considered by this projection function. Moreover, this function neglects
the fact that some characteristics sets might not have been sampled and merely distributes the proportional counts
across the characteristic sets in the sample. As a result, it is likely that the counts for the characteristic sets is over-
estimated, especially if just a small portion of characteristics sets from the original graph are captured. To address
this shortcoming, we introduce two statistic-enhanced projection functions that leverage high-level information to
reduce the probability of overestimating the counts.

Statistics-enhanced projection functions The second class of projection functions incorporates additional high-
level information about the original graph. In particular, we consider the number of triples per predicate in the
original graph as this high-level statistic. The rationale for this particular statistic is that it potentially yields a good
trade-off between the effort to obtain the statistic and the benefit it provides for the projection function. The number
of triples for predicate p′ is given by t (p′) := |{(s, p′, o) | (s, p′, o) ∈ G}|.

The first statistic-enhanced projection function, φ2 applies a true upper bound for the counts of the characteristics
sets in the following way.

φ2
(
F(H)

) := (S , ċ, m), with

ċ(SC) := min
(
rt · c(SC), min

p′∈SC

t
(
p′))

The idea of this projection function is that the predicate occurrence statistics of the original graph allows for lim-
iting the estimated counts for characteristic sets containing that predicate. If a predicate p′ is part of a characteristic
set SC , then SC may occur at most t (p′) times and consequently c(SC) � t (p′). This reduces the likelihood of
overestimating counts without increasing the likelihood of underestimating them. The effectiveness of this upper
bound, however, strongly depends on the predicates that occur in a given characteristic set. For instance, in the case
that a characteristic set contains common predicates, such as rdf:type or rdfs:label, the upper bound determined
by φ2 might be rather high, even though the predicates potentially occur in a number of other characteristic sets as
well. Therefore, we propose a second statistics-enhanced projection function φ3 which distributes the upper bound
for a predicate p′ by considering the sum of counts of the characteristic sets in which the predicate p′ occurs. To
achieve this, we first sum up the counts of all characteristic sets which p′ occurs in as

S
p′
C :=

∑
S′

C∈S ∧p′∈S′
C

c
(
S′

C

)

The projection function φ3 then adjusts the upper bound by multiplying t (p′) with the ratio of the count c(SC) of

the given characteristic set SC and the sum of counts for all characteristic sets p′ occurs in S
p′
C .

φ3
(
F(H)

) := (S , c̈, m), with

c̈(SC) := min

(
rt · c(SC), min

p′∈SC

(
t
(
p′) · c(SC)

S
p′
C

))

In contrast to φ2, this approach applies a stricter upper bound by considering all characteristic sets a predicate oc-
curs in and reducing the upper bound accordingly. However, a drawback is that the projection function φ3 increases
the likelihood of underestimating the count of characteristic sets by assuming an equal distribution of the predicates.

Concluding this section on the projection functions, we want to note that further functions may be applied to
potentially improve the estimation of the profile feature. For example, the characteristic sets sizes or additional
statistics about the predicate distribution in the sample could be considered. However, we chose not to include them
since they are likely to just produce accurate estimation under certain conditions and, therefore, do not general-
ize well for other datasets. Moreover, further improvements in the estimations do not necessarily imply the same
improvements in the downstream applications that use the feature estimations.

500 L. Heling and M. Acosta / Characteristic sets profile features: Estimation and application to SPARQL query planning

3.5. Sampling RDF graphs in practice

The presented sampling approaches define the process for selecting entities to be sampled from the original graph
but they do not encode how the samples are generated in practice. The implementation of the sampling approaches
depends on the access methods to the given RDF graph. In the case of centralized RDF graphs, the sampling
approach has access to the entire dataset and could potentially exploit existing data structures (e.g., indices) to
efficiently access the entities in the graph. However, in decentralized scenarios as federations, the sampling methods
have only access to parts of the RDF graphs and their implementation depends on the expressivity, capabilities, and
configuration of the access interfaces. While it is out of the scope of this work to present specific implementations
for each access interface, in the following, we provide insights into the considerations when implementing these
sampling methods over remote SPARQL endpoints and Triple Pattern Fragments (TPF) servers.

SPARQL endpoints The expressivity of endpoints allows for selecting the entities to be sampled and then obtaining
the subgraph induced by those entities.

The unweighted sampling method can be implemented over a SPARQL endpoint as follows. (i) Query all unique
subjects (i.e., with SELECT and DISTINCT). If the number of entities exceeds the number of answers allowed per
response, the implementation can retrieve all the entities by ‘paginating’ the results by ordering them with ORDER

BY and using LIMIT and OFFSET. (ii) Select n′ subjects from the resulting set of entities. In the case that the endpoint
supports the RAND6 function, it would suffice to obtain only n′ subjects in the query using the LIMIT keyword that
are randomly ordered (ORDER BY RAND()).

In the weighted sampling method, the out-degree of an entity determines its probability to be sampled. To avoid
computing the out-degree for each entity, it is possible to implement a simple heuristic that relies on the following
assumption: The higher an entity’s out-degree, the more triples with it in the subject positions are present in the
graph. Therefore, to obtain a weighted sample, the approach can randomly select triples from the graph and obtain
the subjects of those triples. This can be achieved in endpoints using a query that matches any triple in the graph,
a LIMIT of 1, and a random OFFSET value between 0 and the size of the graph |G|. This should be repeated until
collecting n′ entities.

Finally, after the entities have been selected, the induced subgraph of the entities can be obtained using either
a CONSTRUCT query or a SELECT query. That is, all triples where the entities are in the subject position will be
constructed. This can be achieved with a FILTER or, if supported, with the VALUES keyword with the list of selected
entities from the previous step to instantiate the entities in the query.

Triple pattern fragments (TPF) TPF servers support triple pattern-based querying of RDF graphs. Since TPF
servers do not provide the same expressivity as SPARQL endpoint for accessing the RDF graphs, the sampling
methods need to be implemented accordingly.

Because TPF servers do not support SELECT or DISTINCT, the implementation of the unweighted sampling
method over TPF servers should be realized differently from the one discussed for SPARQL endpoints. To obtain
entities in the RDF graph, the method could request individuals of classes using the rdf:type predicate. Thereafter,
duplicate entities can be removed locally and the sample of size n′ can be drawn from these results. While this
method disregards entities that do not belong to classes, it still allows for easily obtaining a subset of entities for the
sample from TPF servers.

For implementing the weighted sampling method, a similar heuristic to the one presented for SPARQL endpoints
can be followed. Instead of computing the out-degrees of each entity, the approach can randomly select triples
from the RDF graph: entities with higher out-degrees have a higher probability of being chosen with this approach,
as they appear more frequently in the triples. Random selection of triples is implemented over TPF servers by
randomly selecting a page from the range 1 to the number of pages in the fragment, which can be obtained from
the metadata void:triples and hydra:itemsPerPage provided by the server. Then, from the triples in the selected
page, randomly select one triple to obtain the entity in the subject position. This process should be repeated until
obtaining n′ entities.

6https://www.w3.org/TR/sparql11-query/#func-numerics

https://www.w3.org/TR/sparql11-query/#func-numerics

L. Heling and M. Acosta / Characteristic sets profile features: Estimation and application to SPARQL query planning 501

Table 2

Overview of the similarity measures: the structural similarity measure capture the degree to which structural features of the original graph are
represented. The statistical similarity measures focus on the count and multiplicity statistics of the characteristic sets

Structural Similarity Measures Statistical Similarity Measures

Out-degree Predicate coverage Absolute set coverage Relative set coverage Count similarity Multiplicity similarity

δod (4) δpc (5) δac (6) δrc (7) δcount
SC

(8) δ
multiplicity
SC

(9)

Finally, the induced subgraph of the entities can be obtained by querying all the triples where the subject corre-
sponds to each selected entity.

3.6. Similarity measures for characteristic set profile features

Finally, we define similarity measures that quantify the similarity between the estimated profile feature and the
feature of the original graph. A higher similarity value indicates a more representative feature estimation. According
to our problem definition (Definition 2.3) in Section 2.2, the goal is obtaining an estimator F̂ (G) = φ(F (H)) for
the characteristic F which maximizes the similarity δ between the estimated and the original profile feature. As
previously mentioned, methods to quantify the similarity depend on the particular profile feature. We now propose
measures that are tailored to the characteristic sets profile feature (CSPF). Due to the diverse nature of the graph’s
characteristics captured in the CSPF, we propose multiple measures to determine the similarity δ(F (G), F̂ (G))

between the original CSPF F(G) = (S , c,m) and an estimated CSPF F̂ (G) = (Ŝ , ĉ, m̂). The proposed similarity
measures capture both structural as well as statistical aspects of the CSPF. All measures take values in [0, 1] with
larger values indicating a higher similarity. An overview of all similarity measures is given in Table 2.

Structural similarity measures The first category of similarity measures focuses on the structural information
captured in the characteristic sets. We propose four measures that consider the mean out-degree, the predicates
covered, and the absolute and relative number of covered characteristics sets. The out-degree similarity measure
δod determines how well the mean out-degree of the original graph is captured in the estimated profile feature. The
mean out-degree deg+ can be computed for a CSPF F(G) in the following way.

deg+(
F(G)

) := |G|∑
SC∈S c(SC)

Note that deg+(F̂ (G)) is computed analogously for the estimated features using H , Ŝ , and ĉ instead. The out-
degree similarity measure is computed as

δod(F(G), F̂ (G)
) := 1 − |deg+(F (G)) − deg+(F̂ (G))|

max(deg+(F̂ (G)), deg+(F (G)))
(4)

The second structural measure focuses on the predicates captured in the characteristic sets of the CSPF. The
predicate coverage similarity δpc is calculated as the ratio of the number of predicates covered in the estimation and
the number of predicates in the original profile feature.

δpc(F(G), F̂ (G)
) := |{p | p ∈ SC ∧ SC ∈ Ŝ }|

|{p | p ∈ SC ∧ SC ∈ S }| (5)

A higher ratio indicates that a larger portion of the terminology used to describe the entities in the graph is captured
in the estimated CSPF.

The final two structural measures address characteristic sets themselves and determine how many of them are
covered in the CSPF F̂ (H). First, the absolute set coverage similarity δac is computed as the ratio of the number of

502 L. Heling and M. Acosta / Characteristic sets profile features: Estimation and application to SPARQL query planning

characteristic sets in the estimation to those in the original statistic profile:

δac(F(G), F̂ (G)
) := |Ŝ |

|S | (6)

However, this measure does not reflect the importance of the characteristic sets captured in estimated CSPF with
respect to their coverage. A characteristic set SC can be considered to be more important if it represents a larger
portion of a given graph G. Therefore, the relative set coverage similarity δrc of F̂ (G) is calculated as the number
of triples induced in the original graph with all characteristic sets in Ŝ of the estimation.

δrc(F(G), F̂ (G)
) :=

∑
SC∈Ŝ

coverage(SC,G)

|G| (7)

Note that the characteristic sets of the estimation Ŝ are taken as the basis for computing the measure, while their
coverage (c.f. Equation (3)) is computed based on the original graph, i.e.

∑
p∈SC

m(p, SC) · c(SC). In this way,
δrc reflects the importance of the characteristic sets captured in the sample. For example, consider an RDF graph
G with two characteristic sets S1 and S2, where S1 covers 90% and S2 10% of all triples in G. Assume that we
obtain two estimations with Ŝ1 = {S1} and Ŝ2 = {S2}. Both Ŝ1 and Ŝ2 have the same absolute set coverage
δac = 0.5 because they both contain one characteristic set. If we take the relative set coverage into consideration,
we can determine that Ŝ1 should be considered more representative for the original graph G as its characteristic set
S1 covers 90% of its triples.

Statistical similarity measures The second category of similarity measures focuses on the statistical aspects cov-
ered in the feature estimations, namely the counts of the characteristic sets and the multiplicity of predicates. De-
pending on the distribution of the characteristics sets in the original graph, an accurate estimation of both counts
and multiplicity values can be challenging. As a consequence, for some characteristic sets, the estimations can be
accurate, while for others large estimation errors can occur. We propose statistical similarity measures that capture
the estimation accuracy on the level of individual characteristics sets. To better understand the estimation error dis-
tribution across all characteristic sets in a sample, different aggregation functions, such as mean or median, may be
applied afterward.

We propose a similarity measure for the count values that is the inverse of the count estimation q-errors. The
q-error [25] is the maximum of the ratios between true and estimated count and vice versa. Given a profile feature
F(G) and an estimation F̂ (G), the count value q-errors are computed for all SC ∈ Ŝ as

q-errorc(SC) := max

(
c(SC)

ĉ(SC)
,
ĉ(SC)

c(SC)

)
.

Higher q-errors indicate a higher discrepancy between the true value and the estimation, and a q-error of 1
indicates that the estimation is correct. We take the inverse of the q-error to map it to the similarity measure range
[0, 1]

δcount
SC

(
F(G), F̂ (G)

) := 1

q-errorc(SC)
. (8)

Note that the q-error only measures the magnitude of the estimation error but does not indicate whether values
are over- or underestimated. As a result, when aggregating the similarity measures across all characteristic sets of a
given feature estimation Ŝ , this property avoids overestimated counts to cancel out underestimated counts and vice
versa.

The proposed similarity measure for the predicate multiplicities is also based on the q-error and is defined on the
level of characteristic sets. Given a profile feature F(G), an estimation F̂ (G) and a characteristic set SC in F̂ (G),

L. Heling and M. Acosta / Characteristic sets profile features: Estimation and application to SPARQL query planning 503

this q-error is computed as the mean of the multiplicity q-errors of all predicates in SC

q-errorm(SC) := 1

|SC |
∑
p∈SC

max

(
m̂(p, SC)

m(p, SC)
,
m(p, SC)

m̂(p, SC)

)
.

Analogously, to the count values, the similarity measure for the multiplicities is the inverse of the q-error

δ
multiplicity
SC

(
F(G), F̂ (G)

) := 1

q-errorm(SC)
. (9)

In summary, the characteristic sets in a CSPF captures various characteristics of RDF graphs, ranging from
out-degree distribution to predicate co-occurrence. As a result, a combination of similarity measures needs to be
taken into account to assess the representativeness of an estimation of a CSPF. To this end, we have proposed
four structural and two statistical similarity measures. The importance of the individual measures depends on the
application. In the following section, we present one potential application of the CSPF estimations in federated
query planning.

4. Federated query planning using characteristic sets profile feature estimations

We investigate the applicability and effectiveness of the characteristic set profile feature (CSPF) estimations in
a downstream application. In particular, we focus on federated SPARQL query planning motivated by previous
works, which studied how characteristic sets can be exploited in query plan optimization in both centralized and
decentralized scenarios. In decentralized query processing, it has been shown how characteristic sets can be lever-
aged to obtain efficient federated query execution plans that outperform existing state-of-the-art federated query
plan optimizers in terms of query execution time and data transfer [26]. However, the computation of the complete
characteristics sets profile feature can be challenging in such decentralized scenarios as it requires obtaining the
entire datasets of all members in the federation and, subsequently, computing the profile feature. Consequently, we
study how federated query planning approaches can benefit from the proposed characteristic sets profile feature
estimations that are based on samples from the original graphs.

We propose a novel heuristic for federated query planning to obtain efficient federated query plans based on
estimated CSPFs. We cannot directly apply an existing approach, such as Odyssey [26], due to the following reason.
First, Odyssey relies on having access to the entire datasets to obtain the complete characteristic sets and the query
planner assumes complete information. Hence, the planner relies on complete statistics for query decomposition,
join ordering, and cardinality estimation and it does not handle potentially missing statistics in those steps. Second,
the Odyssey approach additionally leverages both the characteristic pair (CP) and the federated characteristic pair
(FCP) statistics to capture how characteristic sets are linked within and entities are linked across the datasets of the
members in the federation [26]. In this work, we focus only on characteristic sets and assume estimated statistics.
Therefore, we propose a novel query planner based on these restrictions. Still, our query planner is based on existing
approaches for characteristic sets-based cardinality estimation and query planning [25–27].

We begin by introducing the necessary concepts and notation from SPARQL, which is the recommended query
language for RDF graphs. Following the notation of Schmidt et al. [38], where V is the set of variables that is
disjoint with I , B, and L, we can define a SPARQL expression as follows.

Definition 4.1 (SPARQL Expression [38]). A SPARQL expression is an expression that is build recursively as
follows.

(1) A triple pattern tp ∈ (I ∪ V) × (I ∪ V) × (I ∪ V ∪ L) is an expression,
(2) If P1, P2 are expressions and R is a filter condition, then P1FILTERR, P1UNIONP2, P1OPTP2, and P1ANDP2

are expressions.

In our query planning approach, we focus on Basic Graph Patterns which we define as follows.

504 L. Heling and M. Acosta / Characteristic sets profile features: Estimation and application to SPARQL query planning

Definition 4.2 (Basic Graph Pattern (BGP)). Let P1 and P2 be SPARQL expressions. A basic graph pattern P is de-
fined recursively as an expression of the form P1ANDP2, where P1 and P2 are either a triple pattern or conjunctions
of triple patterns (i.e., tp1AND . . . ANDtpn).

Next, we denote the set of predicates in a BGP P as preds(P). For simplicity, we extend the notation and also
consider a BGP P = (tp1AND . . . ANDtpj) as the set of triple patterns it consists of P = {tp1, . . . , tpj }.

Moreover, we denote the evaluation of an expression P over a graph G by �P �G. The evaluation of a SPARQL
expression over an RDF graph yields a set of solution mappings μ, where μ is a partial function μ : V → I ∪B ∪L

that maps a subset of variables V to RDF terms [37]. Finally, we consider set semantics for evaluating SPARQL
expression over RDF graphs and federations of RDF graphs [2,38].

4.1. CSPF estimation-based federated query planner

We propose a heuristic-based query planner to determine efficient query plans based on CSPF estimations. We
adapt the notation from [2] and define a federation of SPARQL endpoints (sources) as F = (EP, g), where EP =
{ep1, . . . , epk} ⊂ I is a set of IRIs that identify the SPARQL endpoints, and g : I → G a function mapping each
endpoint epi to its (default) RDF graph. Given a basic graph pattern P and a federation F , the federated query
planner performs source selection, query decomposition, and join ordering to obtain a query plan. We now detail
how the planner leverages the estimated CSPF in all three steps for BGPs.

Source selection and query decomposition The source selection and query decomposition step determine which
subexpressions of a given BGP P should be evaluated at which members of the federation F . The output of this
process is a query decomposition, which we define as follows.

Definition 4.3 (Query Decomposition). Given a BGP P and a federation F = (EP, g), a query decomposition
D = {d1, . . . , dm} is a set of tuples di = (SEi , Ri) where

– SEi is a subexpression of P such that
⋃

i=1,...,m SEi = P , and
– Ri ⊆ EP is a non-empty set of sources where SEi is evaluated.

The challenge of query decomposition based on estimated statistics is the fact that the planner does not know
what is not captured in the estimations. For example, this is the case when determining the relevant sources. In
the following, we assume a source epi to be relevant, if there is a subexpression P ′ in the BGP P such that the
evaluation of P ′ over g(epi) produces solution mappings. That is, ∃P ′ ⊆ P : �P ′�g(epi)

�= ∅. Our query planner
leverages the estimated CSPF to determine these relevant sources. To this end, it follows a conservative strategy to
distinguish between relevant and non-relevant sources. It assumes all sources to be relevant, in case none of them is
relevant according to the estimated (potentially incomplete) statistics.

The source selection and query decomposition process are shown in Algorithm 1. The goal of the approach is
to merge multiple triple patterns into larger subexpressions to reduce the number of subexpressions to be evaluated
over the sources. Our planner focuses on subject-based star-shaped basic graph pattern. That is, BGPs where all
triple patterns share the same RDF term or variable in the subject position [41]. These subject-based star-shaped
basic graph patterns are obtained by the function getSubjectStars in Line 2. For each such pattern SSP of
the given BGP P , the decomposer leverages the characteristic sets to determine whether any subset SSP′ ⊆ SSP
of q triple patterns can be evaluated jointly at any source (Line 6). This is the case, if for a source ep ∈ EP with
F̂ (g(ep)) = (ŜC, ĉ, m̂), there exists at least one characteristic set Ŝ ∈ Ŝ such that all predicates of SSP′ are
contained within Ŝ: preds(SSP′) ⊆ Ŝ (Line 10). In this case, the subquery SSP′ is added to the decomposition with
the corresponding relevant sources R′ and the process continues with the remaining triple patterns of the original
star-shaped BGP: SSP \ SSP′ (Line 15). If SSP′ only consists of a single triple pattern and no relevant source could
be determined (Line 17), i.e. R = ∅, all sources need to be considered as relevant R = EP. This is the case, if
either the predicate p in the triple pattern does not occur in a characteristic set of any source or if p is a variable,
i.e. p ∈ V . However, for the cardinality estimation in the next step, we need to be able to distinguish this case from
the case where all sources are known to be relevant according to the estimated CSPF. For example, all sources could
be known to be relevant for common terminology, such as rdf:type. Therefore, if the estimated statistics do not

L. Heling and M. Acosta / Characteristic sets profile features: Estimation and application to SPARQL query planning 505

Algorithm 1: Query decomposer
Input: BGP P , Federation F = (EP = {ep1, . . . , epk}, d)

Output: Decomposition D for the BGP P , annotated with the set of relevant sources from F
1 D ← ∅
// Iterate all star-shaped subqueries in P

2 for SSP ∈ getSubjectStars(P) do
3 q ← |SSP|
4 todo ← SSP
5 while |todo| > 0 do
6 for SSP′ ∈ subsets(SSP, q) do
7 R′ ← ∅
8 for ep ∈ EP do
9 (Ŝ , ĉ, m̂) = F̂ (g(ep))

10 if ∃Ŝ ∈ Ŝ : preds(SSP′) ⊆ Ŝ then
11 R′ ← R′ ∪ {ep}
12 end
13 if |R′| > 0 then
14 D ← D ∪ {(SSP′, R′)}
15 todo ← todo \ SSP′
16 q ← |todo|
17 if |R′| = 0 ∧ q = 1 then
18 D ← D ∪ {(SSP′,∅)}
19 end
20 q ← q − 1
21 end
22 end
23 return D

allow for determining which sources are relevant, we set the relevant sources in the decomposition to be the empty
set (Line 18). Note that because potentially not all predicates are covered in the sample from which the estimated
CSPF is derived, we cannot assume that no source is relevant.7

Cardinality estimation Given a query decomposition, the query planner estimates the cardinalities of all subex-
pressions in the decomposition. Given these estimations, the planner determines an efficient join order for the
subexpressions. To this end, the subexpressions are ordered by increasing cardinality to minimize the number of
intermediate results to be transferred during query execution. For a given subexpression SEi in a decomposition D,
the cardinality estimation distinguishes two cases:

(1) Ri �= ∅: There exists a set of relevant sources according to the estimated statistics, or
(2) Ri = ∅: All sources need to be considered relevant according to the estimated statistics.

For the first case, we apply the STARJOINCARDINALITY algorithm proposed by Neumann and Moerkotte [27]
to estimate the cardinality for each source ep according to the estimated CSPF F̂ (g(ep)). As suggested in [27], we
also use the absolute predicate multiplicity to compute the conditional selectivity in the case of a bound object as

sel(?o = x |?p = p) = 1

count(SC) · multiplicty(p, SC)

7Alternatively, the planner could use ASK queries to determine which source is relevant. However, as we want to investigate the effectiveness
of the estimated statistics, the proposed planner only relies on the estimated CSPF.

506 L. Heling and M. Acosta / Characteristic sets profile features: Estimation and application to SPARQL query planning

We then sum up the estimations to aggregate the cardinalities across all sources:

card(SEi , Ri) =
∑

ep∈Ri

STARJOINCARDINALITY
(
F̂

(
g(ep)

)
, SEi

)

In the second case (Ri = ∅), the subexpression consists of a single triple pattern according to the decomposition
algorithm and all sources need to be considered relevant for that triple pattern. In this case, we leverage the infor-
mation from the estimated CSPF to estimate the expected number of solutions produced by the triple pattern. We
distinguish the following types of triple patterns to estimate their cardinalities:

Type I: (s, p, ?o)

If both subject and predicate are bound in the triple pattern, we estimate the cardinality as the mean multiplicity
values for all predicates and characteristic sets in all sources of the federation F .

Type II: (s, ?p, ?o)

If just the subject is bound, we estimate the cardinality as the mean of the mean out-degrees deg+ of all
sources:

1

|EP|
∑

ep∈EP

deg+(
F̂

(
g(ep)

))

Type III: (?s, p, ?o)

If just the predicate is bound, we assume that the predicate occurs less frequently than the least frequent
predicate in all estimated CSPF. The rationale for this is, if predicate p would occur more frequently, it would
be very likely to be sampled. Thus, it can be assumed to be less frequent than any predicate that was sampled.

Type IV: (?s, ?p, ?o)
The estimated cardinality, is the sum of the sizes of the graphs in the federation:

∑
ep∈EP

∣∣g(ep)
∣∣

For all remaining types of triple patterns, we estimate the cardinality to be 1.

Join ordering and query plan generation After estimating the cardinalities of all subexpressions in the decomposi-
tion, the query planner iteratively builds a left-deep plan by joining subexpressions ordered by increasing cardinality.
In this query plan, each tuple (SEi , Ri) of the query decomposition is evaluated as the union of SEi over all sources
in Ri . The resulting solution mappings are joined for all tuples in the decomposition. This corresponds to the eval-
uation of the following algebraic expression.

⋈(SEi ,Ri)∈D

(⋃
rj ∈Ri

�SEi�rj

)
.

Limitations Note that the proposed query planner does not guarantee to obtain query plans that produce complete
answers. This is due to two main reasons. First, the planner may fail to identify a source as relevant in the case
that the relevant characteristic set is missing in the CSPF estimation. While the planner assumes all sources to be
relevant in the case that none of the estimations include a matching predicate, it might be the case that the a CSPF
estimation for one source is missing the relevant information and for another sources it does not.

Second, the greedy nature of our query decomposition approach presented in Algorithm 1 may produce query
decompositions that yield incomplete results. For example, the decomposer may find a star-shaped subquery SSP′
of SSP with size q whose predicates are in the characteristic set of one source. In this case, |R′| > 0 and the
decomposer continues with subset of size q ′ = |todo \ SSP′| (Line 15 and Line 16), even though there might be a
subset |SSP′′| of |SSP| with |SSP′′| = q∗ and q ′ < q∗ < q for which there is a relevant source. In this case, the
decomposer does not identify this relevant source. This greedy approach reduces the computational effort as fewer
subsets need to be considered. Yet, the algorithm may be adjusted to consider all true subsets of SSP if necessary.

L. Heling and M. Acosta / Characteristic sets profile features: Estimation and application to SPARQL query planning 507

5. Evaluation

We empirically evaluate our contributions in two experimental studies. The first study focuses on analyzing the
different components of our proposed approach to estimate the Characteristic Sets Profile Feature (CSFP) presented
in Section 3. The second study aims to evaluate our CSPF estimations-based federated query planner which we
presented in Section 4. We use the well-known federated querying benchmark FedBench [37] to investigate the
effectiveness of our query planner and therefore, investigate the RDF graphs from FedBench in the first part of the
evaluation as well. All raw experimental results are provided online under the DOI 10.5281/zenodo.4507242. The
source code is provided on GitHub: (i) the sampling implementation,8 and (ii) the query planner.9

5.1. Characteristic sets profile feature estimation evaluation

We first empirically evaluate the different components of our approach to estimate the Characteristic Sets Profile
Feature (CSPF). In the evaluation, we focus on the following core questions:

Q1 How do different sampling sizes influence the similarity measures?
Q2 What is the impact of different sampling methods on the similarity measures?
Q3 What are the effects of leveraging additional statistics in the projection functions?
Q4 How do different characteristics of the RDF graph influence the estimation?

We first present the setup of our experiments and analyze the results in Sections 5.1.1 and 5.1.2. Based on our
findings, we answer the core questions in the final discussion in Section 5.1.3.

RDF graphs We select the six cross-domain and three Life Science RDF graphs from the FedBench benchmark
[37] for our evaluation. An overview of the graphs’ properties is given in Table 3. The graphs differ in their general
properties: the number of triples, the number of distinct subjects, predicates, and objects as well as the out-degree
distribution. Moreover, the graphs differ with respect to their characteristic sets. The number of characteristic sets
ranges from 42 to more than 160000. Theoretically, the number of potential characteristic sets in a graph is bound
by the power set of its predicates. In practice, however, the number of distinct subjects in the graph is a stricter
upper bound. Therefore, we provide the ratio of characteristic sets and distinct subjects (|S|/# Subjects[%]) as a
measure of the characteristic sets’ diversity (higher values indicating a higher diversity). Additionally, the graphs
differ in the proportion of exclusive characteristics sets. These exclusive characteristic sets, which only occur once
in the graph, introduce further challenges when estimating the CSPF. If an exclusive characteristic set is sampled,
the projection function likely overestimates its counts. In principle, it is unlikely to sample exclusive characteristic

Table 3

Characterization of the FedBench RDF graphs studied in the experiments

General Properties Characteristic Sets

RDF Graph # Triples # Subj. # Pred. # Obj. deg+ deg+
std |S| |S|

Subjects
|S1|
|S| AUC

Cross Domain DBpedia 42855253 9495865 1063 13636604 4.51 6.44 160062 1.69% 66.31% 95.23%

GeoNames 107950085 7479714 26 35799392 14.43 2.81 673 0.01% 19.76% 99.07%

Jamendo 1049647 335925 26 440686 3.12 4.31 42 0.01% 11.9% 92.38%

LinkedMDB 6147996 694400 222 2052952 8.85 5.31 8459 1.22% 62.64% 97.65%

NY Times 335197 21666 36 191537 15.47 28.73 47 0.22% 19.15% 91.14%

SW Dog Food 103465 9948 118 35520 10.40 10.24 569 5.72% 37.96% 88.43%

Life Science ChEBI 4772706 50477 28 772138 94.55 1853.09 978 1.94% 39.57% 96.71%

Drugbank 517023 19693 119 276142 26.26 30.33 3419 17.36% 79.7% 81.3%

KEGG 1090830 34260 21 939258 31.84 165.88 67 0.2% 11.94% 92.83%

8https://github.com/Lars-H/hdt_sampler
9https://github.com/Lars-H/federated_crop

https://doi.org/10.5281/zenodo.4507242
https://github.com/Lars-H/hdt_sampler
https://github.com/Lars-H/federated_crop

508 L. Heling and M. Acosta / Characteristic sets profile features: Estimation and application to SPARQL query planning

Fig. 2. The cumulative relative coverage curve shows the ratio of triples covered with respect to the characteristic sets ordered by decreasing
relative coverage.

sets as they only occur once. However, in graphs with a large portion of those sets, the likelihood of sampling and
overestimating those exclusive sets increases. Depending on the application of the estimations, it is potentially less
important to correctly project the exclusive characteristic sets due to their lower coverage in comparison to other
characteristic sets.

Figure 2 shows the cumulative coverage curve of the characteristic sets for all graphs. The curve plots the cumu-
lative coverage of the characteristics sets in a graph sorted by decreasing coverage (c.f. Equation (3)).

f (x) =
∑

SC∈S x
C

coverage(SC,G), with

S x
C := {

SC ∈ SC(G) | rank(SC) � x
}
,

where rank(SC) computes the relative rank of the characteristic sets by decreasing coverage. The curve allows for
visualizing the distribution of characteristic sets in a graph. A diagonal line indicates all characteristic sets covering
the same number of triples. The stronger the curve is bent towards the upper left corner the more unevenly is the
coverage of the characteristic sets, i.e., a few characteristic sets covering a large portion of the graph and many
covering a small fraction of the graph. For instance, comparing GeoNames in Fig. 2b and NY Times in Fig. 2e, we
observe that in both graphs the characteristic set with the highest coverage covers ≈ 30% of all triples in the graph.
However, the distribution of characteristic sets differs as in GeoNames 20% of the characteristics sets cover ≈ 90%
of all triples, while in NY Times they only cover ≈ 80%. We use the area under the cumulative coverage AUC to
quantify this property (cf. Table 5).

Sampling methods We study the presented unweighted, weighted, and hybrid sampling methods. We chose β =
0.5 for the hybrid sampling method equally balancing the weighted and unweighted method. We investigate four
different sample sizes defined relative to the total number of entities |E| in the graph. We chose n′ = {0.1‰ ·
|E|, 0.5‰ · |E|, 1‰ · |E|, 5‰ · |E|} (Note: 10‰= 1%). We generate 30 samples per RDF graph, sampling method,
and sample size resulting in a total of 30·9·3·4 = 3240 samples. For the sake of comparability, we reuse the samples
and CSPF estimations created in this evaluation as the basis for the evaluation of our federated query planner.

5.1.1. Structural similarity measures
Table 4 shows the structural similarity measures out-degree δod, predicate coverage δpc, absolute set coverage

δac, and relative set coverage δrc for the different sampling methods and sample sizes. As descriptive statistics of

L. Heling and M. Acosta / Characteristic sets profile features: Estimation and application to SPARQL query planning 509

Table 4

Mean similarity values δod , δpc, δac, δrc (higher is better) and mean sampled triples ratio |H |/|G| in permille (‰) by sample size and sampling
method. Best values per RDF graph and similarity measure are indicate in bold

510 L. Heling and M. Acosta / Characteristic sets profile features: Estimation and application to SPARQL query planning

the samples, we additionally computed the ratios of sampled triples and triples in the original graph |H |/|G| [‰].
Comparing the different sample sizes (Q1), the results show an improvement in the similarity measures with an
increasing sample size in the majority of cases. More importantly, we observed that the magnitude of the improve-
ments depends on the properties of the original graphs. For example, the overall smallest improvements are achieved
for GeoNames, where the similarity w.r.t δod, δpc, and δrc only slightly improves with larger sample sizes. However,
for GeoNames the similarity measures are on average already on a high level in comparison to the other graphs,
showing the best overall results for δod and δrc. Combining the results with the distribution of characteristic sets in
the original graph, we find that GeoNames shows the highest AUC, the smallest characteristic set diversity, and a
low exclusive set ratio. In contrast, the lowest relative set coverage δrc values are observed for Drugbank, which also
has the smallest AUC and largest characteristic sets diversity.

Interestingly, there are also few cases where a higher sample size yields worse similarity results. For instance,
the out-degree similarity δod decreases for KEGG and does not improve for ChEBI with the weighted sampling
method. Again, the properties of the original graphs help explain those results (Q4). In particular, the dispersion of
the out-degree distribution provides further insights. We can measure the dispersion with the coefficient of variation:

cvdeg+ = deg+
std

deg+

The two graphs KEGG and ChEBI have a high dispersion of the out-degree distribution with cvdeg+ > 19 for
ChEBI and cvdeg+ > 5 for KEGG. As a result, the weighted sampling method, which favors high out-degree nodes,
is biased more strongly due to this graph property. Regarding the predicate coverage similarity δpc, we also observe
that an increasing sample size improves the similarities in all cases. For five graphs, all predicates are covered
by at least one sampling method with the largest sample size. The remaining four graphs (Drugbank, DBpedia,
LinkedMDB, and SW Dog Food) have the highest number of distinct predicates (Q4) which reduces the probability
of sampling them all.

Considering the absolute (δac) and relative set coverage (δrc), similar results can be observed for the majority of
graphs: Even if only a few characteristic sets are sampled (low δac), the number of triples covered by those sets in
the original graph covered is very high (high δrc). Take, for example, the unweighted sampling with 5.0‰sample
size for DBpedia. On average, the samples contain only 7% (δac = 0.07) of all characteristics sets which cover 83%
(δrc = 0.83) of the triples in the original graph. The cumulative coverage curve of the original graph (Q4) helps to
explain these results. For instance, lets compare the curve for SW Dog Food (Fig. 2f) and LinkedMBD (Fig. 2d).
The SW Dog Food curve indicates a more uneven distribution of characteristic sets and, as a result, even though
more characteristics sets are sampled for SW Dog Food (δac = 0.07) than for LinkedMDB (δac = 0.05), they cover
a smaller portion of the original graph: SW Dog Food δrc = 0.38 vs. LinkedMDB δrc = 0.90.

Comparing the different sampling methods (Q2), we observe that the unweighted sampling method outperforms
the other methods for the out-degree similarity δod. This is due to the fact, that subjects are sampled with equal
probability irrespective of their out-degree which leads to more representative samples. We illustrate this observation
in Fig. 3 by comparing the characteristic sets that are obtained by the weighted and unweighted sampling methods
(in color) in comparison to the characteristic sets of the original graph (in gray). The characteristic sets sampled
by the weighted method (Fig. 3b) tend to have a larger set size as indicated by the rectangle, while the unweighted
sampling (Fig. 3a) captures more average-sized characteristic sets.

Except for LinkedMDB, the unweighted sampling method exhibits the lowest predicate coverage similarity (δpc)
in comparison to the other two approaches. The highest difference between the unweighted and weighted sampling
method in δpc is measured for DBpedia, which is the graph with the largest number of distinct predicates. For the
remaining graphs, the difference is smaller than 2 percentage points. Combining this observation with Fig. 3, we
conclude that the unweighted sampling method fails to obtain those predicates used in characteristic sets with high
degrees.10 Comparing the sampling methods (Q2), similar results for absolute δac and relative set coverage δrc are

10The degree of a characteristic set is given by the average degree of the entities belonging to it. The degree is therefore a combination of its
size (number of predicates) and the predicates’ multiplicity.

L. Heling and M. Acosta / Characteristic sets profile features: Estimation and application to SPARQL query planning 511

Fig. 3. Sampled characteristic sets for Drugbank for one sample with a n′ = 0.5‰. The figures show the sampled characteristic sets in blue with
respect to the number of their predicates (|SC |) and their count (count(SC)) on a log-scale. Indicated in gray are all sets of the original dataset.

observed as the unweighted method is outperformed by the other methods. Similar to the predicate coverage, the
δrc values are only slightly lower. When taking the number of triples in the samples into consideration (|H |/|G|),
we find that the weighted sampling method yields the largest subgraphs. Therefore, if we consider the structural
similarity results with respect to the number of triples, we find that even though the unweighted sampling method
does not yield the best overall results, it still captures the properties of the original graph at least as accurately
requiring a smaller subgraph. We observe that the sample sizes also reflect the structural properties of the original
graph (Q4). For instance, the out-degree and its dispersion (cvdeg+) are reflected in the differences in the sample size
between the weighted and unweighted method. For example, the samples of the weighted sampling method for the
ChEBI graph with deg+ = 94.55 are more than 100 times large than those of the unweighted method. Finally, the
results of the structural similarity measures indicate that hybrid sampling yields samples that balance the properties
of the weighted and unweighted samples. Nonetheless, it outperforms neither of the other two methods.

5.1.2. Statistical similarity measures
We now focus on the statistical similarity measures that assess the accuracy of the count and multiplicity esti-

mations. In this evaluation, we concentrate on the q-errors due to their more natural interpretation, rather than the
proposed similarity measures δcount and δmultiplicity which are the inverse of the q-error. We start by discussing the
results for the counts: q-errorc. The results for all RDF graphs, sampling methods, sample sizes, and projection
functions are visualized in Fig. 4. To investigate the results on the level of samples, we aggregated the q-errors for
each sample. Therefore, Fig. 4 shows the mean q-errors of the 30 samples per group which is computed as

1

|Ŝ |
∑

ŜC∈Ŝ

q-errorc(ŜC)

Similar to the structural similarity measures, the results indicate an improvement in the estimations with larger
sample sizes (Q1) in the majority of cases. Regarding the projection functions, this observation holds for the basic
projection function φ1 for all datasets, except Drugbank. For the projection function φ2, there are more graphs
for which the increased sample size does not yield better count estimations. Finally, especially for the projection
function φ3, we observe that increasing sample size does not necessarily reduce the q-errors. Regardless of the
projection function, when investigating larger sample sizes, we also need to consider the percentage of characteristic
sets that are sampled as indicated by the absolute set coverage δac in Table 2. For example, if we consider the SW
Dog Food graph, we observe less accurate estimation for the projection function φ1 and φ2 with increasing sample
size. However, when comparing the number of sampled characteristics sets, we find that the largest samples capture
≈ 36 times more characteristic sets than the smallest samples (≈ 0.18% vs. ≈ 6.5%).

Comparing the different sampling methods (Q2), we observe a tendency of the smaller q-errors for the unweighted
sampling method, especially for the basic projection function φ1. At the same time, the results also show that the
unweighted sampling method is substantially outperformed for DBpedia and Drugbank. This could be due to the
large portion of exclusive characteristic sets that are sampled more frequently by the unweighted method. For graphs

512 L. Heling and M. Acosta / Characteristic sets profile features: Estimation and application to SPARQL query planning

Fig. 4. Box plots of the count estimation q-errors (lower is better) for each dataset, projection function, sample size and sampling method.

with fewer exclusive characteristic sets, such as KEGG and Jamendo, the unweighted sampling method yields better
results.

Considering the characteristic set diversity of the graphs |SC |/#Subjects (Q4), we find that the projection function
φ3 yields better results that are comparable or better than the other projection functions for graphs with a larger
diversity (e.g., Drugbank, SW Dog Food). For graphs with small diversity, such as GeoNames or Jamendo, φ3

yields the highest q-errors w.r.t. the other projection functions. The results of the other statistic-enhanced projection

L. Heling and M. Acosta / Characteristic sets profile features: Estimation and application to SPARQL query planning 513

function φ2, are not as strongly affected by the characteristic set diversity and yields the best results on average.
Consequently, in case the additional high-level statistics for the statistic-enhanced projection functions are available,
the function φ2 should be chosen over φ3 (Q3). While the basic projection function φ1 is slightly outperformed by
φ2, it still yields comparable results in the majority of cases without requiring additional statistics.

Summarizing the results across all datasets for the count q-errors (cf. Fig. 4j), we observe that an increase in
sample size (Q1) reduces the q-errors while simultaneously generating estimations for more characteristic sets. The
unweighted sampling method (Q2) yields the lowest q-errors in the majority of cases and φ2 (Q3) shows the best
results regarding the average q-errors (lower median) and their dispersion (fewer outliers).

Next, we focus on the estimations of the predicate multiplicities within the characteristic sets. Analogous to the
count statistic, we concentrate on the q-errors in the evaluation and aggregate the values per sample by computing
the mean over all its characteristic sets:

1

|Ŝ |
∑

ŜC∈Ŝ

q-errorm(ŜC)

The box plots of the samples’ mean q-errors are shown in Fig. 5 for all graphs, sample sizes, and sampling
methods. The first obvious observation is the substantially lower q-errors in comparison to the count statistic. This
is because the range of the value to be estimated is lower. Typically, the same predicate is only used a few times
for the same subject, with some exceptions that occur multiple times, such as rdf:type or rdfs:label. This is also
reflected in the absolute differences, where the multiplicity q-errors are less affected by the sampling method and
sample size. This indicates a uniform predicate usage within the characteristic sets with few outliers. In line with
the results for the count statistic, in the majority of cases, an increasing sample size (Q1) improves the results. The
results for the different sampling methods show better results for the unweighted sampling method for the majority
(seven) of the graphs. The weighted sampling method shows slightly better results for DBpedia and Drugbank.
Comparable to the results for the count statistics, the hybrid sampling method finds a balance between the other two
sampling methods. Furthermore, the results indicate that multiplicities are more challenging to estimate for graphs
with a high out-degree dispersion (Q4), such as ChEBI and KEGG. The best overall estimations are observed for
GeoNames, which also has the lowest out-degree dispersion (cvdeg+ = 0.19).

Concluding, as the summarized results in Fig. 5j show, the multiplicity statistic are estimated more accurately
than count statistic with improving estimations for larger sample sizes (Q1), marginal differences comparing the
sampling methods (Q2), and less diverse results for the different graph (Q4).

Fig. 5. Box plots of the q-errors (lower is better) of the predicate multiplicity estimations for each dataset, sample size and sampling method.

514 L. Heling and M. Acosta / Characteristic sets profile features: Estimation and application to SPARQL query planning

5.1.3. Final discussion
After providing a detailed presentation of our experimental results, we conclude the evaluation by providing

answers to our core questions.
Q1: The results indicate that larger sample sizes have two major positive effects on the estimations. First, they im-

prove both structural and statistical similarities measures of the estimations. Secondly, they allow for capturing and
estimating the statistics for more characteristic sets and, therefore, potentially provide better support to applications
that rely on these estimations.

Q2: Regarding the different sampling methods, we observe differences in the estimated profile features. On the
one hand, the weighted sampling method tends to obtain larger samples for the same number of sampled subjects
and, hence, yields slightly better structural similarity values. On the other hand, the unweighted sampling method
obtains smaller samples and still obtains competitive structural similarity measures. Irrespective of the projection
function, the unweighted sampling method outperforms the weighted sampling method w.r.t. the statistical similarity
measures.

Q3: The analysis of the results showed that the first statistic-enhance projections function provides the best
estimations. However, it only sightly outperforms the basic projection function with the differences diminishing
with increasing sample size. The second statistics-enhanced projection function is outperformed by the others.
Especially for graphs with a small diversity in characteristic sets, it yields higher estimation errors.

Q4: The investigation of the results showed that the structure of the RDF graph affects the similarity values.
Especially the counts of the characteristic sets are misestimated for datasets with a large portion of exclusive char-
acteristic sets and a larger diversity of characteristic sets. In such scenarios, larger sample sizes can help to improve
the estimations.

Concluding all findings, a variety of factors, ranging from the sampling method to the structure of the RDF
graphs, impact the quality of the characteristic sets profile feature estimation. Therefore, in our second evaluation,
we investigate how the CSPF estimation can be leveraged in a specific application and how the estimations impact
the performance of the application.

5.2. Federated query planner evaluation

After investigating the effectiveness of our approach to estimate profile features according to the similarity mea-
sures, we now focus on a particular application of the estimated features. We, therefore, study the performance of
the proposed federated query planning approach that relies on CSPF estimations. In particular, we want to study the
following core questions.

Q5 How do the CSPF estimations obtained from the unweighted and weighted sampling methods impact the
effectiveness of federated query planning?

Q6 How do the CSPF estimations from different sample sizes impact the effectiveness of the plans?
Q7 What is the effect of the different projection functions on the query plan effectiveness?
Q8 How well do the structural similarity measures reflect the performance of the query plans?

We begin by introducing our experimental setup. We then provide a detailed evaluation and discussion of our
experimental results in Section 5.2.1, which we conclude by answering our core questions in Section 5.2.2.

Benchmark and sampled statistics We study the effectiveness of the proposed query planning approach using the
FedBench benchmark [37]. The benchmark consist of the 9 interlinked RDF graphs that are listed in Table 3, and
which were also investigated in the previous evaluation. We selected 25 queries from the Cross Domain (CD1-CD7),
Life Science (LS1-LS7), and Linked Data (LD1-LD11) queries. We used a subset of the estimated CSPF generated
from the samples of the previous evaluation. In particular, we only considered the weighted and unweighted sam-
pling methods, leading to a total of 2160 estimated CSPF.11

11The previous experimental results suggest that the hybrid sampling method balances the two opposing (weighted and unweighted) sam-
pling methods. We therefore assume that the estimated CSPF based on the hybrid samples will exhibit a similar performance in the following
experiments. As a result, we only focus on the edge cases, that is weighted and unweighted samples.

L. Heling and M. Acosta / Characteristic sets profile features: Estimation and application to SPARQL query planning 515

As a baseline, we additionally computed the complete CSPF for all RDF graphs. In accordance with previous
approaches [26,27], we reduce the number of characteristics sets in the profile feature to a maximum of 10000
characteristic sets per RDF graph.

Implementation We implemented the proposed federated query planning approach based on CROP [18] and nLDE
[3]. We extended the query engine with an access operator for SPARQL endpoints and implemented our source
selection, query decomposition, and left-linear query plan optimizer to create query execution plans. The RDF
graphs in the federation are deployed with a single SPARQL endpoint per graph using Virtuoso v7.2..12 We deployed
all endpoints on a single machine (Debian Jessie 64 bit; CPU: 2x Intel(R) Xeon(R) CPU E5-2670 2.60GHz (16
physical cores); 256GB RAM) and execute the query engine on the same machine as well to avoid network latency.

We study the performance on each of the 30 samples for the 2 sampling methods (weighted and unweighted), 4
sample sizes (n′ = {0.1‰ · |E|, 0.5‰ · |E|, 1‰ · |E|, 5‰ · |E|}), and 3 projection function (φ1, φ2, φ3). This results
in a total of 30 · 2 · 4 · 3 = 720 configurations for the estimated CSPF. An additional configuration is given by the
complete statistics. Moreover, we repeated the execution of each query (25) in each configuration 3 times, resulting
in a total of 3 · 25 · 721 = 54075 query execution measurements. We set a timeout of 120 seconds per query for the
engine.

Evaluation metrics We study the following metrics:

1. Execution Time: Elapsed time spent by the engine to complete the evaluation of a query in seconds. This
includes time spent on query planning.

2. Number of requests: Number of requests performed by the engine to the SPARQL endpoints during the query
execution.

3. Answer completeness: Percentage of total answers produced. We computed the complete answers by executing
the queries over the union of all graphs.

4. Number of subexpressions: Number of subexpressions in the query decomposition to assess how well the
predicate co-occurrence of the graphs is captured in the estimated CSPF.

5.2.1. Experimental results
An overview of the experimental results is provided in Table 5. The table shows the mean and median execution

times, the mean number of requests, the mean percentage of answers produced, and the mean percentage of query
executions reaching the timeout. We start with the results for the unweighted sampling method (Q5). Regarding the
mean execution time, we observe the best performance for the unweighted sampling method with the largest sample
size 5.0‰and the projection function φ1. This configuration overall outperforms the other sampling methods and
also the baseline with complete statistics. The execution times for the other projection functions φ2 and φ3 are only
slightly higher in this case (Q7). Also, these configurations yield the lowest number of requests while producing
100% of all answers with none of the executions reaching the timeout. Moreover, a continuous improvement in
all evaluation metrics with increasing sample size (Q6) is visible for the unweighted sampling method. Both the
mean execution times and the mean number of requests are about 5 times lower for the largest sample size. At the
same time, the answer completeness increases by almost 30 percentage points, and the number of queries that reach
a timeout are reduced from 3.6% to 0%. These results indicate that larger sample sizes in combination with the
unweighted sampling method allows for obtaining more efficient query plans since the planner can identify relevant
sources more accurately, larger subexpression, and a more efficient join order.

In contrast, the performance results differ for the weighted sampling method (Q5). The weighted sampling method
with the second smallest sample size (0.5‰) yields the best performance. When comparing the results for the pro-
jection functions (Q7), we find similar results as for the unweighted sampling method, with only slight differences
for the different projection functions. The results for the sample size (0.5‰) show the lowest average execution
times and number of requests. Moreover, the query execution plans obtained for this sample size yields the highest
answer completeness with ≈ 98% and the fewest queries that reach the timeout (0.27%). With an increasing sample
size > 0.5‰, the mean execution times increase. However, when combining the observations of the mean with

12https://virtuoso.openlinksw.com/

https://virtuoso.openlinksw.com/

516 L. Heling and M. Acosta / Characteristic sets profile features: Estimation and application to SPARQL query planning

Table 5

Overview for the FedBench Queries. Mean and median execution times, mean number of requests, mean percentage of answers produces, and
mean percentage of queries reaching the timeout. Best values per table are indicated in bold

Unweighted Baseline

0.1‰ 0.5‰ 1.0‰ 5.0‰ 1000‰

φ1 φ2 φ3 φ1 φ2 φ3 φ1 φ2 φ3 φ1 φ2 φ3 –

Mean execution time [s] 7.09 6.69 6.77 4.75 4.69 4.65 3.33 3.34 3.33 1.53 1.54 1.54 8.43

Median execution time [s] 0.66 0.63 0.64 0.42 0.44 0.44 0.42 0.43 0.46 0.62 0.61 0.63 1.01

Mean number of requests 241.95 229.97 229.76 159.46 159.06 155.02 113.94 113.95 111.2 45.69 45.69 45.7 173.92

Answers [%] 72.13 72.09 72.13 90.13 90.13 90.09 96.53 96.53 96.53 100.0 100.0 100.0 100.0

Timeouts [%] 3.6 3.6 3.6 1.47 1.47 1.47 0.93 0.93 0.93 0.0 0.0 0.0 4.0

Weighted Baseline

0.1‰ 0.5‰ 1.0‰ 5.0‰ 1000‰

φ1 φ2 φ3 φ1 φ2 φ3 φ1 φ2 φ3 φ1 φ2 φ3 –

Mean execution time [s] 9.24 7.61 8.46 2.84 1.89 1.98 4.45 4.13 4.49 6.08 6.11 6.45 8.43

Median execution time [s] 0.56 0.55 0.56 0.43 0.45 0.56 0.57 0.58 0.68 0.76 0.77 0.77 1.01

Mean number of requests 170.94 171.75 174.21 64.08 64.14 64.16 178.27 178.18 192.06 256.97 257.02 257.32 173.92

Answers [%] 81.33 81.73 81.69 97.2 98.0 98.0 96.8 97.07 96.8 96.0 96.0 96.0 100.0

Timeouts [%] 5.73 4.36 5.07 1.07 0.27 0.27 2.8 2.53 2.8 4.13 4.13 4.13 4.0

the median execution times, we find that the increase in the median execution times is substantially smaller. This
indicates, that for a large number of queries the execution time only slightly increases, while for a few queries the
execution time is significantly higher.

Hence, we focus on the results for the weighted sampling method in more detail to investigate the following
observations: (i) a larger sample size in the weighted sampling does not entail better query execution performance,
and (ii) the query planner with complete statistics is outperformed by the majority of configurations with estimated
statistics. The mean execution times and mean number of requests (both log scale) per query and sample size for the
weighted sampling method (all projection functions) are shown in Fig. 6. The trend of an increase in execution time
with larger samples sizes is observable especially for the queries CD4 and LS3. For the majority of the remaining
queries, we see a similar or even better performance with larger sample sizes according to execution times and num-
ber of requests. The observation that few outliers (especially CD4 and LS3) skew the overall average performance
results is also true for the performance of the planner with the complete statistics.13 Taking a closer look at the
results for LS3, we find that for the sample size 0.5‰, the engine times out 3 times. Intriguingly, for the largest
sample size (5.0‰) and also for the complete statistics, it reaches the timeout for all 90 executions. Similarly, for
query CD4, larger sample sizes also lead to several executions reaching the timeout. The reason for these results
lies in the cardinality estimation approach. We observe that CD4 and LS3 have a selective triple pattern in which
the object is bound. The STARJOINCARDINALITY algorithm tends to overestimate the cardinalities for stars with
such triple patterns and the tendency of overestimating is higher with more characteristics sets that are taken into
consideration.14 As a result, this overestimation in the query CD4 and LS3 leads to a sub-optimal join ordering.
For example, Fig. 7 shows the join ordering for CD4 obtained with one weighted sample with size 0.5‰and 5.0‰.
The estimated cardinalities (in blue) and true cardinalities (in parenthesis) in this example reveal that due to the
overestimation of the subexpression with the bound object (“Tarzan”), the planner chooses a sub-optimal join order
in the case of the larger sample.

Finally, we want to examine whether the proposed structural similarity measures (c.f. Section 3.6) reflect the
performance of the query plans obtained by our planning approach (Q8). To this end, we compare the impact

13Note that the query planner is designed to handle estimated statistics. Therefore, a query planner that fully leverages the complete statistics,
e.g., with the (federated) characteristic pairs, would potentially obtain a more efficient query plan.

14This is due to the fact that the number of relevant characteristic sets for a triple pattern (?x p o) increases while the conditional selectivity
sel(?o = x |?p = p) only slightly decreases.

L. Heling and M. Acosta / Characteristic sets profile features: Estimation and application to SPARQL query planning 517

Fig. 6. Mean performances for all FedBench queries for the weighted sampling method and averaged across all projection functions.

Fig. 7. CD4: Join Ordering obtained by the query planner based on the estimated CSPF from one of the weighted samples. Indicate below is the
estimated cardinality (blue) and the actual cardinality(in brackets).

of the out-degree similarity (δod), predicate coverage (δpc), absolute set coverage (δac), and relative set coverage
(δrc) on the query decompositions of our query planner. Specifically, we focus on their impact on the number of
subexpressions in the decomposition and the percentage of answers produced by the query plans. For each of the
720 configurations, we compute the mean similarity measure values for all RDF graphs in the federation and the
mean answer completeness and number of subqueries for all queries in the benchmark. Figure 8 shows the relation
between these measures. As a quantitative measure to assess whether the values are correlated, we compute the
Pearson correlation coefficient (PCC). We start with the number of subexpressions in the query decompositions as
a way to assess how well the predicate co-occurrence is captured in the profile estimations. Fewer subexpressions
indicate that the query planner can merge more triple patterns into larger subexpressions to be evaluated jointly
according to the characteristic sets in the CSPF (Line 10 in Algorithm 1). This allows for reducing the number
of requests as well as the number of intermediate results that need to be transferred. Inspecting the number of
subexpressions (Fig. 8a), there is no correlation between the out-degree similarity and the number of subexpression
with PCC = −0.01. For the other measures, however, there is a negative correlation with PCC = −0.854 for

518 L. Heling and M. Acosta / Characteristic sets profile features: Estimation and application to SPARQL query planning

Fig. 8. Relation between the answer completeness and the number of subexpression of the query plans and the structural similarity measures for
the estimated CSPF. Sample size are indicated in color.

δpc, PCC = −0.746 for δac, and PCC = −0.814 for δrc. The correlation indicates higher similarity values yield
decomposition with fewer subexpression. Hence, these measures reflect how well the predicate co-occurrence is
captured in the profile feature estimations, allowing the query planner to obtain efficient query plans.

Similar to this observation, the results in Fig. 8b show that, there is no correlation between the answer com-
pleteness and the out-degree similarity δod with PCC = 0.039. For the other similarity measures, we observe a
positive correlation of the similarity measure and the answer completeness, which is also reflected in the correlation
coefficients with PCC = 0.856 for δpc, PCC = 0.643 for δac, and PCC = 0.743 for δrc. The results indicate
that estimated characteristic sets profile features with higher predicate and (absolute and relative) characteristic sets
coverage help the query planner to obtain query plans that produce more answers.

5.2.2. Final discussion
Concluding the evaluation of the experimental results for our query planning approach, we summarize the findings

by providing answers to our core question.
Q5: The results show that the CSPF estimations obtained from the unweighted sampling method allow for deter-

mining the most efficient query plans. The difference in performance between the sampling methods is not due to the
representativeness of the samples but rather due to sub-optimal join orderings caused by misestimated cardinalities
for the weighted samples. This sub-optimal join led to time outs, which negatively affect the aggregated execution
time and answer completeness of the weighted sampling. The lowest execution times and number of requests are
observed for the unweighted sampling method with the largest sample size. For this configuration, all answers are
produced and none of the query executions reach the timeout.

Q6: Regarding the results for different sample sizes, CSPF estimations obtained from larger samples using the
unweighted sampling method improve the query execution performance. In contrast, the second smallest sample
size yields the best results for the weighted sampling methods. In the latter case, the aggregated results are skewed
due to few queries for which the approach overestimates the cardinality of subexpressions with a bound object.
Adapting the cardinality estimation approach to better cope with sampled statistics could alleviate these shortcom-

L. Heling and M. Acosta / Characteristic sets profile features: Estimation and application to SPARQL query planning 519

ings. The goal of the experiments is understanding how the increasing the sample sizes impacts the query execution
performance. Note that determining exact samples sizes where the planner will yield the same plans as with full
statistics is not feasible as it depends on the graphs and the queries.

Q7: The count estimations of the projection functions are used to estimate the cardinalities of the subexpressions
in the decompositions. The results show that there is only a small difference in query execution performance for the
different projection functions (ceteris paribus). We observed that, even if the projection functions achieve different
accuracy, this barely affects the join ordering. This is because the relative differences between count estimations of
the functions are consistent with the relative differences among the true counts.

Q8: Considering the structural similarity measures, the results suggest that the similarity measures predicate cov-
erage and (absolute and relative) set coverage correlate with the number of subexpressions in the decomposition and
answer completeness of the query plans. The correlation indicates that more efficient query plans can be obtained
for CSPF estimation that representative according to these measures. This also underpins the effectiveness of the
measures.

Summarizing the evaluation, we demonstrated the successful application of characteristics sets profile feature
estimations to federated query planning. Overall, the unweighted sampling method with the largest sample size
showed the best average performance. The experiments show that the proposed query planner provides a foundation
to further develop query planning approaches that leverage estimated profile features obtained from RDF graph
samples. For instance, future research could investigate source selection techniques as proposed in [35], but relying
on samples to get the authority of subjects and objects in the graphs.

Limitations Finally, we want to discuss the limitations of the proposed query planner and experiments. The first
limitation is the heuristic nature of the planner. As a result, there are no theoretical guarantees for the answer com-
pleteness of the query decomposition. For example, in case the planner finds at least one relevant source for a triple
pattern in the estimated statistics, it assumes there are no additional relevant sources, which are not captured in
the statistics. In other words, the query planner does not know what it does not know about. This limitation could
potentially be overcome by obtaining additional information from the RDF graph, such as its distinct predicates, in
the case that the expressivity of the query interface supports this. Secondly, our evaluation focuses on an implemen-
tation that combines query planning and execution based on CROP. Therefore, our insights are currently limited to
this setup and future work should investigate our planner with other query execution engines (e.g. using SPARQL
1.1 queries). This would also allow for a direct comparison to Odyssey. Finally, additional federated benchmarks
could be investigated to gain further insights.

Regardless, our experimental results still provide valuable insights into the potential of using sample-based statis-
tics and summaries to support federated querying approaches without requiring access to the entire datasets of the
federation members.

6. Related work

We now discuss related work on statistical profiling (Section 6.1), graph sampling (Section 6.2) and federated
query processing (Section 6.3).

6.1. Statistical profiling

In the realm of statistical feature profiling for RDF graphs, a variety features and tools to assess them have been
proposed. Zloch et al. [44] investigate statistical features of RDF graphs with the focus on the topological graph
structure including degree-based, edge-based, centrality, and descriptive statistical measures. Consequently, these
measures are not specific to RDF graphs and, in contrast to our work, do not capture the semantics on the instance
or schema level of the data. Complementary, Fernández et al. [14] focus on RDF-specific measures. They propose
various schema- and instance-level metrics to characterize RDF datasets that incorporate the particularities of RDF
graphs. The metrics and the resulting statistics are tailored to the development of better RDF data storage solutions
including data structures, indexes, and compression techniques by considering RDF data characteristics.

520 L. Heling and M. Acosta / Characteristic sets profile features: Estimation and application to SPARQL query planning

LODStats [6] is a statement-stream-based approach for gathering comprehensive statistics of RDF datasets. They
present 32 instance- and schema-level statistical criteria covering both RDF-specific metrics as well as topological
graph metrics. The authors aim to improve reuse, linking, revising, or querying Linked Open Data sources but do
not discuss specific applications.

ProLOD++ [1] is a tool to support various profiling, mining, and cleansing functionalities for RDF datasets. It
is an extension of ProLOD [7] that computes profiles at domain, schema, and data (i.e., instance) level of datasets.
ProLOD++ supports browser-based visualizations of these characteristics with the goal to better support data con-
sumers in understanding, consuming, and integrating Linked Open Data sources.

Finally, ExpLOD [20] is a tool for generating summaries of RDF datasets combining text labels and bisimula-
tion contractions. These summaries include schema-level statistical information such as the class, predicate, and
interlinking usage in the dataset. Similar to ProLOD++ [1], the goal of the created summaries is to facilitate the
understanding the RDF usage, such as vocabulary usage and links between datasets.

In this work, we propose a novel schema-level statistical profile feature based on characteristic sets that captures
both the topological structure of the graph as well as its semantics. This statistical feature has not yet been addressed
in related work. We demonstrate an application of estimations of this feature in federated query planning.

6.2. Graph sampling

Next, we focus on sampling approaches for graphs. We start by introducing related work on sampling large graphs
and networks. Thereafter, we analyze RDF-specific sampling approaches and their applications.

Graph sampling A variety of approaches for sampling large non-RDF graphs have been proposed. Leskovec et al.
[21] provide an overview of approaches suitable for obtaining representative samples from large graphs for scale-
down sampling for static graphs and back-in-time sampling for evolving graphs. They consider the distributions of
different structural properties of the graphs, denoted static graph patterns, as the criteria for evaluating the represen-
tativeness of the samples for scale-down sampling. These static graph patterns include, among others, the in-degree,
out-degree, and cluster coefficient distributions. As a similarity measure to assess the representativeness of samples,
they use the Kolmogorov-Smirnov D-statistic of the graph patterns’ distribution. They present three major cate-
gories of sampling approaches: (i) random node selection, (ii) random edge selection, and (iii) graph exploration.
The results of their evaluation reveal that there is no single best solution and the authors conclude that an appropriate
sampling algorithm and sample size depends on the specific application.

Ahmed et al. [5] present a detailed framework for the problem of graph sampling that focuses on large scale
graphs. They identify two models of computation that are relevant when sampling from large graphs. The static
model of computation allows for randomly accessing any location in the graph. The streaming model of computa-
tion merely allows for accessing edges in a sequential stream of edges. In their evaluation, the authors show that the
proposed methods preserve key graph statistics of the graph (e.g., degree distributions, cluster coefficient distribu-
tion). Moreover, they demonstrate low space- and runtime-complexity that is in the order of edges in the sample for
these methods.

Our sampling methods are a special case scale-down sampling of random node selection approaches according
to [21], that only sample specific nodes, the entities of an RDF graph. However, in contrast to traditional graph
sampling, we aim to generate representative samples for our specific statistical graph feature. Hence, the represen-
tativeness of a sample is given by the accuracy of the profile feature estimation.

RDF graph sampling Sampling approaches for RDF graphs have been proposed and applied to different problems
as well. In the following, we will analyze example applications and show how sampling approaches are chosen
according to those applications.

Debattista et al. [11] propose approximating specific quality metrics for large, evolving datasets based on samples.
They argue that the exact computation of some quality metrics is too time-consuming and that an approximation is
usually sufficient. In particular, they apply a sampling-based approach for the quality metrics (i) dereferenceability
of URIs, and (ii) links to external data providers. They use the reservoir sampling approach [42] which randomly
selects n items from a set of N elements with the equal probability 1/N . In their evaluation, the authors studied
how well the ratios measured by quality metrics can be estimated based on the samples. Therefore, the similarity

L. Heling and M. Acosta / Characteristic sets profile features: Estimation and application to SPARQL query planning 521

of estimated and true ratio reflects their notion of representativeness. In contrast to our work, the authors apply
sampling to reduce the computational effort for quality metrics, and therefore, the sampling methods do not need to
capture the semantics or structural features of the dataset.

In their work, Rietveld et al. [34] aim to obtain samples that entail as many of the original answers to typical
SPARQL queries. They use query logs from SPARQL endpoints to determine such typical queries. The sampling
pipeline proposed by the authors consists of four steps and aims to obtain the parts of the graph that are relevant
for answering the queries. First, they rewrite the original RDF graph as a directed unlabeled graph. On the resulting
graph, they then compute the structural graph metrics PageRank, in-degree, and out-degree for all nodes. Thereafter,
they use the structural graph metrics to rank the triples in the graph and generate the sample by selecting the top-k
percent of all triples. The authors aim to obtain samples with a “more manageable size” [34] that produce answers
to common SPARQL queries and hence, the samples’ representativeness is measured by the recall for those queries.
As a result, the resulting samples may be biased towards more prominent entities in the graphs and less suitable to
capture long-tail entities [8]. Different from our work, the goal is obtaining relevant samples which allow answering
common queries. Therefore, these samples are not representative in our sense with regards to the semantic and
statistical features.

Soulet et al. [39] focus on analytical queries, which are typically too expensive to be executed directly over public
SPARQL endpoints. They propose separating the computation of such expensive queries by executing them over
random samples of the RDF graph. Due to the properties of the queries, the values for the aggregations converge as
they are executed over increasingly larger portions of the graph. As a result, the authors do not rely on the necessity
of each sample to be representative according to the aggregates, but rely on the convergence of the aggregates
towards the true value with an increasing number of samples. Similar to Soulet et al. [39], our work is motivated by
the restrictions that occur especially in decentralized scenarios with large, evolving datasets where it is not feasible
to have local access to every dataset. Different from [39], we aim to sample the data in such a fashion that a single
sample can be used to estimate the statistical profile feature and do not rely on the convergence properties induced
by increasing sample sizes.

6.3. Profiling-based federated query processing

We demonstrate how the profile features estimations can be applied to federated query processing. Therefore, in
this section, we analyze other types of pre-computed statistics leveraged by federated query engines to determine
efficient plans.

ANAPSID [4] is an adaptive federated query engine that leverages a Catalog with high-level statistics on the
members in the federation. This catalog contains a list of the predicates present in each data member in the federation
and is used by the engine to perform the source selection and query decomposition.

More fine-grained statistics are leveraged by the following approaches. SPLENDID [15] uses indexes built from
VoID descriptions for query planning. These indexes additionally hold information on the occurrences of predicates
within the classes of the sources. In combination with ASK queries, the indexes are used to decompose the query
into subqueries to be evaluated at the sources in the federation. HiBISCuS [35] is a source selection approach that
employs data summaries to prune the relevant sources. The data summaries are comprised of the capabilities of a data
source which consists of the subject and object authorities for all predicates in a data source. These summaries allow
for deciding which source will contribute to the final query answers according to the authorities of the subjects and
objects they contain. CostFed [36] is a cost model-based planner using an index with statistic profiles on the sources,
so-called Data Summaries. They extend the data summaries from HiBISCus with additional information on both
the distribution of objects and subjects per predicates. In addition to source selection and query decomposition, the
additional statistics are used in their cost model to estimate the cost of alternative query plans. Similar to CostFed,
SemaGrow [10] leverages a metadata to estimate the cost of alternative query plans. The statistics include the
number of distinct subjects, predicates, and objects as well as the total number of triples that match a given triple
pattern. These statistics are used to estimate the join cardinalities in their cost model. Finally, Odyssey [26] relies on
the characteristic sets of the federation members. Additionally, the characteristics pairs and federated characteristic
pairs are used to capture links between entities within and across the federation members.

522 L. Heling and M. Acosta / Characteristic sets profile features: Estimation and application to SPARQL query planning

Our approach also uses statistics to perform source selection, query decomposition, and join ordering to obtain
efficient query plans. Specifically, our approach leverages characteristics sets similar to Odyssey [26]. In contrast
to the aforementioned approaches, however, our approach does not require the complete statistics but is specifically
designed to handle estimated statistics from RDF graph samples. As a result, our approach aims to leverage the
estimated statistics as much as possible and is also able to cope with potentially misestimated or missing statistics.

7. Conclusion

In this work, we presented an approach to estimate RDF dataset profile features and an application of those es-
timations in federated SPARQL query planning. Specifically, we focused on the characteristic set profile features
as it captures not only structural but also semantic properties of RDF graphs. We proposed a sampling-based ap-
proach that utilizes a projection function to estimate characteristic set profile feature statistics (RQ 1). Furthermore,
we introduced four structural and two statistical similarity measures that allow for assessing the representativeness
of the generated feature estimations. In our experimental study, we investigated the effectiveness of the proposed
estimation approach using these similarity measures (RQ 2). The evaluation showed that our approach obtains
representative feature estimations according to the structural similarity measure. In contrast, the lower statistical
similarity values showed that the count distributions of characteristics sets in the RDF graphs are more challenging
to estimate. These results highlight that the samples capture structural aspects while it is difficult to capture the
distribution of the characteristic sets.

The second main contribution of this work focused on an application of the proposed feature estimations to
better understand the practical implications of their representativeness (RQ 3). We proposed a federated query
planning approach that leverages the estimated characteristic set profile features to perform source selection, query
decomposition, and join ordering. The query planner is based on insights from existing characteristic set-based query
planning strategies. However, it is adapted such that it can handle limited and potentially inaccurate information in
the profile feature estimations. The results of our experiments on the FedBench benchmark illustrated the feasibility
of using estimated profile features. Overall, we found the best query plans are obtained for the feature estimations
using the unweighted sampling method with improvements for larger sample sizes. Moreover, the results revealed
that the capability of obtaining more efficient query plans with respect to the number of subexpressions and answer
completeness is also reflected in the structural similarity measures (RQ 2).

Future work will focus on two directions. The first direction is extending our profile feature estimation approach
with further sampling approaches that make use of additional information, such as query logs, to better capture
the relevant parts of the RDF graphs. Besides, our approach can be extended to estimate other profile features.
The second area of research is the application of the feature estimations to other problems. It would be worth
investigating how other applications can benefit from the estimated profile features. Furthermore, we aim to improve
the query planning approach by (i) leveraging further information that can be obtained from the samples, and (ii)
implementing a hybrid planning strategy that not only relies on the estimated statistics. Finally, an evaluation of our
query planner in additional federations will support a better understanding of the advantages and limitations of our
approach.

Acknowledgements

This work was supported by the grant QUOCA (FKZ 01IS17042) from the German Federal Ministry of Education
and Research (BMBF).

Appendix. Efficiency of CSPF computation

Part of the motivation of this work is the fact that computing and estimating CSPF over samples of the original
graph reduces the computational effort. As discussed in Section 3.5, the computation method needs to be tailored

L. Heling and M. Acosta / Characteristic sets profile features: Estimation and application to SPARQL query planning 523

to the access methods of the RDF graph. To showcase the reduction in computational effort when computing CSPF
from samples, we focus on a single, general case and we assume the RDF graphs to be given as edge lists (i.e.,
n-triples files).

Algorithm The algorithm first sorts the triples in the graph G by subject. Thereafter, it iterates the sorted list
of triples, determining the characteristic set per subject and storing the corresponding statistics in a hash table or
dictionary. This process is detailed in Algorithm 2.

Central to the computation are dictionaries Dict() (or hash tables) that hold the statistics. The keys() function
of a dictionary returns the set of keys. The gets(k, v) function returns the value for key k, if k is a key in the
dictionary. Otherwise, it initializes the value for k with v and returns v. The algorithm uses the C S count dictionary
for the count statistics and the C S mult dictionary for the multiplicities. The algorithm iterates all triples in the
graph (Line 7 to Line 18) and keeps track of the current characteristic set in the dictionary CS, where the keys are
the predicates and the values their counts. When a new subject is encountered (s′ �= si), the algorithm updates the
statistics in C S count and C S mult accordingly. Note that for brevity, we omit a final iteration to C S mult that divides
the absolute multiplicity by the count to obtain the mean multiplicity as defined in Equation (2).

Algorithm 2: Characteristic set profile feature creation
Input: RDF Graph G = {(s1, p1, o1), . . . , (sn, pn, on)}
Output: CSPF: Count statistics C S count and multiplicity statistics C S mult

// Sort G by subject in a list
1 Gsorted ← sort(G)

// Append null to determine end of triples
2 Gsorted.append((null, null, null))
// Dictionaries for count and multiplicity

3 C S count ← Dict()
4 C S mult ← Dict()
// Auxiliary dictionary

5 CS ← Dict()
6 s′ ← null
7 for (si , pi, oi) ∈ Gsorted do
8 if s′ = null then

// Initialize s’
9 s′ ← si

// If a new subject is encountered
10 if s′ �= si then

// Increase count for characteristic set of s′
11 C S count[CS.keys()] ← C S count.get(CS.keys(), 0) + 1

// Count occurrence of each predicate
12 for key, value ∈ CS do
13 C S mult.get(CS.keys(), Dict())[key] ← C S mult.get(CS.keys(), Dict()).get(key, 0) + value
14 end

// Reset auxiliary dictionary and update s′
15 CS ← Dict()
16 s′ ← si

// Increase counter for predicate pi

17 CS[pi] ← CS.get(pi, 0) + 1
18 end
19 return C S count, C S mult

524 L. Heling and M. Acosta / Characteristic sets profile features: Estimation and application to SPARQL query planning

Fig. 9. Runtimes (log-scale) for computing the CSPF for the different sample sizes and the complete RDF graphs.

Efficiency results In Fig. 9, the mean runtimes for computing the CSPF are summarized per sample size and for the
entire original graph. For the sake of comparability, the triples were randomly shuffled before computing the CSPF.
For each of the 90 samples per dataset and sample size, the CSPF was computed once and the runtimes averaged
across the 90 measurements. For the original graphs, this process was repeated 10 times to obtain an average runtime
value. The results indicate a substantial reduction in the runtimes for computing the CSPF for the samples than the
original graphs (note the log-scale for the runtimes). In addition, the gain in efficiency also depends on the structure
of the RDF graph, such as its out-degree dispersion.

References

[1] Z. Abedjan, T. Grütze, A. Jentzsch and F. Naumann, Profiling and mining RDF data with ProLOD++, in: Proceedings of ICDE, 2014.
doi:10.1109/ICDE.2014.6816740.

[2] M. Acosta, O. Hartig and J.F. Sequeda, Federated RDF query processing, in: Encyclopedia of Big Data Technologies, S. Sakr and A.Y.
Zomaya, eds, Springer, 2019. doi:10.1007/978-3-319-63962-8_228-1.

[3] M. Acosta and M. Vidal, Networks of linked data eddies: An adaptive web query processing engine for RDF data, in: The Semantic Web –
ISWC 2015 – 14th International Semantic Web Conference, Proceedings, Part i, Bethlehem, PA, USA, October 11–15, 2015, M. Arenas,
Ó. Corcho, E. Simperl, M. Strohmaier, M. d’Aquin, K. Srinivas, P. Groth, M. Dumontier, J. Heflin, K. Thirunarayan and S. Staab, eds,
Lecture Notes in Computer Science, Vol. 9366, Springer, 2015, pp. 111–127. doi:10.1007/978-3-319-25007-6_7.

[4] M. Acosta, M. Vidal, T. Lampo, J. Castillo and E. Ruckhaus, ANAPSID: An adaptive query processing engine for SPARQL endpoints,
in: The Semantic Web – ISWC 2011 – 10th International Semantic Web Conference, Proceedings, Part I, Bonn, Germany, October 23–27,
2011, 2011, pp. 18–34. doi:10.1007/978-3-642-25073-6_2.

[5] N.K. Ahmed, J. Neville and R.R. Kompella, Network sampling: From static to streaming graphs, TKDD 8(2) (2013), 7:1–7:56. doi:10.
1145/2601438.

[6] S. Auer, J. Demter, M. Martin and J. Lehmann, LODStats – an extensible framework for high-performance dataset analytics, in: Poceedings
of EKAW, 2012, pp. 353–362. doi:10.1007/978-3-642-33876-2_31.

[7] C. Böhm, F. Naumann, Z. Abedjan, D. Fenz, T. Grütze, D. Hefenbrock, M. Pohl and D. Sonnabend, Profiling linked open data with
ProLOD, in: Workshops Proceedings of the 26th International Conference on Data Engineering, ICDE, 2010, pp. 175–178. doi:10.1109/
ICDEW.2010.5452762.

[8] E. Cao, D. Wang, J. Huang and W. Hu, Open knowledge enrichment for long-tail entities, in: WWW ’20: The Web Conference 2020, Taipei,
Taiwan, April 20–24, 2020, 2020, ACM/IW3C2 pp. 384–394. doi:10.1145/3366423.3380123.

[9] S. Cebiric, F. Goasdoué, H. Kondylakis, D. Kotzinos, I. Manolescu, G. Troullinou and M. Zneika, Summarizing semantic graphs: A survey,
VLDB, J. 28(3) (2019), 295–327. doi:10.1007/s00778-018-0528-3.

[10] A. Charalambidis, A. Troumpoukis and S. Konstantopoulos, SemaGrow: Optimizing federated SPARQL queries, in: Proceedings of the
11th International Conference on Semantic Systems, SEMANTICS 2015, Vienna, Austria, September 15–17, 2015, sA. Polleres, T. Pelle-
grini, S. Hellmann and J.X. Parreira, eds, ACM, 2015, pp. 121–128. doi:10.1145/2814864.2814886.

[11] J. Debattista, S. Londoño, C. Lange and S. Auer, Quality assessment of linked datasets using probabilistic approximation, in: Proceedings
of ESWC, 2015. doi:10.1007/978-3-319-18818-8_14.

[12] S. Dietze, E. Demidova and K. Todorov, RDF dataset profiling, in: Encyclopedia of Big Data Technologies, S. Sakr and A.Y. Zomaya, eds,
Springer, 2019. doi:10.1007/978-3-319-63962-8_288-1.

https://doi.org/10.1109/ICDE.2014.6816740
https://doi.org/10.1007/978-3-319-63962-8_228-1
https://doi.org/10.1007/978-3-319-25007-6_7
https://doi.org/10.1007/978-3-642-25073-6_2
https://doi.org/10.1145/2601438
https://doi.org/10.1145/2601438
https://doi.org/10.1007/978-3-642-33876-2_31
https://doi.org/10.1109/ICDEW.2010.5452762
https://doi.org/10.1109/ICDEW.2010.5452762
https://doi.org/10.1145/3366423.3380123
https://doi.org/10.1007/s00778-018-0528-3
https://doi.org/10.1145/2814864.2814886
https://doi.org/10.1007/978-3-319-18818-8_14
https://doi.org/10.1007/978-3-319-63962-8_288-1

L. Heling and M. Acosta / Characteristic sets profile features: Estimation and application to SPARQL query planning 525

[13] M.B. Ellefi, Z. Bellahsene, J.G. Breslin, E. Demidova, S. Dietze, J. Szymanski and K. Todorov, RDF dataset profiling – a survey of features,
methods, vocabularies and applications, Semantic Web 9(5) (2018), 677–705. doi:10.3233/SW-180294.

[14] J.D. Fernández, M.A. Martínez-Prieto, P. de la Fuente Redondo and C. Gutiérrez, Characterising RDF data sets, J. Inf. Sci. 44(2) (2018),
203–229. doi:10.1177/0165551516677945.

[15] O. Görlitz and S. Staab, SPLENDID: SPARQL endpoint federation exploiting VOID descriptions, in: Proceedings of the Second Interna-
tional Workshop on Consuming Linked Data (COLD2011), Bonn, Germany, October 23, 2011, O. Hartig, A. Harth and J.F. Sequeda, eds,
CEUR Workshop Proceedings, Vol. 782, 2011, CEUR-WS.org, http://ceur-ws.org/Vol-782/GoerlitzAndStaab_COLD2011.pdf.

[16] A. Gubichev and T. Neumann, Exploiting the query structure for efficient join ordering in SPARQL queries, in: Proceedings of EDBT,
2014. doi:10.5441/002/edbt.2014.40.

[17] L. Heling and M. Acosta, Estimating characteristic sets for RDF dataset profiles based on sampling, in: The Semantic Web – 17th In-
ternational Conference, ESWC 2020, Proceedings, Heraklion, Crete, Greece, May 31–June 4, 2020, A. Harth, S. Kirrane, A.N. Ngomo,
H. Paulheim, A. Rula, A.L. Gentile, P. Haase and M. Cochez, eds, Lecture Notes in Computer Science, Vol. 12123, Springer, 2020, pp.
157–175. doi:10.1007/978-3-030-49461-2_10.

[18] L. Heling and M. Acosta, Cost- and robustness-based query optimization for linked data fragments, in: ISWC (1), Lecture Notes in Computer
Science, Vol. 12506, Springer, 2020, pp. 238–257.

[19] T. Johnson, Data profiling, in: Encyclopedia of Database Systems, L. Liu and M.T. Özsu, eds, 2nd edn, Springer, 2018. doi:10.1007/978-1-
4614-8265-9_601.

[20] S. Khatchadourian and M.P. Consens, ExpLOD: Summary-based exploration of interlinking and RDF usage in the linked open data cloud,
in: Proceedings of ESWC, 2010, pp. 272–287. doi:10.1007/978-3-642-13489-0_19.

[21] J. Leskovec and C. Faloutsos, Sampling from large graphs, in: Proceedings of ACM SIGKDD, 2006, pp. 631–636. doi:10.1145/1150402.
1150479.

[22] M.N. Mami, D. Graux, S. Scerri, H. Jabeen, S. Auer and J. Lehmann, Uniform access to multiform data lakes using semantic technologies,
in: Proceedings of the 21st International Conference on Information Integration and Web-Based Applications & Services, iiWAS 2019,
Munich, Germany, December 2–4, 2019, ACM, 2019, pp. 313–322. doi:10.1145/3366030.3366054.

[23] M.V. Mannino, P. Chu and T. Sager, Statistical profile estimation in database systems, ACM Comput. Surv. 20(3) (1988), 191–221. doi:10.
1145/62061.62063.

[24] M. Meimaris, G. Papastefanatos, N. Mamoulis and I. Anagnostopoulos, Extended characteristic sets: Graph indexing for SPARQL query
optimization, in: Proceedings of ICDE, 2017. doi:10.1109/ICDE.2017.106.

[25] G. Moerkotte, T. Neumann and G. Steidl, Preventing bad plans by bounding the impact of cardinality estimation errors, PVLDB 2(1) (2009),
982–993, http://www.vldb.org/pvldb/2/vldb09-657.pdf. doi:10.14778/1687627.1687738.

[26] G. Montoya, H. Skaf-Molli and K. Hose, The odyssey approach for optimizing federated SPARQL queries, in: Proceedings of ISWC, 2017.
doi:10.1007/978-3-319-68288-4_28.

[27] T. Neumann and G. Moerkotte, Characteristic sets: Accurate cardinality estimation for RDF queries with multiple joins, in: Proceedings of
ICDE, 2011. doi:10.1109/ICDE.2011.5767868.

[28] T. Neumann and G. Weikum, The RDF-3X engine for scalable management of RDF data, VLDB J. 19(1) (2010), 91–113. doi:10.1007/
s00778-009-0165-y.

[29] M. Newman, Networks, Oxford University Press, 2018.
[30] N.F. Noy, Y. Gao, A. Jain, A. Narayanan, A. Patterson and J. Taylor, Industry-scale knowledge graphs: Lessons and challenges, Commun.

ACM 62(8) (2019), 36–43. doi:10.1145/3331166.
[31] J.Z. Pan, G. Vetere, J.M. Gómez-Pérez and H. Wu (eds), Exploiting Linked Data and Knowledge Graphs in Large Organisations, Springer,

2017. ISBN 978-3-319-45652-2. doi:10.1007/978-3-319-45654-6.
[32] M. Pham, L. Passing, O. Erling and P.A. Boncz, Deriving an emergent relational schema from RDF data, in: Proceedings of the 24th

International Conference on World Wide Web, WWW 2015, Florence, Italy, May 18–22, 2015, A. Gangemi, S. Leonardi and A. Panconesi,
eds, ACM, 2015, pp. 864–874. doi:10.1145/2736277.2741121.

[33] B.F. Ribeiro, P. Wang, F. Murai and D. Towsley, Sampling directed graphs with random walks, in: Proceedings of the IEEE INFOCOM
2012, 2012, pp. 1692–1700. doi:10.1109/INFCOM.2012.6195540.

[34] L. Rietveld, R. Hoekstra, S. Schlobach and C. Guéret, Structural properties as proxy for semantic relevance in RDF graph sampling, in:
Proceedings of ISWC, 2014. doi:10.1007/978-3-319-11915-1_6.

[35] M. Saleem and A.N. Ngomo, HiBISCuS: Hypergraph-based source selection for SPARQL endpoint federation, in: Proceedings of ESWC,
2014, pp. 176–191. doi:10.1007/978-3-319-07443-6_13.

[36] M. Saleem, A. Potocki, T. Soru, O. Hartig and A.N. Ngomo, CostFed: Cost-based query optimization for SPARQL endpoint federation,
in: Proceedings of the 14th International Conference on Semantic Systems, SEMANTICS 2018, Vienna, Austria, September 10–13, 2018,
2018, pp. 163–174. doi:10.1016/j.procs.2018.09.016.

[37] M. Schmidt, O. Görlitz, P. Haase, G. Ladwig, A. Schwarte and T. Tran, FedBench: A benchmark suite for federated semantic data query
processing, in: The Semantic Web – ISWC 2011 – 10th International Semantic Web Conference, Proceedings, Part I, Bonn, Germany,
October 23–27, 2011, L. Aroyo, C. Welty, H. Alani, J. Taylor, A. Bernstein, L. Kagal, N.F. Noy and E. Blomqvist, eds, Lecture Notes in
Computer Science, Vol. 7031, Springer, 2011, pp. 585–600. doi:10.1007/978-3-642-25073-6_37.

[38] M. Schmidt, M. Meier and G. Lausen, Foundations of SPARQL query optimization, in: Database Theory – ICDT 2010, 13th International
Conference, Proceedings, Lausanne, Switzerland, March 23–25, 2010, L. Segoufin, ed., ACM International Conference Proceeding Series,
ACM, 2010, pp. 4–33. doi:10.1145/1804669.1804675.

https://doi.org/10.3233/SW-180294
https://doi.org/10.1177/0165551516677945
http://ceur-ws.org/Vol-782/GoerlitzAndStaab_COLD2011.pdf
https://doi.org/10.5441/002/edbt.2014.40
https://doi.org/10.1007/978-3-030-49461-2_10
https://doi.org/10.1007/978-1-4614-8265-9_601
https://doi.org/10.1007/978-1-4614-8265-9_601
https://doi.org/10.1007/978-3-642-13489-0_19
https://doi.org/10.1145/1150402.1150479
https://doi.org/10.1145/1150402.1150479
https://doi.org/10.1145/3366030.3366054
https://doi.org/10.1145/62061.62063
https://doi.org/10.1145/62061.62063
https://doi.org/10.1109/ICDE.2017.106
http://www.vldb.org/pvldb/2/vldb09-657.pdf
https://doi.org/10.14778/1687627.1687738
https://doi.org/10.1007/978-3-319-68288-4_28
https://doi.org/10.1109/ICDE.2011.5767868
https://doi.org/10.1007/s00778-009-0165-y
https://doi.org/10.1007/s00778-009-0165-y
https://doi.org/10.1145/3331166
https://doi.org/10.1007/978-3-319-45654-6
https://doi.org/10.1145/2736277.2741121
https://doi.org/10.1109/INFCOM.2012.6195540
https://doi.org/10.1007/978-3-319-11915-1_6
https://doi.org/10.1007/978-3-319-07443-6_13
https://doi.org/10.1016/j.procs.2018.09.016
https://doi.org/10.1007/978-3-642-25073-6_37
https://doi.org/10.1145/1804669.1804675

526 L. Heling and M. Acosta / Characteristic sets profile features: Estimation and application to SPARQL query planning

[39] A. Soulet and F.M. Suchanek, Anytime large-scale analytics of linked open data, in: Proceedings of ISWC, 2019. doi:10.1007/978-3-030-
30793-6_33.

[40] R. Verborgh, M.V. Sande, O. Hartig, J.V. Herwegen, L.D. Vocht, B.D. Meester, G. Haesendonck and P. Colpaert, Triple pattern fragments:
A low-cost knowledge graph interface for the Web, J. Web Semant. 37–38 (2016), 184–206. doi:10.1016/j.websem.2016.03.003.

[41] M. Vidal, E. Ruckhaus, T. Lampo, A. Martínez, J. Sierra and A. Polleres, Efficiently joining group patterns in SPARQL queries, in: The
Semantic Web: Research and Applications, 7th Extended Semantic Web Conference, ESWC 2010, Proceedings, Part I, Heraklion, Crete,
Greece, May 30–June 3, 2010, L. Aroyo, G. Antoniou, E. Hyvönen, A. ten Teije, H. Stuckenschmidt, L. Cabral and T. Tudorache, eds,
Lecture Notes in Computer Science, Vol. 6088, Springer, 2010, pp. 228–242. doi:10.1007/978-3-642-13486-9_16.

[42] J.S. Vitter, Random sampling with a reservoir, ACM Trans. Math. Softw. 11(1) (1985), 37–57. doi:10.1145/3147.3165.
[43] A. Zaveri, A. Rula, A. Maurino, R. Pietrobon, J. Lehmann and S. Auer, Quality assessment for linked data: A survey, Semantic Web 7(1)

(2016), 63–93. doi:10.3233/SW-150175.
[44] M. Zloch, M. Acosta, D. Hienert, S. Dietze and S. Conrad, A software framework and datasets for the analysis of graph measures on RDF

graphs, in: The Semantic Web – 16th International Conference, ESWC 2019, Proceedings, Portorož, Slovenia, June 2–6, 2019, P. Hitzler,
M. Fernández, K. Janowicz, A. Zaveri, A.J.G. Gray, V. López, A. Haller and K. Hammar, eds, Lecture Notes in Computer Science, Vol.
11503, Springer, 2019, pp. 523–539. doi:10.1007/978-3-030-21348-0_34.

https://doi.org/10.1007/978-3-030-30793-6_33
https://doi.org/10.1007/978-3-030-30793-6_33
https://doi.org/10.1016/j.websem.2016.03.003
https://doi.org/10.1007/978-3-642-13486-9_16
https://doi.org/10.1145/3147.3165
https://doi.org/10.3233/SW-150175
https://doi.org/10.1007/978-3-030-21348-0_34

	Introduction
	RDF dataset profiling
	Profile features
	Profile feature estimation

	Characteristic sets profile feature estimation
	Characteristic sets profile feature
	Graph sampling
	Profile feature creation
	Profile feature projection
	Sampling RDF graphs in practice
	Similarity measures for characteristic set profile features

	Federated query planning using characteristic sets profile feature estimations
	CSPF estimation-based federated query planner

	Evaluation
	Characteristic sets profile feature estimation evaluation
	Structural similarity measures
	Statistical similarity measures
	Final discussion

	Federated query planner evaluation
	Experimental results
	Final discussion

	Related work
	Statistical profiling
	Graph sampling
	Profiling-based federated query processing

	Conclusion
	Acknowledgements
	Appendix. Efficiency of CSPF computation
	References

