
Semantic Web 13 (2022) 5–39 5
DOI 10.3233/SW-210423
IOS Press

Multidimensional enrichment of spatial RDF
data for SOLAP
Nurefşan Gür *, Torben Bach Pedersen, Katja Hose and Mikael Midtgaard
Center for Data Intensive Systems, Aalborg University, Selma Lagerlöfsvej 300, DK-9220 Aalborg Ø, Denmark
E-mails: nurefsan@cs.aau.dk, tbp@cs.aau.dk, khose@cs.aau.dk, mikaelmidt@gmail.com

Editor: Boyan Brodaric, Geological Survey of Canada, Canada
Solicited reviews: Alberto Abelló, Universitat Politècnica de Catalunya, Spain; two anonymous reviewers

Abstract. Large volumes of spatial data and multidimensional data are being published on the Semantic Web, which has led to
new opportunities for advanced analysis, such as Spatial Online Analytical Processing (SOLAP). The RDF Data Cube (QB) and
QB4OLAP vocabularies have been widely used for annotating and publishing statistical and multidimensional RDF data. Al-
though such statistical data sets might have spatial information, such as coordinates, the lack of spatial semantics and spatial mul-
tidimensional concepts in QB4OLAP and QB prevents users from employing SOLAP queries over spatial data using SPARQL.
The QB4SOLAP vocabulary, on the other hand, fully supports annotating spatial and multidimensional data on the Semantic
Web and enables users to query endpoints with SOLAP operators in SPARQL. To bridge the gap between QB/QB4OLAP and
QB4SOLAP, we propose an RDF2SOLAP enrichment model that automatically annotates spatial multidimensional concepts
with QB4SOLAP and in doing so enables SOLAP on existing QB and QB4OLAP data on the Semantic Web. Furthermore,
we present and evaluate a wide range of enrichment algorithms and apply them on a non-trivial real-world use case involving
governmental open data with complex geometry types.

Keywords: Spatial data warehouses, SOLAP, spatial RDF data cubes, geospatial Semantic Web

1. Introduction

Data warehouses (DWs) and Online Analytical Pro-
cessing (OLAP) tools and queries are widely used for
interactive data analysis. DWs have multidimensional
(MD) models and store large volumes of data. MD
models locate data in an n-dimensional space and are
usually referred to as data cubes. The cells of a cube
represent the topic of the analysis and associate obser-
vation facts with (numerical) measures that can be ag-
gregated. Spatial data cubes can also contain spatial
measures, which can be aggregated with spatial func-
tions. For example, a data cube for farms might have
a numerical measure ‘number of animals’ as well as
the ‘farm’s coordinates’ as spatial measure. Facts are
linked to dimensions, which provide contextual infor-

*Corresponding author. E-mail: nurefsan@cs.aau.dk.

mation, e.g., farm production, farm location, and farm
livestock. Dimensions are organized into hierarchies
with levels, e.g., parish of the farm or herd type of
livestock, which allow users to analyze and aggregate
measures at different levels of detail. Levels have a set
of attributes describing the characteristics of the level
members.

In traditional DWs, the location dimension is gen-
erally used as a conventional (non-spatial) dimension
with alphanumeric data and thus provided with only
a nominal reference to places and areas, e.g., parish
name. This does not allow for applying spatial oper-
ations or truly deriving topological relations between
hierarchy levels based on geometric information such
as coordinates, which are essential for enabling spatial
OLAP (SOLAP) analysis.

By including the geometric information of locations
in MD models, we can significantly improve the analy-
sis process (e.g., proximity analysis of locations) with

1570-0844 © 2022 – The authors. Published by IOS Press. This is an Open Access article distributed under the terms of the
Creative Commons Attribution License (CC BY 4.0).

mailto:nurefsan@cs.aau.dk
mailto:tbp@cs.aau.dk
mailto:khose@cs.aau.dk
mailto:mikaelmidt@gmail.com
mailto:nurefsan@cs.aau.dk
https://creativecommons.org/licenses/by/4.0/

6 N. Gür et al. / Multidimensional enrichment of spatial RDF data for SOLAP

additional perspectives by revealing dynamic spatial
hierarchy levels and new spatial level members in SO-
LAP operations (details and examples in [14,15]). In
addition, by using geometric attributes of level mem-
bers, topological relations between the levels, and lev-
els and facts can be specified implicitly. Such topo-
logical relations are essential to correctly aggregate
measures between levels with many-to-many (N:M)
cardinality relations, for instance.

The Semantic Web (SW) has evolved, from promi-
nently focusing on data publishing to also support-
ing complex queries, such as interactive analytical
queries. Simultaneously, the data available on the SW
has evolved from being simple, mostly alphanumerical
data, to include complex data types, such as geospa-
tial data. There are many examples of governmental
and statistical Linked Open Data (LOD) sets with ge-
ographical attributes. However, such datasets are typ-
ically not modeled with multidimensional concepts.
Thus, they cannot be queried with interactive analyt-
ical queries (OLAP). Although in recent years sev-
eral platforms and tools for Business Intelligence (BI)
and data warehouses have emerged [50], there is still
a lack of common standards to model and publish
(geo)semantic cubes on the SW [15].

More and more statistical datasets using the RDF
Data Cube Vocabulary (QB) [48], the current W3C
standard, are published on the SW. These datasets have
observations and measures, which are well-suited for
analytical queries. However, QB lacks the underlying
structural metadata for multidimensional models and
OLAP operations (Section 6). Well-defined structural
metadata is required to translate OLAP queries into
SPARQL 1.1 [14,46]. QB4ST [3] is a recent attempt
to define extensions for spatio-temporal components to
QB. However, it inherits the limitations of multidimen-
sional modeling from QB.

To address the MD modeling challenges of the QB
vocabulary, QB4OLAP [7] has been proposed, which
reuses QB definitions by adding the required MD
schema semantics. A significant number of data sets
have already been published using the QB vocabulary.
QB4OLAP descriptions of a QB data cube can be gen-
erated semi-automatically by adding the necessary MD
semantics (e.g., the hierarchical structure of the dimen-
sions) and the corresponding instances to populate the
dimension levels. However, existing QB4OLAP anno-
tation techniques [44] only cover non-spatial MD data
cube concepts and its operations. Even though such
statistical data sets have spatial information, not anno-
tating the spatial MD concepts (e.g., spatial hierarchy

levels such as administrative regions) hinders query-
ing the data with interesting spatial OLAP operations.
To emerge this need the QB4SOLAP vocabulary was
proposed [13], which allows modeling the data cubes
fully with both multidimensional and spatial concepts
on the SW.

Problem motivation and definition Spatial OLAP
(SOLAP) queries are currently not well supported by
existing spatial RDF stores and endpoints. Instead, the
user would have to a) download the (maybe very large)
RDF data, b) map it to a relational schema (e.g., a
snowflake schema), c) import it into a traditional spa-
tial data warehouse, d) make all queries and analyses
within the traditional spatial DW, and finally e) im-
port and map any results and knowledge back into the
original RDF store. This obviously is a slow, labor-
intensive, and error-prone process, which furthermore
completely locks out the vast majority of users without
advanced programming skills.

Luckily, there already exist tools and vocabular-
ies for (spatial) data warehouses on the SW: the
QB4SOLAP vocabulary [13], for instance, allows pub-
lishing data with spatial multidimensional concepts
on the SW and provides high-level SOLAP operators
that can be translated into SPARQL [15]. Based on
these, GeoSemOLAP [14] enables users to issue SO-
LAP queries on geo-semantic RDF data without de-
tailed knowledge of SPARQL or RDF.

GeoSemOLAP, however, is restricted to RDF data
sets that are already annotated with QB4SOLAP.

Thus, there is a great unmet need for an automated
approach to enrich and annotate geo-semantic RDF
data from existing endpoints with QB4SOLAP meta-
data. This is exactly what our proposed RDF2SOLAP
enrichment module does (Fig. 1).

Since on-the-fly annotations would require the cor-
responding heavy spatial operations to be executed re-
peatedly for each new query, making response times

Fig. 1. Future vision of SOLAP on the SW.

N. Gür et al. / Multidimensional enrichment of spatial RDF data for SOLAP 7

too slow for interactive OLAP querying, we annotate
the entire data set in a once-and-for-all fashion.

Contributions In summary, the main contributions of
this paper are:

* An illustration of the need for QB4SOLAP, i.e.,
the need to enable fully-fledged data warehouse
concepts for geo-semantic RDF data. We further
introduce running examples from real-world gov-
ernmental open data on environment and farming
with complex geometry types.

* A detailed explanation and comparison of RDF
data examples, which are depicted as graphs, and
annotated both with QB4OLAP and QB4SOLAP
vocabularies, then identifying the required spatial
MD metadata and concepts (e.g., spatial hierar-
chies and topological relations) for SOLAP anal-
ysis based on the given comparison.

* Hierarchical enrichment algorithms for (1) de-
tecting topological relations at hierarchy steps
with direct links between the level members; and
(2) discovering topological relations at hierarchy
steps (which do not have direct links between the
level members).

* Factual enrichment algorithms for fact-level rela-
tions between fact and level members.

* An automated way of re-defining a fact schema
after factual enrichment, and association of spa-
tial aggregate functions with spatial measures.

* General implementation of our approach for both
hierarchical enrichment and factual enrichment
processes.

* Evaluation of our approach in terms of accuracy
and coverage in comparison to two standard envi-
ronments (RDBMS and GIS tool).

Paper organization The remainder of this paper is or-
ganized as follows. Section 2 defines the preliminary
concepts used throughout the paper with a running
use case example. Section 3 presents the system ar-
chitecture for the MD enrichment process. Section 4
defines the RDF2SOLAP enrichment algorithms with
necessary helper functions and formalization of (spa-
tial) RDF data. The Appendix presents the imple-
mentation details along with interesting examples and
discusses the challenges and implemented solutions.
Section 5 presents the qualitative and performance
evaluation with comparison baselines. Finally, Sec-
tion 6 discusses related work and Section 7 concludes
the paper with an outlook to future work.

2. Preliminaries

In this section, we explain the preliminary concepts
of spatial data warehouses and SOLAP (Section 2.1)
and how to deploy them on the Semantic Web (Sec-
tion 2.2) using the QB4SOLAP vocabulary.

2.1. Spatial data warehouses and SOLAP

Data cubes and spatially extended cube concepts
Data warehouses (DW) are based on a multidimen-
sional model that models data in an n-dimensional
space – often referred to as a data cube. A cube schema
defines the structure of a cube with MD concepts. The
cells of the cube represent (observation) facts with a
set of attributes called measures. Facts are linked to
dimensions, which are the axes of an MD space and
provide perspectives to analyze the data. Dimensions
are organized into hierarchies, which allow users to
aggregate measures at different granularities along the
levels of a hierarchy. Hierarchies are composed of lev-
els, which have a set of attributes describing the char-
acteristics of the level members. Each level member is
defined by its attributes and attribute values.

Cube members are MD concepts that are defined at
the instance level and composed of level members, at-
tributes of level members, partial order on level mem-
bers, and fact members. A hierarchy step between lev-
els (a child level and a parent level) defines a set of
roll-up relations, where each relation relates a child
level member to a parent level member. These roll-up
relations define a partial order between level members
with a cardinality relation. The cardinality (1:1, 1:N,
N:1, N:M) describes the number of members in one
level that can be related to a member in the other level
for both child and parent levels.

Spatial data warehouses (SDW) extend a DW by
storing geometries such as point, line, and polygon in
the values of spatial measures and values of level at-
tributes for spatial dimensions. The spatially extended
MD schema of an SDW has spatial dimensions, spatial
hierarchies, spatial levels [29], spatial hierarchy steps,
and topological relations (in addition to cardinality re-
lations) between spatial levels for each spatial hierar-
chy step [13]. Topological relations are Boolean spa-
tial predicates that specify how two spatial objects are
related to each other, e.g., within, intersects, touches,
crosses and etc. [6]. Similar to conventional DWs, facts
of an SDW can be associated with numeric measures,
which are using aggregation functions such as SUM,
AVG, etc. A fully extended spatial MD schema of an

8 N. Gür et al. / Multidimensional enrichment of spatial RDF data for SOLAP

SDW should also define spatial measures, which have
geometries and spatial aggregate functions. Spatial ag-
gregate functions aggregate two or more spatial ob-
jects and return a new spatial object. Union, Intersec-
tion, ConvexHull, and Minimum-BoundingRectangle
(MBR) are example of spatial aggregate functions. For
a detailed explanation of SDW concepts we refer the
reader to [42].

OLAP and spatial OLAP operations DWs are com-
monly used to store large volumes of data for decision
support with On-Line Analytical Processing (OLAP)
operations. Spatial OLAP (SOLAP) integrates the fea-
tures of OLAP tools and geographical information sys-
tems (GIS) [38]. SOLAP enables advanced analyti-
cal processing by taking the spatial information in the
cube into account.

For example, a spatial data cube of livestock hold-
ings in farms (referred to as GeoFarmHerdState in the
rest of this paper) defines the farm location as a spatial
measure, which is linked to the observation facts. In
order to derive perspectives and relations on the state
of the farms’ livestock holdings (herds), spatial lev-
els are defined: parishes and drainage areas. A sam-
ple set of the corresponding spatial data cube mem-
bers are given in Fig. 2. The spatial MD concepts of
the data cube are defined in the conceptual schema
in Fig. 3, which depicts a simplified version of the
GeoFarmHerdState spatial data cube without its non-
spatial dimensions (see [12] for further details the Ge-
oFarmHerdState cube). The cube has two spatial di-
mensions: FarmDim and ParishDim. The latter has a
spatial hierarchy (Geography) with two spatial levels:
Parish and DrainageArea. FarmDim on the other hand
does not have a spatial hierarchy, despite its spatial
(base) level: Farm.

The GeoFarmHerdState cube has spatial fact mem-
bers for farms within a time frame and different kinds

Fig. 2. GeoFarmHerdState – parish, farm, and drainage area in-
stances.

of measures, i.e., numeric measures: NumberofAni-
mals in the farm and NitrogenReduction potential of
the farm land/soil, spatial measures: FarmLocation
(Fig. 3).1

To evaluate SOLAP operations, spatial levels such
as Parish and DrainageArea are used to aggregate
measures at different levels of detail. Due to the poly-
gon geometry of the spatial level members, there are
two different roll-up relations for the hierarchy step
between the Parish and DrainageArea levels, where a
parish can be completely contained within a drainage
area or a parish and a drainage area can intersect.

For example, parish “Oue” is within drainage area
“Mariager Inderfjord”. Thus, all the farms that are
within “Oue” are also within “Mariager Inderfjord”.
Whereas, parish “Astrup” intersects with drainage ar-
eas “Mariager Inderfjord” and “Langerak”. There-
fore, some farms that are within “Astrup” are within
“Mariager Inderfjord”, while the rest of the farms are
within “Langerak”. Figure 2 displays a sample set of
Parish and DrainageArea level members.

The possible roll-up relations for the example above
are depicted in Fig. 4 with black and red arrows repre-
senting the topological relations within and intersects.
Blue arrows show the topological relation contains,
which are drill-down (inverse operation of roll-up) re-
lations from DrainageArea level to Farm level.

Topological relations between levels and facts can
be implicitly specified through the geometry attributes
of their instances (level members and fact members).
The relations between spatial levels enable processing
spatial roll-up and drill-down through range queries
with spatial predicates [8]. In terms of cardinality,
there is an N:M relationship between level mem-
bers since a parish may intersect with more than one
drainage area and vice versa. This induces the prob-
lem of computing measures incorrectly when a roll-
up operation goes through an N:M relationship, which
actually is the case between the Parish level and the
DrainageArea level. For example, we would like to ag-
gregate the measure NumberOfAnimals, from Parish
level to the DrainageArea level with a roll-up query.
In such a roll-up query, we might falsely aggregate
the number of animals in farms that are contained

1Non-additive measures are also numeric measures, which are
given in percentages or classified in numbers, therefore they cannot
be meaningfully summarized by all aggregate functions i.e., SUM.
However, depending on the semantics, other aggregate functions
can be associated with them, e.g., AVG NitrogenReduction potential,
MAX NitrateClass.

N. Gür et al. / Multidimensional enrichment of spatial RDF data for SOLAP 9

Fig. 3. GeoFarmHerdState – conceptual MD schema of livestock holdings data (spatial concepts).

Fig. 4. Hierarchy example for SOLAP.

within the parish, but not contained within the drainage
area, since the parish intersects with another drainage
area. In order to refine such an analysis, SOLAP op-
erations are required, where a (spatial) drill-down
should be applied to the lowest granularity – from
Parish level members to GeoFarmHerdState fact mem-
bers, and then a spatial roll-up (with within predicate)
can be applied from fact members (Farm instances)
to DrainageArea level members. This would prevent
falsely aggregating the number of animals from the
farms that are (spatially) disjoint to the corresponding
drainage area.

2.2. QB4SOLAP: Spatial RDF data cube vocabulary
for SOLAP operations

There is an increasing amount of Linked Open Data
(LOD) on the Semantic Web containing spatial infor-
mation and numerical (statistical) data. This led to new
opportunities for OLAP over spatial data using seman-
tic web technologies and standards. Datasets on the

SW use a standardized format: RDF (Resource De-
scription Framework).2

In order to enable SOLAP operations on the Seman-
tic Web, a comprehensive vocabulary is needed, i.e.,
annotation of the spatial hierarchy steps with topologi-
cal relations. QB4SOLAP [15] is a vocabulary that al-
lows the definition of cube schemas and cube instances
in RDF. The QB4SOLAP vocabulary is an extension of
QB4OLAP [7] capturing the semantics of spatial MD
concepts (i.e., spatial hierarchy steps) that are essen-
tial for SOLAP operations. The QB4SOLAP vocabu-
lary V1.3 is available on our project website3 as well
as via a persistent URL.4

A comprehensive foundation of spatial data ware-
houses on the Semantic Web can be found in [15],
which includes detailed definitions with semantics of
spatial MD concepts both at the schema level and in-
stance level using QB4SOLAP.

In the following, we depict an example of a hier-
archy step from gfs:Parish child level to gfs:
drainageArea parent level (Fig. 5). In the figure,
we prefix the schema elements (attributes, levels, etc.)
of the (GeoFarmHerdState) cube with gfs: and in-
stance data from the cube with gfsi:. The left-center
part of Fig. 5 shows the hierarchy structure _:hs,
between gfs:parish and gfs:drainageArea
levels at the schema level with the QB4OLAP vocab-
ulary. QB4OLAP objects, classes, and properties are
prefixed with qb4o:. The levels (gfs:parish and

2https://www.w3.org/TR/rdf11-primer/
3https://extbi.cs.aau.dk/QB4SOLAP
4https://w3id.org/qb4solap#

https://www.w3.org/TR/rdf11-primer/
https://extbi.cs.aau.dk/QB4SOLAP
https://w3id.org/qb4solap#

10 N. Gür et al. / Multidimensional enrichment of spatial RDF data for SOLAP

Fig. 5. Hierarchy steps in QB4OLAP before multidimensional enrichment.

gfs:drainageArea) are linked to the instances of
level members (e.g., gfsi:parish_8648, gfsi:
water_3710 and etc.) by qb4o:memberOf prop-
erty. The polygon geometry attributes are highlighted
in blue boxes, on the top and the bottom of the figure.
The coordinates recorded in the geometry attributes
can be used to derive the topological relation between
the level members by applying spatial boolean pred-
icates (e.g., instersects?, within?) on the polygon ge-
ometries of the parish and drainage area level mem-
bers.

However, QB4OLAP does not support annotating
the topological relations that might exist between the
level members at a hierarchy step. QB4OLAP uses
only skos:broader property from SKOS (Simple
Knowledge Organization System) [30] semantic re-
lations for capturing the roll-up relations at hierar-
chy steps. The roll-up relations with skos:broader
property are highlighted in red boxes in Fig. 5. The
skos:broader property does not describe the na-
ture of the roll-up relation with topological relations
for spatial hierarchies. Therefore, QB4OLAP cannot
capture the topological relations in a hierarchy step
from Parish level to DrainageArea level or between
these levels’ members.

On the other hand, QB4SOLAP can define topolog-
ical relations both at the schema level and the instance
level. In Fig. 6, we prefix QB4SOLAP objects, classes,
and properties with qb4so: and highlight them in
green lines. The left-center part of the figure shows
the spatial hierarchy structure :_shs, which has a

QB4SOLAP property qb4so:pcTopoRel with two
QB4SOLAP class instances qb4so:Within and
qb4so:Intersects. This means that when we
compare the geometry attributes of parish level mem-
bers and drainage area level members, we discover two
different topological relations (within and intersects)
for all the (spatial) hierarchy steps between the parish
and drainage area levels. And these relations are an-
notated at the schema level on the left-center part of
Fig. 6.

Similarly, gfs:parish and gfs:drainageArea
levels are linked to the instances of level members
(e.g., gfsi:parish_8648) by qb4o:memberOf
property. The explicit topological relations between
each level member along a spatial hierarchy step are
depicted in the figure with qb4so:intersects or
qb4so:within predicates, which are highlighted in
green boxes (e.g., gfsi:parish_8648 intersects
with gfsi:water_159 and gfsi:water_3170
etc.).

In conclusion, QB4SOLAP enables SOLAP opera-
tions by defining the semantics of spatial MD concepts
both at the schema level and instance level. These se-
mantics are essential for SOLAP operations, and they
are defined as extensions to the QB4OLAP vocabulary.

3. System architecture

The importance of SOLAP to get accurate results in
operations over spatial data warehouses is explained in

N. Gür et al. / Multidimensional enrichment of spatial RDF data for SOLAP 11

Fig. 6. Spatial hierarchy steps in QB4SOLAP after multidimensional enrichment.

Fig. 7. Multidimensional enrichment process.

Section 2.1. However, the RDF data cubes (with spa-
tial attributes) on the Semantic Web are not always
annotated with vocabularies that allow users to for-
mulate SOLAP queries. In this section we present an
overview of the MD enrichment flow from RDF QB to
QB4OLAP data cubes and QB4OLAP to QB4SOLAP
data cubes. Thus, users can query the RDF data cubes
with SOLAP queries.

A multidimensional enrichment process flow is il-
lustrated in Fig. 7 with three main architectural layers:
Interface, Enrichment Modules, and SPARQL End-
points. The architectural layers in the figure are de-
noted in horizontal rectangles. The first layer facilitates
user interaction with the enrichment modules (i.e.,

QB2OLAPem) and third party tools (i.e., GeoSemO-
LAP). In each layer, processes are given in right angle
boxes, modules and tools are given in rounded corner
boxes. Third party tools and modules are annotated in
dashed lines. Arrows in the figure represents the inter-
action between processes and the modules.

Our main contribution in this paper is the
RDF2SOLAP enrichment module, which is the core
of the second layer. The RDF2SOLAP enrichment
module operates on QB4OLAP triples that either al-
ready exist in the original data or have been gener-
ated by the QB2OLAPem enrichment module [44].
QB2OLAPem allows users to enrich an RDF QB
dataset with QB4OLAP concepts and returns a graph
of QB4OLAP triples.

The internal process flow of the RDF2SOLAP en-
richment module consists of three phases: hierarchical
enrichment, factual enrichment, and triple generation.
The hierarchical and factual enrichment phases itera-
tively perform the enrichment algorithms explained in
Section 4. Hierarchical enrichment phase and factual
enrichment phase can run independently from each
other in parallel. Factual enrichment phase addition-
ally can suggest an enriched fact schema definition,
which depends on the spatial relations found at the in-
stance level enrichment for factual and hiearchical en-
richment phases. Both of these enrichment phases al-
low interaction with external SPARQL endpoints to
enhance the enrichment process via potential spatial
and multidimensional concepts that could be retrieved
externally. The third phase is the triple generation,

12 N. Gür et al. / Multidimensional enrichment of spatial RDF data for SOLAP

which creates QB4SOLAP triples that can be used in
third party tools such as GeoSemOLAP. GeoSemO-
LAP allows users without knowledge of RDF and
SPARQL to query with SOLAP operations by interac-
tively formulating the queries using a GUI with inter-
active maps [14].

The third layer (SPARQL endpoints) allows inter-
action between user and SPARQL endpoint for re-
trieving QB or QB4OLAP graphs as well as interac-
tion between system and SPARQL endpoints, where
the RDF2SOLAP enrichment module queries external
triple stores for hierarchical enrichment and factual en-
richment.

RDF2SOLAP is implemented in Javascript on the
Node.js platform using the N3.js library for parsing the
RDF triples in Javascript and the Turfjs library for spa-
tial analysis.5

4. RDF2SOLAP enrichment algorithms

This section presents the core algorithms of our
RDF2SOLAP enrichment module. Our MD enrich-
ment approach builds upon QB4OLAP triples that ei-
ther already exist in the original data or have been
generated by the QB2OLAPem enrichment module
[44] as depicted in Fig. 7. QB4OLAP defines only the
non-spatial multidimensional semantics of RDF data,
whereas QB4SOLAP enriches the MD semantics of
RDF data with spatial concepts (formalizations and
further details can be found in [15]). Nevertheless, in
the following we briefly introduce basic notations.

The basic construct of RDF is a triple t = (s, p, o)

consisting of three components; s is the subject, p is
the predicate, and o is the object. RDF triples are de-
fined over T = (I ∪ B) × I × (I ∪ B ∪ L), where I
is the set of IRIs (Internationalized Resource Identi-
fiers), B is the set of blank nodes, and L is the set of lit-
erals. An object value can be a literal (i.e., string, spa-
tial literal,6 integer etc.). Subjects and objects can be
represented by a blank node for anonymous resources.
Predicates are always represented by IRIs. A set of
RDF triples is referred to as an RDF graph G. We use
superscript notation to represent the type of a graph:
schema graph GS and instance graph GI . An instance
graph has entities from a use-case dataset as a set of
RDF triples. The schema graph describes the structure
(schema) of the dataset recorded in the instance graph.

5N3.js: https://github.com/rdfjs/N3.js Turfjs: http://turfjs.org/.
6Spatial literals are represented as Ls .

Listing 1. Spatial hierarchy structure in QB4SOLAP

We use subscript notation to represent the MD con-
cepts in RDF terms as a graph. For example, GI

A(lm)

is the RDF instance graph for attributes of level mem-
bers – in the use case example this graph corresponds
to the set of triples in Listing 2, Lines 3–6 or Lines 9–
13 and Lines 17–22. GS

HS(h) is the RDF schema graph
for hierarchy steps – in the use case example this graph
corresponds to the set of triples in Listing 1.

We define function id(x) : G → I, which given an
MD element x returns its identifier I from graph G.
Similarly, we use superscript notation to indicate the
type of the identifier from the schema graph (GS) and
instance graph (GI), e.g., idS(a) for a schema iden-
tifier of a level (gfs:parish in Listing 2, Line 2
or in Listing 1, Line 2) and idI (lm) for an instance
identifier of a level member (gfsi:parish_8648
in Listing 2, Line 1 or Line 8).

The MD enrichment process in RDF2SOLAP runs
in two phases (hierarchical enrichment phase and fac-
tual enrichment phase), which are explained in the fol-
lowing.

4.1. Hierarchical enrichment phase

The hierarchical enrichment phase is built around
spatial levels and their level members forming the spa-
tial hierarchy of a dimension. Thus, by identifying the
spatial relations between spatial levels and their level
members, we can find the spatial hierarchy steps and
the possible topological relations for these hierarchy
steps.

Each spatial hierarchy corresponds to a path of roll-
up relationships between the child level and parent
level: each of these roll-up relationships corresponds to
a spatial hierarchy step (Section 2.1). An example of
a (spatial) hierarchy with QB4SOLAP is given in List-
ing 1. Line 4 extends the QB4OLAP schema defini-
tions by enriching the hierarchy step with the possibil-
ity to annotate the spatial hierarchy steps with topolog-
ical relations (see Section 2 for details and Section 2.2
for examples).

Listing 2 shows the GeoFarmHerdState spatial
level members from Parish and Drainage Area lev-
els. Lines 1–7 (Listing 2) represent the QB4OLAP
annotation of a child level member from Parish level

https://github.com/rdfjs/N3.js
http://turfjs.org/

N. Gür et al. / Multidimensional enrichment of spatial RDF data for SOLAP 13

Listing 2. GeoFarmHerdState level members, attributes, and spatial
roll-up relations

before multidimensional enrichment (with skos:
broader), which is depicted in Fig. 5. Lines 8–
14 represent the QB4SOLAP annotation of the same
Parish level member after the multidimensional enrich-
ment with topological relations (depicted in Fig. 6).
Lines 15–22 represent the annotation of a parent level
member from the Drainage area level, which remains
the same before and after multidimensional enrich-
ment since the hierarchy steps are defined with bottom-
up relationships from child level to parent level and
the roll-up relations and thus also the topological rela-
tions are annotated at the child level members of the
hierarchy step.

We exploit QB4OLAP semantics, such as non-
spatial hierarchy steps and levels as a starting point
to find the spatial hierarchy steps. We distinguish two
cases:

Case 1: Finding explicit spatial hierarchy steps for
QB4OLAP levels, with skos:broader roll-up re-
lations between their child-parent level members by
detecting spatial hierarchy steps in Section 4.1.2. For
this case we assume that level members have direct
skos:broader relations as depicted in Fig. 5 and
Listing 2, Line 7 with skos:broader property.

Case 2: Finding implicit spatial hierarchy steps
from QB4OLAP levels without direct roll-up relations
through the skos:broader property. In this case,
we assume that the level members are only defined by
the qb4o:memberOf property as shown in Listing 2,
(Line 2) but do not have the skos:broader roll-

Algorithm 1: getSpatialValues(GI
A(lm)): Vs(a)

Input: GI
A(lm)

Output: Vs(a)

1 begin
2 Vs(a) = ∅; /*initialize output set as empty

set*/
3 foreach (idI (lm) idS(ai) vai

) ∈ GI
A(lm) do

4 if vai
is a geo:spatialLiteral then

5 Vs(a)∪ = {vai
};

6 return Vs(a)

up relation as given in Line 7. In this case, it is still
possible to discover spatial hierarchy steps by finding
spatial (topological) relations between level members
through their attributes as explained in Section 4.1.3.

4.1.1. Spatial helper functions
To address the cases explained above, we need two

spatial helper functions; for retrieving spatial attribute
values (Algorithm 1, getSpatialValues), and for
relating spatial attributes (Algorithm 2, relateSpa-
tialValues).

Algorithm 1 (getSpatialValues) The first
helper function gets an input graph of attributes
of level members GI

A(lm) and returns a set of spa-
tial attribute values Vs(a). For example, the function
could receive Lines 3–6 from Listing 2 as input. In
the algorithm, Lines 3 and 4 check the values vai

of each attribute idS(ai) (e.g., gfs:parishName,
gfs:ParishArea, etc.) If the value is a type of
geo:SpatialLiteral (e.g., the POLYGON geom-
etry value linked to the gfs:parishPolygon at-
tribute), then the value is incrementally added to the
output set Vs(a)

7 in Line 5.

Algorithm 2: (relateSpatialValues) The next
helper function is designed based on Table 1, w.r.t.
the geometry values of the child-parent level mem-
bers and based on the structure of a hierarchy step.
We prepared Table 1 with topological relations based
on DE-9IM.8 We consider only the three simple ge-
ometry types, point, line, and polygon as the spatial

7Note that a level member might have the polygon geometry type
for the parish borders and the point geometry type for the parish
center, therefore a set of spatial values is required.

8DE-9IM (Dimensionally Extended Nine-Intersection Model) is a
topological model that describes spatial relations of two geometries
in two dimensions [6].

14 N. Gür et al. / Multidimensional enrichment of spatial RDF data for SOLAP

Algorithm 2: relateSpatialValues(vac , vap):
topoReli

Input: vac , vap

Output: topoReli

1 begin
2 topoReli = null; /*geoType(va) function

returns the geometry type of a given attribute
value*/

3 switch (geoType(vac), geoType(vap)) do
4 case (POINT, POINT)
5 if equals?(vac , vap) then
6 topoReli = qb4so:equals

7 case (POINT, LINE)
8 if intersects?(vac , vap) then
9 topoReli =

qb4so:intersects

10 case (POINT, POLYGON)
11 if within?(vac , vap) then
12 topoReli = qb4so:within

13 else if intersects?(vac , vap)

then
14 topoReli =

qb4so:intersects

15 case (LINE, LINE)
16 if intersects?(vac , vap) then
17 topoReli =

qb4so:intersects

18 else if overlaps?(vac , vap) then
19 topoReli =

qb4so:overlaps

20 case (LINE, POLYGON)
21 if within?(vac , vap) then
22 topoReli = qb4so:within

23 else if intersects?(vac , vap)

then
24 topoReli =

qb4so:intersects

25 case (POLYGON, POLYGON)
26 if within?(vac , vap) then
27 topoReli = qb4so:within

28 else if intersects?(vac , vap)

then
29 topoReli =

qb4so:intersects

30 return topoReli

attribute values of child-parent level members in roll-
up relations, excluding complex geometry types, such
as multi-polygon, multi-point, etc. The possible topo-
logical relations that can occur in a spatial hierarchy
step with a roll-up relation from child level to par-
ent level are marked with check sign (�) in the ta-
ble. Topological relations, such as contains and covers,
are not hierarchically applicable since a spatial child
level member cannot contain or cover a spatial parent
level member. For these relations, we mark the com-
plete rows with minus sign (−) in the table, since they
are not hierarchically applicable. Similarly, we mark
the complete columns of line-point, polygon-point, and
polygon-line roll-up relations with the minus sign (−)
since these are also not hierarchically applicable. This
is because we assume that in the instance data, a parent
level member should always have a spatial attribute of
a geometry type of the same or higher dimensionality
of its child level member (a point is 0-dimensional, a
line is 1-dimensional and a polygon is 2-dimensional).

For example, a child level member with a spatial
attribute of line geometry can only have parent level
member(s) with spatial attributes of line or polygon
geometries but not point geometry. We mark the topo-
logically not applicable relations with cross sign (×)
according to the DE-9IM model (e.g, a line cannot
overlap a polygon).

In Fig. 8, we depict the hierarchically and topologi-
cally applicable topological relations from Table 1. We
simplified them by generalizing the possible relations,
e.g., if a line touches or crosses another line at one
point, they are both classified as intersects in Fig. 8(d).
The most general relations are underlined in Fig. 8 for

Fig. 8. Simplifying topological relations.

N. Gür et al. / Multidimensional enrichment of spatial RDF data for SOLAP 15

Table 1

Topological relations for hierarchy steps (�: hierarchically and topologically applicable, ×: topologically not applicable, −: hierarchically not
applicable)

Topological relations Roll-up relations

Child level Point (pt.) Line (ln.) Polygon (po.)

Parent level pt. ln. po. pt. ln. po. pt. ln. po.

within × � � − � � − − �
contains − − − − − − − − −
intersects � � � − � � − − �
touches × × × − � � − − �
overlaps × × × − � � − − �
crosses × × × − � � − − ×
coveredBy × × × − × � − − �
covers − − − − − − − − −
equals � × × − � × − − �

each pair of geometry types (Fig. 8(a), (b), (c), (d), (e),
and (f)).

In Algorithm 2 relateSpatialValues, we
only consider these general topological relations that
have a higher probability to satisfy the corresponding
spatial predicates. For example, the topological rela-
tion intersects has the highest probability to satisfy
from the DE-9IM matrix [6]. We generalize similar
spatial predicates to ones that have higher probability
to occur in a 2-dimensional space. For example, re-
lations, such as a line overlaps (along the border of)
a polygon, can be generalized to the relation – a line
crosses a polygon at a minimum two points, which can
later be generalized to the relation – a line intersects
a polygon at a (minimum) single point as in Fig. 8(e).
Similarly, a line touches a polygon at a single point
can be generalized to the relation – a line intersects a
polygon at a (minimum) single point.

The topological relation coveredBy requires an area
of a geometry, therefore it is applicable only in line-
polygon and polygon-polygon relations (Fig. 8(e)
and 8(f)). For reasons of simplicity, we choose to gen-
eralize them as the within topological relation. In the
algorithm, we also prioritize to check the topological
relations based on the compared geometry types. If the
spatial attribute values to relate are point and polygon
geometry types, as in Fig. 8(c), it is more likely that
a point is within a polygon than a point intersects a
polygon in the instance data.

Therefore, we initially check for a more probable
relation in the algorithm. For example, for the point-
polygon relations case in Algorithm 2, Line 10: ini-
tially, the within spatial predicate is checked in the if
statement (Line 11), then the intersects spatial predi-
cate is checked in the else if statement (Line 13). Af-

ter checking all the possible combinations of spatial at-
tribute values in a switch case, a topological rela-
tion is returned from the algorithm (Line 30).

Now that we have introduced spatial helper func-
tions, we present the main algorithms for finding the
spatial hierarchy steps in the following.

4.1.2. Detecting spatial hierarchy steps
Algorithm 3 (detectSpatialHS) corresponds

to case 1 (see the beginning of Section 4.1) and finds
the explicit spatial hierarchy steps for QB4OLAP lev-
els with skos:broader roll-up relations between
child-parent level members. Intuitively, Algorithm 3
works as follows. Given instance graphs of attributes
of level members GI

A(lm) and roll-up relations of the

hierarchy steps GI
RU(hs) between level members (us-

ing skos:broader), the key principle is to first re-
trieve pairs of child-parent level members based on the
given input relationships GI

RU(hs). Then, spatial values
are extracted (getSpatialValues) and finally the
spatial relationship is verified (relateSpatial-
Values). The output GI

RU(shs)
is then a graph of de-

tected and verified hierarchy steps.
As an example, let us consider Listing 2: given

Lines 1–6 (GI
A(lm)), Line 7 (GI

RU(hs)), and Lines
15–22 (GI

A(lm)) as input, Algorithm 3 produces
Line 14 (GI

RU(shs)) as output.
Formally, Algorithm 3 works as follows:

Algorithm 3 (detectspatialHS) The input vari-
ables for Algorithm 3 are the instance graphs of
attributes of level members GI

A(lm) and roll-up re-

lations of the hierarchy steps GI
RU(hs)

between the
level members. The RDF graph formulation of the
attributes of the level members A(lm) is: GI

A(lm)
=

16 N. Gür et al. / Multidimensional enrichment of spatial RDF data for SOLAP

Algorithm 3: detectSpatialHS(GI
RU(hs),GI

A(lm)):

GI
RU(shs)

Input: GI
A(lm)

, GI
RU(hs)

Output: GI
RU(shs)

1 begin
2 GI

RU(shs) = ∅; /*initialize output graph as
emptyset*/

3 GI
A(lmc)

= ∅; GI
A(lmp) = ∅; Vs(ac) = ∅;

Vs(ap) = ∅; topoReli = null; /*temporary
variable and sets*/

4 foreach
((idI (lmc) idS(ac) vac), (id

I (lmp) idS(ap)

vap)) | (idI (lmc) idS(ac) vac), (id
I (lmp)

idS(ap) vap) ∈ GI
A(lm) ∧

(idI (lmc) skos:broader idI (lmp)) ∈
GI

RU(hs) ∧ lmc � vac ∧ lmp �
vap ∧ lmc � lmp do

5 GI
A(lmc)

= {(idI (lmc) idS(ac) vac)};
6 Vs(ac) =getSpatialValues(GI

A(lmc)
);

7 if Vs(ac) �= ∅ then
8 GI

A(lmp) = {(idI (lmp) idS(ap) vap)};
9 Vs(ap) =

getSpatialValues(GI
A(lmp));

10 if Vs(ap) �= ∅ then
11 foreach

(vac , vap) ∈ Vs(ac) × Vs(ap) do
12 topoReli = relateSpa-

tialValues(vac , vap);
13 if topoReli �= null then
14 GI

RU(shs)∪ =
{(idI (lmc) topoReli

idI (lmp))};

15 return GI
RU(shs)

⋃p

i=1{(idI (lm) idS(ai) vai
) | lm � vai

}. Here, we
denote by lm � vai

that a level member lm has
value vai

for attribute ai (e.g., Listing 2, Lines 3–6,
Lines 9–13, and Lines 17–22). The RDF graph for-
mulation of the roll-up relations RU(hs) is: GI

RU(hs) =
⋃k

i=1{(idI (lmc) skos:broader idI (lmp)) | lmci
�

lmpi
}. Here, we denote by lmci

� lmpi
the partial or-

der between level members, where a child level mem-

ber lmci
rolls up to a parent level member lmpi

9 (e.g.,
Listing 2, Line 7).

The output of Algorithm 3 is the instance graph of
roll-up relations for the detected spatial hierarchy steps
GI

RU(shs) (e.g., Listing 2, Line 14). In Line 2, initially
the output graph is initialized as an empty set. Next,
in Line 3 we create two temporary graphs: GI

A(lmc)
and

GI
A(lmp) as empty sets,10 to keep triple patterns sep-

arately in two graphs for attributes of child and par-
ent level members. We also create two temporary sets:
Vs(ac) and Vs(ap) for keeping the spatial attribute values
from the child and parent level members, and initialize
them as empty sets in Line 3. A set of spatial attribute
values is defined over spatial literals Ls as Vs(a) =
{va1, . . . , vai

, . . . , van | 1 � i � n ∧ vai
∈ Ls}.

In the foreach loop in Line 4, we go through
the elements of the input graphs GI

A(lm) and GI
RU(hs)

that are fulfilling a specific criteria, which is having an
explicit skos:broader relation between child and
parent level members.

In Line 5, while iterating through the foreach
loop, we assign the set of triples of child level members
and their attributes to the temporary graph GI

A(lmc)
.

This temporary graph is given in Line 6 as an in-
put to the helper function getSpatialValues (Al-
gorithm 1), which finds the spatial attribute values
from the given graph, and returns a set of spatial at-
tribute values (i.e., Vs(ac)) that are found in the input
graph. The output of the helper function (Vs(ac)) keeps
the spatial attribute values of the child level member
idI (lmc).

Next in Line 7, if Vs(ac) is not empty and has some
spatial values of idI (lmc), we populate the next tempo-
rary graph GI

A(lmp) with its parent level idI (lmp) and
attributes of the parent level in Line 8.

Similar to Line 6, Line 9 calls the helper function
getSpatialValues with the input graph GI

A(lmp)

and the output of the function is assigned to the tempo-
rary set Vs(ap). If this set is also not empty (Line 10),
we go through the pairs of values (vac , vap) of the
child-parent level members (Line 11), which are se-
lected from the temporary graphs GI

A(lmc)
and GI

A(lmp).
In this loop, we call the next helper function re-

lateSpatialValues (Algorithm 2), where the in-
put is the spatial value pairs. The output value of this
function is the topological relation between the cor-

9We use subscript c and p to distinguish values for child and par-
ent level members.

10Remark: a set of RDF triples is referred to as an RDF graph.

N. Gür et al. / Multidimensional enrichment of spatial RDF data for SOLAP 17

responding child and parent level members, and it is
assigned to the initially created temporary variable
topoReli (Line 12). If this value is not null (checked
in Line 13), relateSpatialValues function re-
turns a topological relation (Line 12) that is satisfied as
shown with a check-mark (�) from Table 1.

Finally, the output graph for spatial hierarchy steps
GI

RU(shs) is incrementally generated by adding the
triple pattern with the topological relation (Line 14)
and the output graph for the detected spatial hierarchy
steps is returned (Line 15).

4.1.3. Discovering spatial hierarchy steps
Algorithm 4 (discoverSpatialHS) corre-

sponds to case 2 (see the beginning of Section 4.1) and
finds the implicit spatial hierarchy steps for QB4OLAP
levels that do not have direct (skos:broader) roll-
up relations. In this algorithm, we have to handle the
situation where there are no explicit hierarchy steps
between level members. Therefore, we benefit from
schema graphs capturing dimensions, hierarchies, and
levels by iterating through the RDF triples and com-
pare the spatial attribute values of the level members to
find the GI

RU(shs)
topological relations within the same

dimension.
Intuitively, Algorithm 4 works very much like Algo-

rithm 3, the main difference being that in the absence
of a direct link between the members, we need to find
it first. Hence, we find pairs of level members exploit-
ing information about dimensions, hierarchies in di-
mensions, and levels in hierarchies, which is provided
by QB4OLAP. The detected pairs are then treated in a
similar way as the child-parent level member pairs in
Algorithm 3.

As an example, let us consider Listing 2: given
Lines 1–6 (GI

A(lm)) and Lines 15–22 (GI
A(lm)) as

input, Algorithm 4 produces Line 14 (GI
RU(shs)) as

output.
Formally, Algorithm 4 works as follows:

Algorithm 4 (discoverSpatialHS) The input
variables for Algorithm 4 are the schema graphs of
dimensions GS

D , hierarchies of the dimensions GS
H(d),

levels of the hierarchies GS
L(h), the instance graphs

of level members of levels GI
LM(l), and attributes of

level members GI
A(lm). Each dimension d ∈ D has a

set of hierarchies H(d), which is shown in the RDF
graph formulation for a dimension d ∈ D as: GS

d =⋃
h∈H(d){(idS(d) qb4o:hasHierarchy idS(h))}.

Each hierarchy h ∈ H(d) belongs to a dimension d

and has a set of levels L(h), which is shown in the

RDF graph formulation for a hierarchy h ∈ H(d)

as: GS
h = {(idS(h) qb4o:inDimension idS(d))} ∪⋃

l∈L(h){(idS(h) qb4o:hasLevel idS(l))}. Each
level l has a set of level members LM(l) = {lm1, . . . ,

lmy}, which is shown in the RDF graph formulation
for a level member lm ∈ LM(l) as:

GI
lm = {

(idI (lm) qb4o:memberOf idS(l))
}
.

Each level member lm has a set of attributes A(lm).
The RDF graph formulation of attributes of level mem-
bers GI

A(lm) is already given in Section 4.1.2. In List-
ing 2, examples of a triple pattern for level members
and attributes of level members are given in Lines 1–6,
Lines 8–13 and Lines 15–22, without explicit roll-up
relations (Line 7).

The output of Algorithm 4 is the instance graph of
roll-up relations for the discovered spatial hierarchy
steps GI

RU(shs) (e.g., Listing 2, Line 14). In Line 2,
the output graph is initialized as an empty set. And a
temporary variable (topoReli) for keeping the dis-
covered topological relations is initialized as null. In
Line 4, we create two temporary graphs: GI

A(lmn) and

GI
A(lmk)

as empty sets similar to Algorithm 3. We also
create two temporary sets: Vs(an) and Vs(ak) for stor-
ing spatial attribute values and initialize them as empty
sets in Line 3.

To discover the spatial hierarchy steps, we need to
get the attributes of all the level members from the
instance graph (GI

A(lm)) and compare their spatial at-
tribute values in pairs, where the pairs of level mem-
ber attributes should be coming from two different lev-
els in the same dimension hierarchy. Therefore, before
getting the attributes of the level members, we need to
classify the level members as they are grouped in dif-
ferent levels of a dimension hierarchy.

To achieve that, we use the schema definitions read-
ily available in QB4OLAP, by looping through in Al-
gorithm 4, in nested loops of dimensions in Line 5,
hierarchies in the dimension (Line 6), levels in the hi-
erarchy (Line 7). This helps us to determine the levels
in a dimension hierarchy, where we can get level pairs
from the same hierarchy (Line 8).

Now, while looping through the level pairs, we can
identify the level members via the qb4o:memberOf
property (Line 9). We get a pair of level members,
where each level member should come from a different
level, then we iterate through that pair of level mem-
bers (Line 10).

Then, we get the triple patterns for the attributes of
the level members from the each of the level mem-

18 N. Gür et al. / Multidimensional enrichment of spatial RDF data for SOLAP

Algorithm 4: discoverSpatialHS(GS
D,GS

H(d),GS
L(h),GI

LM(l),GI
A(lm)): GI

RU(shs).

Input: GS
D , GS

H(d), GS
L(h), GI

LM(l), GI
A(lm)

Output: GI
RU(shs)

1 begin
2 GI

RU(shs)
= ∅; topoReli = null /*initialize the output graph as an empty set and a temporary variable as

null*/
3 Vs(an) = ∅; Vs(ak) = ∅; /*initialize temporary sets as empty sets for keeping spatial attribute values*/
4 GI

A(lmn) = ∅; GI
A(lmk)

= ∅; /*initialize empty sets to keep triple patterns for attributes of level members*/

5 foreach (idS(d) qb4o:hasHierarchy idS(h)) ∈ GS
D /*iterate through the dimensions*/ do

6 foreach (idS(h) qb4o:inDimension idS(d)) ∈ GS
H (d) /*iterate through the hierarchies*/ do

7 foreach (idS(h) qb4o:hasLevel idS(l)) ∈ GS
H (d)

/*while iterating through the levels in the hiearchy*/ do
8 foreach (idS(li), idS(lj)) ∈ GS

L(h) × GS
L(h) | idS(li) �= idS(lj)∧ /*. . . get level pairs

(idS(li), idS(lj)) ∗ /

9
⋃

lm∈LM(l)((id
I (lm) qb4o:memberOf idS(li)), (idI (lm) qb4o:memberOf idS(lj))) ∈

GI
LM(l) /*in each level pair, while iterating through their level members, get a pair of level

members (idI (lmn), id
I (lmk)), where each level member comes from different levels*/ do

10 foreach
(idI (lmn), idI (lmk)) ∈ GI

LM(l) × GI
LM(l) | idI (lmn) �= idI (lmk) ∧ idI (lmn) ∈ GI

LM(li)
=⇒

idI (lmk) ∈ GI
LM(lj) | GI

LM(li)
⊂ GI

LM(l) ∧ GI
LM(lj) ⊂ GI

LM(l) ∧ GI
LM(li)

�= GI
LM(lj)

/*iterate through the pairs of level members*/ do
11 foreach ((idI (lmn) idS(ai) vai

), (idI (lmk) idS(aj) vaj
)) ∈ GI

A(lm) × GI
A(lm)

/*iterate through the pairs of level members’ attributes*/ do
12 GI

A(lmn)
= {(idI (lmn) idS(ai) vai

)}; GI
A(lmk)

= {(idI (lmk) idS(aj) vaj
)};

13 Vs(an) = getSpatialValues(GI
A(lmn)); Vs(ak) =

getSpatialValues(GI
A(lmk)

);
14 if Vs(an) �= ∅ ∧ Vs(ak) �= ∅

/*make sure there are spatial values in the temporary sets*/ then
15 foreach (vai

, vaj
) ∈ Vs(an) × Vs(ak) do

16 topoReli = relateSpatialValues(vai
, vaj

);
17 if topoReli �= null

/*make sure there is a topological relation assigned to the variable*/ then
18 GI

RU(shs)∪ = {(idI (lmn) topoReli idI (lmk))};

19 return GI
RU(shs)

ber in the pair, and iterate through those pairs of the
triple patterns (Line 11). While iterating through the
triple patterns, we insert them to the temporary graphs
GI

A(lmn)
and GI

A(lmk)
(Line 12), which are created ear-

lier as empty sets in Line 4. So, we can filter the spa-
tial values from the triple patterns kept in the tempo-
rary graphs by calling the helper function getSpa-

tialValues (Algorithm 1), with those input graphs
GI

A(lmn) and GI
A(lmk)

(Line 13).
Next, we call the helper function getSpatial-

Values (Algorithm 1) twice, with the input graphs
GI

A(lmn) and GI
A(lmk)

. The outputs of the each (helper)
function call are assigned to the temporary sets Vs(an)

and Vs(ak) correspondingly (Line 13). If these sets are

N. Gür et al. / Multidimensional enrichment of spatial RDF data for SOLAP 19

not empty (Line 14), it means that getSpatial-
Values identified spatial values in the triple patterns
of the input graphs.

Then, we iterate through the spatial value pairs re-
trieved from the each of the sets (Line 15). In this loop,
we call the next helper function relateSpatial-
Values (Algorithm 2), where the input is the spatial
value pairs. The output value of this function is the
topological relation between the corresponding level
members, and it is assigned to the initially created tem-
porary variable topoReli (Line 16).

Finally, if this topoReli value is not null (Line 17),
the output graph for the spatial hierarchy steps
GI

RU(shs)
is incrementally generated by adding the

triple pattern with the topological relation (Line 18)
and the output graph for the discovered spatial hierar-
chy steps is returned in Line 19.

4.2. Factual enrichment phase

The factual enrichment phase is built around the ob-
servation facts and their spatial attributes a.k.a spatial
measures and fact-dimension relations (Section 2.1).

In QB4OLAP facts are linked to the dimensions at
the lowest granularity level, which is the base level
of the dimensions. For example, the GeoFarmHerd-
State cube has two spatial base levels linked to the
cube: Parish level and Farm level. The GeoFarmHerd-
State cube also has a spatial measure listed in the
cube: FarmLocation (Fig. 3). In QB4OLAP, a fact
schema defines the structure of a cube with the
qb:DataStructureDefinition property (List-
ing 3, Line 1). Base levels (Lines 2 and 4) and mea-
sures (Line 6) are given as qb:components of the
fact (Listing 3). The cardinality relationship between
the base level and the fact can also be represented
with qb4o:cardinality in QB4OLAP as given in
Lines 2 and 4 in Listing 3.

On the other hand, with QB4SOLAP we can also
represent fact-level topological relations that are sim-
ilar to the topological relations between the child-

Listing 3. GeoFarmHerdState fact schema definition in QB4SOLAP

Listing 4. GeoFarmHerdState fact member with base levels and mea-
sures

parent levels at the hierarchy steps. Fact-level topo-
logical relations are given in spatial fact schema with
blue in Lines 3 and 5 (Listing 3). QB4SOLAP also ex-
tends the (cube) schema with spatial aggregate func-
tions, which are defined over spatial measures as high-
lighted in blue (Listing 3, Line 7).

An example of an observation fact (fact member) at
the instance level is given in Listing 4. A fact mem-
ber is a qb:Observation (Line 1), which is re-
lated to the base levels (Line 2) with respect to the data
structure definition (DSD) of the fact schema, and has
a set of measures (Lines 3, 4) where some measures
(Line 4) might have spatial values (Listing 4). To de-
fine a QB4OLAP fact schema, first, we need to enrich
the fact members by annotating with topological rela-
tions as highlighted with blue in Line 5. We can derive
topological relations between fact members and the
(base) level members by comparing the spatial mea-
sures of the fact members and spatial attributes of the
(base) level members with Boolean spatial predicates.
The links between fact members and base level mem-
bers are already given explicitly in Line 2 (Listing 4).
However, these links are simple references between the
fact and base level members, which do not describe the
nature of the topological relation. By applying Boolean
spatial predicates on fact and level members, we can
find the exact topological relations, i.e., if a fact mem-
ber intersects with the level member or if a fact mem-
ber is within the level member. We explain how to de-
tect these explicit fact-level (topological) relations in
Section 4.2.1.

Moreover, there might also be some missing links
between the (observartions) fact members and the cor-
responding base level members. For this case we need
to find all the base level members that are spatial and
derive the links between the spatial measure values and
spatial attribute values (of the base level members) by
using Boolean spatial predicates. We explain how to
discover fact-level (topological) relations, which are
not explicitly linked between observation fact and base
level members in Section 4.2.2.

20 N. Gür et al. / Multidimensional enrichment of spatial RDF data for SOLAP

There are also cases where we would like to es-
tablish a direct (topological) relation between the fact
members and higher granularity (parent) level mem-
bers, which are not at the base level of the dimen-
sion. Using the example depicted in Fig. 4 we ex-
plained that wrongly aggregating the measures (i.e.,
double counting) becomes a problem when we roll-
up between the levels that have many-to-many (N:M)
cardinality relations (as in Parish and Drainage Area
levels). Therefore, it is necessary to drill-down to the
lowest granularity (fact members) and find the direct
relation between the observation fact members and the
corresponding level members of the higher level in
many-to-many cardinality relations.

In order to prevent this problem, we address the is-
sue in our algorithm to discover and annotate the fact-
level (topological) relations that are between the ob-
servation fact members and level members of a higher
level in an N:M cardinality relation in Section 4.2.2.
For example, such a relation is given in green in Line 6
(Listing 4) that shows a topological relation between
an observation fact member (farm state) and a higher
level – not a base level – member (drainage area).

Finally, in Section 4.2.3 we explain how to define a
data structure definition (DSD) of spatial fact schema
using a QB4OLAP fact schema and the spatial fact
member instances derived in the previous two algo-
rithms.

4.2.1. Detecting explicit fact-level relations
In this section, we present an algorithm for detecting

explicit fact-level topological relations between obser-
vation fact members and base level members where
there is a direct reference between the fact member
and the base level member. To derive these topologi-
cal relations we need to get the spatial attributes of fact
members (spatial measures) and base level members.

Algorithm 5 (detectFactLevelRelations)
The input variables for Algorithm 5 are the instance
graphs of fact members GI

FM(F)
, level members GI

LM(l)
,

and attributes of level members GI
A(lm).

Every fact member fi ∈ FM has an IRI idI (fi) and
defined as a qb:Observation. The RDF graph for-
mulation of a fact member fi is:

GI
fi

=
⋃

lj ∈L(fi)

{
(idI (fi) idS(lj) idI (lmj) | fi � lmj

}

∪
⋃

mk∈M(fi)

{
(idI (fi) idS(mk) vmk

| fi � vmk

}
.

Algorithm 5: detectFactLevelRelations(GI
FM(F),

GI
A(lm)) : GI

FM(Fs)

Input: GI
FM(F)

, GI
A(lm)

Output: GI
FM(Fs)

1 begin
2 GI

FM(Fs)
= GI

FM(F); topoReli = null;

GI
A(fimk)

= ∅;

3 GI
A(lmj) = ∅; Vs(mk) = ∅; Vs(ai) = ∅;

/*initialize the ouput graph, temporary
variable and sets*/

4 foreach
/*get each observation fact (fact member)*/

5 (idI (fi) rdf:type qb:Observation) ∈
GI

FM(F)
do

6 foreach
/*get measure-level member pairs*/

7 ((idI (fi) idS(mk) vmk
), (idI (fi) idS(lj)

idI (lmj)))

8 ∈ GI
FM(F) × GI

FM(F) | fi � vmk
∧ lmj �

vai
∧

9 (idI (lmj) idS(ai) vai
) ∈ GI

A(lm)

/*get measure and attribute values of level
members*/ do

10 GI
A(fimk)

= {(idI (fi) idS(mk) vmk
)};

11 Vs(mk) =
getSpatialValues(GI

A(fimk)
);

12 if Vs(mk) �= ∅ then
13 GI

A(lmj) =
{(idI (lmj) idS(ai) vai

)};
14 Vs(ai) = getSpatialVal-

ues(GI
A(lmj));

15 if Vs(ai) �= ∅ then
16 foreach

(vmk
, vai

) ∈ Vs(mk) × Vs(ai)

/*foreach spatial value pairs*/
do

17 topoReli =
relateSpatialVal-
ues(vmk

, vai
);

18 if topoReli �= null then
19 GI

FM(Fs)
∪ =

{(idI (fi) topoReli

idI (lmj))};

20 return GI
FM(Fs)

N. Gür et al. / Multidimensional enrichment of spatial RDF data for SOLAP 21

Here, we denote by fi � lmj that a fact member fi

has an explicit link to a level member lmj (e.g., List-
ing 4, Line 3). Note that we denote by lm � vai

that
a level member lm has value vai

for attribute ai (Sec-
tion 4.1.2), which is used in Algorithm 5 (Line 12)
to get the attribute values of the linked level mem-
bers. Moreover, we denote here by fi � vmk

that a
fact member lm has value vmk

for measure mk (e.g.,
Listing 4, Lines 5 and 6). The RDF graph formula-
tion of the other input variables are: attributes of level
members GI

A(lm) and level members GI
LM(l) are already

given, respectively, in Sections 4.1.2 and 4.1.3.
The output of Algorithm 5 is the enriched in-

stance graph of fact members with topological rela-
tions GI

FM(Fs)
. In Line 2, we initialize the output graph

as the input graph of fact members (without topolog-
ical relations) so that we can gradually enrich it with
the detected topological relations (Line 22). Initially,
the topological relation variable topoReli is set to
null. We also create two temporary graphs: GI

A(lmj)

and GI
A(fimk)

as empty sets to keep triple patterns sepa-
rately in two graphs for attributes of level members and
(measures of) fact members. We also create two tem-
porary sets: Vs(mk) and Vs(ai) for keeping the spatial
values from the fact and level members, and initialize
them also as empty sets in Line 3.

In the first foreach loop (Line 4 and 5) we retrieve
the observation fact members from the input graph of
fact members, which corresponds to Line 1 in List-
ing 4. Getting the fact members allows us to access
each of their measures in Line 6 and level members
in Line 7 (Algorithm 5). In the next foreach loop
(Line 9) we match each measure-level member pair,
where we can already retrieve the measure values from
the input graph of fact members GI

FM(F) (Line 10) and
through the input graph for attributes of the level mem-
bers GI

A(lm) (Line 11 and 12), we can retrieve the at-
tribute values. In Line 13, we assign the set of triples
for measure attributes of fact members to a tempo-
rary graph GI

A(fimk)
created earlier in Line 2. This tem-

porary graph is given as an input to the helper func-
tion getSpatialValues (Algorithm 1) in Line 14
(Algorithm 5). The helper function returns the spa-
tial attribute (measure) values of the fact members,
which are kept in the temporary set Vs(mk). If this set
is not empty (checked in Line 15) and has some spa-
tial measures of fact member idI (fi), we repeat the
same procedure for retrieving the spatial attribute val-
ues of level member idI (lmj) in Lines 16 and 17. If
the output set for spatial attribute values Vs(ai) is also

not empty (Line 18), then we go through the pairs of
spatial values (vmk

, vai
) in Line 19. In this loop, we

call the next helper function relateSpatialVal-
ues (Algorithm 2), where the input is the spatial value
pairs. The output value of this function is the topolog-
ical relation between the corresponding fact and level
members, which is assigned to the variable topoReli

(Line 20).

4.2.2. Discovering implicit fact-level relations
In this section, we present an algorithm for dis-

covering fact-level (topological) relations, where there
are no direct links between the fact and level mem-
bers. This algorithm handles the following situations:
1) Finding the topological relations between observa-
tion facts and base level members; 2) Finding the topo-
logical relations between observation facts and parent
level members in an N:M cardinality relation. In both
cases there are no direct links between the observa-
tion facts and level members. Therefore, we benefit
from (QB4OLAP) schema graphs of dimensions, hier-
archies, and levels for iterating through the RDF triples
to distinguish the base level members, and find the par-
ent level members, when there is an N:M cardinality
relation between the levels of a hierarchy at a hierarchy
step.

Algorithm 6 (discoverFactLevelRelations)
The input variables at the schema level for Algorithm 6
are the schema graphs of dimensions GS

D , hierarchies
of the dimensions GS

H(d), levels of the hierarchies

GS
L(h), and hierarchy steps of the hierarchies GS

HS(h).
The RDF graph formulations of the schema level in-
put variables (dimensions GS

H(d)
, hierarchies GS

H(d)
,

and levels GS
L(h)) are already given in Section 4.1.3.

Therefore, we only explain the structure of a hierar-
chy step in the schema graph. Each hierarchy step hsi
is defined in the schema graph GS

HS(h)
as a blank node

_:hsi ∈ B. Each hierarchy step is linked to a hierar-
chy idS(h) with the qb4o:inHierarchy predicate
and has a child level idS(lc), a parent level idS(lp), and
a cardinality relation idS(card), which are provided
with qb4o:childLevel, qb4o:parentLevel,
and qb4o:pcCardinality predicates in Line 6.

The input variables at the instance level are the in-
stance graphs of fact members GI

FM(F), level mem-

bers of levels GI
LM(l), and attributes of level members

GI
A(lm). We have already explained the RDF graph for-

mulations of the instance level input variables (fact
members GI

FM(F), level members GI
LM(l), and attributes

of level members GI
A(lm)

) in Section 4.2.1.

22 N. Gür et al. / Multidimensional enrichment of spatial RDF data for SOLAP

Algorithm 6: discoverFactLevelRelations(GI
FM(F),GI

LM(l),GI
A(lm),GS

D,GS
H(d),GS

HS(h)) : GI
FM(Fs)

Input: GI
FM(F), GI

LM(l), GI
A(lm), GS

D , GS
H(d), GS

HS(h)

Output: GI
FM(Fs)

1 begin
2 GI

FM(Fs)
= GI

FM(F)
; topoReli = null; /*initialize the output graph and temporary variable*/

3 GI
A(fimk)

= ∅; GI
A(lmj) = ∅; Vs(mk) = ∅; Vs(ai) = ∅; /*initialize temporary graphs and sets as empty set*/

4 foreach (idS(d) qb4o:hasHierarchy idS(h)) ∈ GS
D /*iterate through the dimensions*/ do

5 foreach (idS(h) qb4o:inDimension idS(d)) ∈ GS
H (d) /*iterate through the hierarchies*/ do

6 foreach (idS(h) qb4o:hasLevel idS(ln)) ∈ GS
H (d)

/*iterate through the levels in the hierarchy*/ do
7 foreach

(_:hsi qb4o:inHierarchy idS(h)) ∈ GS
HS(h) | (_:hsi qb4o:childLevel idS(lc)) ∈

GS
HS(h) ∧ (_:hsi qb4o:parentLevel idS(lp)) ∈

GS
HS(h) ∧ (_:hsi qb4o:pcCardinality idS(card)) ∈ GS

HS(h)

/*each hierarchy step has a child level (lc), a parent level (lp), and a cardinality relation between
these levels*/ do

8 if (idS(ln) �= idS(lp)) ∨ (idS(ln) = idS(lp) ∧ idS(card) = qb4o:ManyToMany)

/*check in each hierarchy step that level ln should not be annotated as a parent level lp,
thus it is a base level OR if it is a parent level, there should be also a N:M cardinality
relation in the hierarchy step*/ then

9 foreach (idI (lmj) qb4o:memberOf idS(ln)) ∈ GI
LM(l)

/*get level members of the level ln*/ do
10 foreach ((idI (lmj) qb4o:memberOf idS(ln)),

(idI (fi) rdf:type qb:Observation))

11 ∈ GI
LM(l) × GI

FM(F) | ⋃
mk∈M(fi)

(idI (fi) idS(mk) vmk
) ∈ GI

FM(F) ∧ ⋃
ai∈A(lm)

12 (idI (lmj) idS(ai) vai
) ∈ GI

A(lm)

/*get level member-fact member pairs, where each fact member has some measure
values vmk

, and each level member has some attribute values vai
*/ do

13 foreach ((idI (fi) idS(mk) vmk
), (idI (lmj) idS(ai) vai

)) ∈ GI
FM(F) × GI

A(lm)

do
14 GI

A(fimk)
= {(idI (fi) idS(mk) vmk

)}; GI
A(lmj) = {(idI (lmj) idS(ai) vai

)};
15 Vs(mk) = getSpatialValues(GI

A(fimk)
); Vs(ai) =

getSpatialValues(GI
A(lmj));

16 if Vs(mk) �= ∅ ∧ Vs(ai) �= ∅ then
17 foreach (vmk

, vai
) ∈ Vs(mk) × Vs(ai) do

18 topoReli = relateSpatialValues(vmk
, vai

);
19 if topoReli �= null then
20 GI

FM(Fs)
∪ = {(idI (fi) topoReli idI (lmj))};

21 return GI
FM(Fs)

N. Gür et al. / Multidimensional enrichment of spatial RDF data for SOLAP 23

The output of Algorithm 6 is the enriched instance
graph of fact members with the topological relations
GI

FM(Fs)
. In Line 2, we initialize the output graph as

the input graph of fact members (without topologi-
cal relations) so that we can gradually enrich it with
the detected topological relations (Line 22). Initially,
the topological relation variable topoReli is set to
null. We also create two temporary graphs: GI

A(lmj) and

GI
A(fimk)

as empty sets to keep triple patterns sepa-
rately in two graphs for attributes of level members and
(measures of) fact members. We also create two tem-
porary sets: Vs(mk) and Vs(ai) for keeping the spatial
values from the fact and level members and initialize
them also as empty sets in Line 3.

To find the topological relations between observa-
tion facts (with spatial measures) and base level mem-
bers (with spatial attributes), first, we need to find all
the base levels since there is no direct link between
the fact and level members. To achieve this in Algo-
rithm 6, we use the schema definitions readily avail-
able in QB4OLAP. In Line 4, we iterate through the
nested loops of dimensions to get the hierarchies and
in Line 5 we iterate the nested loops of hierarchies to
get the hierarchy levels. To find the base level of a hi-
erarchy, we have to iterate through the hierarchy steps,
where each hierarchy step describes a child level, a
parent level and a cardinality relation between the lev-
els (Line 6). If a level idS(ln) has never been assigned
as a parent level with qb4o:parentLevel predi-
cate in any of the hierarchy steps in a hierarchy h from
the schema graph GS

HS(h)
, then ln is the base level of a

hierarchy h (Line 7).
Thus, we can retrieve the level members of level ln

from the instance graph level members GI
LM(l) (Line 8).

In the next foreach loop we can pair the level mem-
bers from the instance graph GI

LM(l)
, and observation

facts from the instance graph of fact members GI
FM(F)

(Line 9). We can retrieve a set of attributes (mea-
sures) for fact members from the fact members graph
(Line 10), and a set of attributes for level members
from the instance graph GI

A(lm)
(Line 11).

Then, in the next foreach loop in Line 12, we get
the triple patterns with each measure values of the fact
member and attribute values of the level member in
pairs. While iterating through the (pair of) triple pat-
terns, we insert each member of the pair to the tempo-
rary graphs for measures of fact members GI

A(fimk)
and

attributes of level members GI
A(lmj) (Line 13), which

are created earlier as empty sets in Line 3. Then, we
can filter the spatial values from the triple patterns

kept in the temporary graphs by calling the helper
function getSpatialValues (Algorithm 1), with
those input graphs GI

A(fimk)
and GI

A(lmj) (Line 14). We
call the helper function getSpatialValues (Al-
gorithm 1) twice, with the input graphs GI

A(fimk)
and

GI
A(lmj), where the outputs of the each (helper) func-

tion call are assigned to the temporary sets Vs(mk) and
Vs(ai) correspondingly (Line 14). If these sets are not
empty (Line 15), it means that getSpatialValues
identified spatial values in the triple patterns of the in-
put graphs.

Then, we iterate through the spatial value pairs re-
trieved from the each of the sets (Line 16). In this
loop, we call the next helper function relateSpa-
tialValues (Algorithm 2), where the input is a
spatial value pair. The output value of this function
is the topological relation between the corresponding
level members, and it is assigned to the initially cre-
ated temporary variable topoReli (Line 17). If this
topoReli value is not null (Line 18), the output graph
for the spatial fact members is incrementally enriched
by adding the triple pattern with the topological rela-
tion (Line 19).

To find the topological relations between the ob-
servation facts and parent level members in an N:M
cardinality relation, we check in Line 20 that if
level idS(ln) is assigned as a parent level in a hi-
erarchy step with qb4o:parentLevel predicate
and the hierarchy step entails an N:M relation with
qb4o:ManyToMany predicate. If that is the case, we
repeat the same steps from Lines 8 to 19.

Finally, the output graph for the spatial fact mem-
bers with discovered fact-level (topological) relations
is returned in Line 22.

4.2.3. Defining spatial fact DSD
In this section, we present an algorithm for re-

defining the fact schema data structure definition
(DSD) by enriching the DSD with fact-level topo-
logical relations. An example of a fact schema in
QB4OLAP is given in the black-colored lines of List-
ing 3 (for now please ignore Lines 3, 5 and 7). We
re-define the spatial fact schema to QB4SOLAP (List-
ing 3 Lines 1–7) by using the enriched fact members
that are generated via Algorithms 5 and 6.

Algorithm 7 (defineSpatialFactDSD) The in-
put variables for Algorithm 7 are the instance graph
of spatial fact members GI

FM(Fs)
and schema graph

of QB4OLAP fact schema GS
F . Spatial fact mem-

bers in the instance graph GI
FM(Fs)

must be anno-

24 N. Gür et al. / Multidimensional enrichment of spatial RDF data for SOLAP

Algorithm 7: defineSpatialFactDSD(GI
FM(Fs)

,GS
F) : GS

Fs

Input: GI
FM(Fs)

, GS
F

Output: GS
Fs

1 begin
2 GS

Fs
= GS

F ; aggFunci = null; /*initalize the output graph and temporary variable*/

3 foreach (idI (fi) rdf:type qb:Observation) ∈ GI
FM(Fs)

do

4 foreach (idI (fi) topoReli idI (lmj)) ∈ GI
FM(Fs)

| ⋃
ln∈L(fi)

(idI (fi) idS(ln) idI (lmj)) ∈ GI
FM(Fs)

/*each topoReli in the fact member triples goes into the DSD with its corresponding level ln*/ do
5 GS

F(Fs)
∪ =

{(idS(F) qb:component [qb4o:level idS(ln), qb4so:topologicalRelation
idS(topoReli)])};

6 foreach vmk
∈ (idI (fi) idS(mk) vmk

) /*find the spatial measures from the fact triples*/ do
7 if vmk

is a geo:spatialLiteral then
8 switch (geoType(vmk

))
/*geoType(va) function returns the geometry type of a given attribute value*/ do

9 case (POINT)
/*point geometry measures are supported to be aggregated with ConvexHull function*/

10 aggFunci = qb4so:ConvexHull

11 case (LINE)
/*line geometry measures are supported to be aggregated with Union function*/

12 aggFunci = qb4so:Union

13 case (POLYGON)
/*polygon geometry measures are supported to be aggregated with Union, Centroid,*/

14 aggFunci = qb4so:Union ∨ qb4so:Centroid ∨ qb4so:MBR
/*or MBR functions*/

15 GS
F(Fs)

∪ =
{(idS(F) qb:component [qb:measure idS(mk), qb4o:aggregateFunction
idS(aggFunci)])};

16 return GS
Fs

tated with QB4SOLAP or can be generated by us-
ing Algorithms 5 and 6 from QB4OLAP fact mem-
bers. A QB4OLAP fact schema GS

F has (base) lev-
els and measures of the cube as qb:components
and defines the fact-level cardinality relation with
qb4o:cardinality predicate, aggregate functions
on (numerical) measures with qb4o:aggregate-
Function predicate.11

11In QB4OLAP, qb4o:AggregateFunction class has only
instances (e.g., qb4o:Avg, qb4o:Sum functions) for numer-
ical measures. QB4SOLAP extends this class with a subclass
qb4so:SpatialAggregateFunction, which has instances
of spatial aggregate functions (e.g., qb4so:ConvexHull,
qb4so:Union) for spatial measures [13,15].

The output of Algorithm 7 is the enriched fact
schema graph GS

F annotating the fact-level relations
with QB4SOLAP topological relations and measures
with spatial aggregate functions.

In Line 2, we initialize the output graph as the input
schema graph so that we can gradually enrich it with
QB4SOLAP schema annotations (Lines 5 and 15). Ini-
tially, an aggregate function variable aggFunci is cre-
ated and set to null (Line 2).

The first foreach loop iterates through the fact
members graph GI

FM(Fs)
and finds each fact member

fi by using the triple pattern (idI (fi) rdf:type
qb:Observation). The second foreach loop
gets every distinct topological relation topoReli of

N. Gür et al. / Multidimensional enrichment of spatial RDF data for SOLAP 25

the fact member fi (Line 4). Then the output schema
is annotated with the identifier of these topological re-
lations (Line 5). Next, we get every measure vmk

of
the fact member fi (Line 6), and check if it is a spa-
tial measure (Line 7). If it is a spatial measure, we
find the geometry type with geoType function (Line 8).
We have appointed the corresponding spatial aggre-
gate functions (Lines 10, 12, and 14) with regard to
the geometry type of the spatial measure (Lines 9, 11,
and 13). Finally, the output schema GS

Fs
is annotated

with the identifier of these spatial aggregate functions
(Line 15) and returned (Line 16).

4.3. Implementation choices

When implementing the algorithms presented in this
section, we had to make some implementation choices
both in technical as well as strategical aspects that we
would like to briefly comment on. Further details re-
garding the implementation of the algorithms them-
selves are available in the Appendix. As mentioned
earlier, RDF2SOLAP is implemented in Javascript on
the Node.js platform using the N3.js library for pars-
ing the RDF triples in Javascript and the Turfjs library
for spatial analysis. Details of our approach, endpoints,
and datasets can be found on our project page.12 The
code repository for the whole implementation can be
found on GitHub.13

To answer the question: “Can this approach be rea-
sonably implemented on top of triple stores by directly
using Web and Semantic Web technologies?”, we have
come across a number of challenges, where specific
choices had to be made.

For example, we chose to store RDF data in a
well-established triple store (Virtuoso Open Source)
that supports many geometry data types (i.e., POLY-
GON, MULTIPOLYGON). Even though Virtuoso sup-
ports several shape types (e.g., POLYGON, MULTI-
POLYGON, etc.), it has a limited number of spatial
Boolean functions available as built-in functions from
the DE9DIM model (see Table 1). Therefore, we have
also decided to use a third party Javascript library for
spatial analysis, which is called Turfjs6. This way, we
can ensure that RDF2SOLAP can be used on top of
any triple store since the Javascript library provides us
with the spatial analysis capabilities and a flexible de-
velopment environment, independent from the choice
of the triple store.

12Project Page: http://extbi.cs.aau.dk/RDF2SOLAP.
13RDF2SOLAP Repository: https://github.com/lopno/rdf2solap.

We are working with multi-part POLYGON data
(for drainage areas and parishes), which means that,
when several polygons are grouped by unique (parish
or water) URIs they can compose a MULTIPOLYGON
for a single parish or drainage area instance. From the
implementation point of view, we had to implement a
bounding box function for multi-part POLYGON data,
in order to call the spatial Boolean functions (within
and intersects) between the correct parish and drainage
area instances, then annotate the topological relations
between their unique URIs. If triple stores already pro-
vided overall support of complex spatial data types,
spatial indices, and a complete support of built-in spa-
tial functions, decoupling the triple stores during de-
velopment of RDF2SOLAP would not have been nec-
essary. We could then directly have used the spatial
capabilities of the triple stores that were required for
developing RDF2SOLAP. However, to the best of our
knowledge, a third party spatial analysis library was
needed to fully implement our RDF2SOLAP (spatial)
multi-dimensional enrichment algorithms described in
Section 4.

5. Experimental evaluation

The section is structured as follows. We describe ex-
perimental settings in Section 5.1. Then we compare
development time between our approach and the base-
line, followed by a comparison of the runtimes and the
annotation quality. Finally, we summarize our findings
in Section 5.5.

5.1. Experimental setup

The rationale for developing RDF2SOLAP is to be
able to enrich and annotate existing spatial RDF data
with spatial and multi-dimensional metadata while
staying within the RDF environment. This upgrades the
spatial RDF data to allow SOLAP querying directly in
SPARQL. The alternative would be to export the spa-
tial RDF data to relational format, do the enrichment
with relational/GIS tools and perform the SOLAP on
the resulting relational data, thus loosing all the advan-
tages of having the data in RDF in the first place. Do-
ing the enrichment purely within the RDF environment
is expected to come at a cost as support for spatial and
multidimensional data in the RDF/SW stack is still less
mature; this will however improve over time. Thus, our
goal is just to demonstrate that we can do this in a pure
RDF environment with adequate performance in terms

http://extbi.cs.aau.dk/RDF2SOLAP
https://github.com/lopno/rdf2solap

26 N. Gür et al. / Multidimensional enrichment of spatial RDF data for SOLAP

of runtime and annotation quality (which may vary). In
return, RDF2SOLAP provides a solution that is both
flexible and general for all data sets. We then compare
our general solution to the alternative baseline, which
is spending long development times on hand-crafting
specialized enrichment solutions using RDBMSes and
GIS for each new data set.

We used the common Virtuoso version 07.20.3217
on Linux (x86_64-ubuntu-linux-gnu), Single Server
Edition as triplestore. We implemented RDF2SOLAP
on the Node.js platform, running on a Macbook Pro
14.3 with one Intel Core i7 2.8GHz 4-core CPU
256KB L2 cache, 6MB L3 cache, and 16GB RAM.
All test cases are in the GitHub repository so the ex-
periments can be repeated. Each experiment was run
in a single process. For the baseline implementation,
we used a leading GIS tool and a leading RDBMS
(we cannot write the names due to license restrictions,
but they can be supplied on demand). These were run-
ning on a Windows 10 Enterprise server with 4 Intel
Core i7 2.9GHz CPUs and 32GB memory, i.e., con-
siderably more powerful hardware. We use both the
GeoFarmHerdState data set described above and the
GeoNorthwind data set from [15].

We now describe how the RDBMS and GIS base-
lines were implemented. Since the GIS tool and the
RDBMS cannot process RDF data in native format,
we first have to extract and prepare the data for load-
ing into them. The preparation time is part of the de-
velopment time discussed below. Doing this prepara-
tion requires that the developer has basic knowledge
of the domain, extraction of RDF data with SPARQL
queries, writing SQL queries, and knows how to use
the RDBMS and GIS tools. We extracted the spatial
level members (farms states, parishes, and drainage ar-
eas) from our RDF endpoint in CSV format. To load
the data into the GIS tool and RDBMS we use the rela-
tional schema defined by QB4SOLAP. In the GIS tool
we saved CSV data layers (for each level; farm states,
parishes and drainage areas) and converted these into
native GIS format (shape files). Then, we run the Join
Attributes By Location function, which is a built-in
data management function. We run this function as
a batch process, for parishes-drainage areas (Alg. 4),
farm states-parishes, and farm states-drainage areas
(Alg. 6). We load the WKT data (spatial attributes of
level and fact members) in the CSV files into the GIS
tool and a relational geo-database, with the same deci-
mal precision for the coordinates. We extract topolog-
ical relations between the child and parent members
by using spatial joins in the GIS tool and built-in spa-

tial functions in the RDBMS. Overall, most of the time
was spent on data extraction, preparation, and load,
caused by having to convert data from its existing RDF
format. None of these tasks are needed if the enrich-
ment is done entirely within an RDF environment, like
in RDF2SOLAP.

5.2. Development time comparison

We now compare the time required to develop
enrichment solutions for spatial RDF data with
RDF2SOLAP to using the RDBMS and GIS baselines.
Here, it is important to keep in mind that RDF2SOLAP
has general algorithms that use existing metadata and
annotations to work for any spatial RDF data set, re-
quiring only a few minutes of configuration, while a
new baseline enrichment solution has to be imple-
mented for each new data set, requiring literally (re-
peated) days of development time. Of course, there was
a onetime development cost for RDF2SOLAP. How-
ever, this cost is already paid and will not be repeated,
unlike the case for the baselines.

The development times for RDF2SOLAP, and the
RDBMS and GIS baselines for the one-time step of
General Algorithms (only RDF2SOLAP) and the Geo-
FarmHerdState data set, are given in Table 2. One day
corresponds to 8 hours. All development was carried
out by the first and fourth author who both have signifi-
cant experience in all the used tools and platforms, and
also recorded the development times for RDF2SOLAP
and GeoFarmHerdState. The RDF2SOLAP configura-
tion times for each data set were also recorded by the
first author. We find these development times realistic
and comparable. As GeoNorthWind is only included to
demonstrate that RDF2SOLAP can generalize to other
data sets, we have not implemented the baseline en-
richment solutions for GeoNorthWind. Thus, we have
not reported RDBMS and GIS development times in
the table. However, realistic estimates would be in the
same range as for GeoFarmHerdState, i.e., one or more
days.

From the table, we can see that RDF2SOLAP allows
to enrich and annotate new spatial RDF data sets with
just minutes of effort, since the enrichment process is

Table 2

Development times

RDF2SOLAP RDBMS GIS

General algorithms 1.4 days (one-time) N/A N/A

GeoFarmHerdState 5 min (config) 1.3 days 2 days

GeoNorthWind 10 min (config) N/A N/A

N. Gür et al. / Multidimensional enrichment of spatial RDF data for SOLAP 27

Table 3

Input, output, and runtimes for RDF2SOLAP algorithms on GeoFarmHerdState

INPUT OUTPUT

NumberOf child
members

NumberOf
parent members

NumberOf
explicit relations

NumberOf topological
relations

Run times
(in seconds)

Section 5.2 Alg. 3 parishes: 2,180 drainageAreas: 134 2,683 intersects 636 29 s

within 2,046

Alg. 5 farmStates: 40,039 parishes: 2,180 39,800 within 39,334 7 s

Section 5.3 Alg. 4 parishes: 2,180 drainageAreas: 134 NONE intersects 1,088 2,622 s

within 3,392

Alg. 6 farmStates: 40,039 parishes: 2,180 NONE within 39,998 1,920 s

farmStates: 40,039 drainageAreas: 134 NONE within 39,845 525 s

done automatically after retrieving the input parame-
ters to the enrichment algorithms from the endpoint.
In comparison, each new data set requires one or more
days of (repeated) development effort for the baseline
RDBMS and GIS enrichments.

5.3. Runtime comparison

Having established that RDF2SOLAP requires up
to 2 orders of magnitude less development time for
a new data set, we now investigate whether it can do
the enrichment with reasonable runtimes, and compare
its runtimes to those of the baseline implementations.
Both the total runtimes (in minutes) and the subto-
tals (in seconds, for accuracy) for the different algo-
rithms are reported. The GeoFarmHerdState runtimes
are seen in Tables 3 and 4.

Alg. 3 and 5 (to detect explicit topological rela-
tions) are only implemented in the RDBMS since the
GIS tool does not support the foreign key joins of
explicit (skos:broader) relations which are needed for
these two algorithms. In order to implement the needed
topological relations in RDF2SOLAP, we had to use
theturf.js library running on a node.js server, where the
RDF data is parsed into JSON format, since these rela-
tions were not supported by the triplestore. This meant
that we could not take advantage of spatial indexing in
the triplestore.

To understand the size of the input and output of
the algorithms for GeoFarmHerdState, we report these
along with corresponding RDF2SOLAP runtimes in
Table 3. The input parameters and numbers for each
algorithm are shown in Table 3 under the INPUT col-
umn(s). The input datasets to the algorithms are 2,180
parish members, 40,039 farm state members, and 134
drainage area members. The OUTPUT columns show
the number of topological relations found and run
times of the algorithms. In this section, we only fo-

Table 4

GeoFarmHerdState runtimes (f.s. = farm states, p. = parishes,
d.a. = drainage areas)

RDF2SOLAP RDBMS GIS

Alg. 3 (p. – d.a.) 29 s <1 s N/A

Alg. 4 (p. – d.a.) 2,622 s 43 s 45 s

Alg. 5 (f.s. – p.) 7 s <1 s N/A

Alg. 6 (f.s. – p.) 1,920 s 95 s 72 s

Alg. 6 (f.s. – d.a.) 525 s 48 s 41 s

Total 85 m 3 m >2.5 m

cus on the runtime, the annotation quality is evaluated
later.

In Table 3, we can see that most expensive al-
gorithm is Alg. 4 (discoverSpatialHS), which
runs in 2,622 seconds. The algorithm takes parishes
and drainage areas (POLYGON data type) as in-
put instances, and not explicit relations as in Alg. 3
(detecSpatialHS). Alg. 3, given (2,683) distinct
explicit relations, checks the corresponding spatial
Boolean functions (within and intersects) 2,683 times
each. In comparison, Alg. 4 calls (within and inter-
sects) 134 × 2,180 = 292,120 times each. Similarly,
Alg. 6 is slower than Alg. 5 since the former does not
use explicit relations. However, it is much faster than
Alg. 4 since this calls the spatial Boolean functions be-
tween farm states (POINT data type) and parishes and
drainage areas (POLYGON data type).

From the GeoFarmHerdState runtimes, we see that
Alg. 4 and 6 use the most time, in particular for
RDF2SOLAP. However, the total RDF2SOLAP run-
time of 85 minutes is very reasonable and well within
the requirements for practical use: a user wanting to
analyze a new data set (which usually does not hap-
pen several times a day) can simply spend a few min-
utes on configuration and then let RDF2SOLAP run in
the background for the next 1.5 hours. Especially for
non-developer RDF users, this is a much better value

28 N. Gür et al. / Multidimensional enrichment of spatial RDF data for SOLAP

Table 5

GeoNorthWind runtimes

Hierarchy step Algorithm RDF2SOLAP

Customer-city (point-polygon) Alg. 3 2 s

Alg. 4 7 s

Supplier-city (point-polygon) Alg. 3 <1 s

Alg. 4 <2 s

City-state (polygon-polygon) Alg. 3 1 s

Alg. 4 13 s

Total 26 s

Table 6

Number of topological relations found by each tool (f.s. = farm
states, p. = parishes, d.a. = drainage areas)

Tools

GIS RDBMS RDF2SOLAP

Alg. 3: (p. – d.a.) intersects N/A 1,897 636

within N/A 785 2,046

Alg. 4: (p. – d.a.) intersects 2,556 2,802 1,088

within 1,039 785 3,392

Alg. 5: (f.s. – p.) within N/A 39,334 39,334

Alg. 6: (f.s. – p.) within 39,805 39,984 39,998

Alg. 6: (f.s. – d.a.) within 39,441 39,845 39,845

proposition than first spending one or more days on
technical development in the baseline tools.

For GeoNorthWind, the baselines were not imple-
mented (see above) so only RDF2SOLAP runtimes
are reported, see Table 5. For this smaller data set,
RDF2SOLAP completes in just 26 seconds, making it
usable even in interactive mode.

In summary, the runtime comparisons show that,
even though RDF2SOLAP is slower than the hand-
crafted baselines, it still has a runtime performance
that is more than adequate for its intended use case.

5.4. Annotation quality comparison

We now compare RDF2SOLAP to the RDBMS
and GIS baseline tools in terms of annotation quality.
Specifically, we report the number of the topological
relations found by each algorithm/step in each tool,
and relate these to accuracy and coverage. The num-
bers are given in Table 6.

As mentioned earlier, Alg. 3 and Alg. 5 were not
implemented in the GIS tool due to its lack of sup-
port for explicit relations between parent-child mem-
bers; thus these numbers are reported as N/A. We
thus only tested the discovery of implicit topologi-
cal relations (discoverSpatialHS and discov-
erFactLevelRelations) by utilizing its spatial

join functionality to emulate the results for Alg. 4 and
Alg. 6.

For the RDBMS tool, we tested both detect and dis-
cover topological relations, where we used joins on
unique IDs if they were present (drainage area foreign
key in parishes, parish foreign key in farm states), and
with spatial joins by using the STWithin, STIn-
tersects, and STOverlaps built-in functions.

We now compare results for each algorithm in the
different tools. For Alg. 3, RDF2SOLAP reports only
a third of the intersecs relations but almost three times
as many within relations, as the RDBMS tool. This
is due to generalizing the multi-part POLYGON data
as bounding boxes in RDF2SOLAP (due to restric-
tions in our spatial library), in the spatial RDBMS,
multi-part POLYGON data is processed in its original
format, yielding better quality. Interestingly, the total
number of intersects+within relations for the two tools
are exactly the same, namely 2682. This suggest that
RDF2SOLAP can get the same annotation quality as
the RDBMS tool when better spatial support become
available in the RDF environment.

Similar results are seen for Alg. 4. Here, the GIS and
RDBMS results are similar, but not identical, showing
that perfect annotation quality is not a given, even with
traditional tools. Again, RDF2SOLAP finds fever in-
tersects relations and more within relations (again due
to the bounding box generalization), and again the to-
tal number of relations found by the 3 tools are very
similar. This indicates that RDF2SOLAP can achieve
the same annotation quality with better spatial RDF
support.

For Alg. 5, the RDF2SOLAP and RDBMS results
are identical. This perfect annotation quality can be
achieved since the within relations are found between
points and polygons which can be done exactly by the
library.

For Alg. 6, the results found by the 3 tools for (farm
states-parishes) are very close, with RDF2SOLAP dif-
fering 0.5% from the GIS tool and 0.04% from the
RDBMS tool. For (farm states-drainage areas), the
RDF2SOLAP and RDBMS results are identical, while
the GIS result differs by 0.01%. Thus, the annotation
quality for all 3 tools is near-perfect.

Similar results were found for GeoNorthWind. For
Hierarchy Step 1, there are 89 correct within relations.
Of these, Alg. 3 found 75 of them correctly, while
Alg. 4 found 91 relations (the 89 correct and 2 extra
incorrect). For Hierarchy Step 2 there are 28 correct
within relations: Alg. 3 found 24 of them correctly,
while Alg. 4 found all 28 of them correctly. For Hier-

N. Gür et al. / Multidimensional enrichment of spatial RDF data for SOLAP 29

archy Step 3, we do not have the correct ground truth
since this requires the GIS and RDBMS baselines to
have been implemented.

RDF2SOLAP’s problems with POLYGON-
POLYGON relations could have been prevented if
we had been able to use multi-part POLYGON and
MULTIPOLYGON data in its original form instead of
generalizing them to bounding boxes. However, We
encountered both performance and formatting prob-
lems while loading MULTIPOLYGON data to Virtu-
oso, which led to missing data in the triplestore for
drainage areas. Even if the MULTIPOLYGON data
was could be successfully loaded, Turf.js is not able
to handle POLYGON-MULTIPOLYGON within rela-
tions. We thus had to make a trade-off and implement
the POLYGON-POLYGON relations with generalized
bounding boxes.

In summary, the annotation quality of RDF2SOLAP
is near-perfect for the spatial relations that are well
supported in the RDF environment. There are some
problems with polygon-to-polygon relations, but these
are caused by limitations in our spatial library. When
better spatial RDF support becomes available, we are
confident that RDF2SOLAP will provide near-perfect
annotation quality for all cases.

5.5. Experimental summary

In summary, we have seen that RDF2SOLAP pro-
vides orders of magnitude less development time for
new data sets (minutes versus days), and, while slower
than the RDBMS and GIS tools, has adequate runtimes
for its intended use case. For some algorithms, its an-
notation quality is near-perfect, while for others, it will
be when better spatial RDF support becomes available.

6. Related work

Utilizing DW/OLAP technologies on the Semantic
Web with RDF data makes RDF data sources more
easily available for interactive analysis. As summa-
rized by Abelló et al. [1], related work has studied
OLAP and data warehousing possibilities on the Se-
mantic Web (SW) in general. Our work, however, is
centered around spatial OLAP (SOLAP) and spatial
data warehouses (SDW) on the Semantic Web, which
is not yet a comprehensively studied research topic.
We focus on performing spatial OLAP analysis di-
rectly over multi-dimensional data published on the
Semantic Web. Therefore, we review the related work

with relevant approaches classified under the follow-
ing titles: (1) data modeling and representation (on the
SW for multi-dimensional and spatial data), (2) meta-
data enrichment and MD analysis (OLAP-like analy-
sis over RDF data).

Data modeling and representation The RDF Data
Cube (QB) vocabulary [48] is the W3C recommen-
dation to publish statistical data and its metadata in
RDF. Thus, QB is commonly used to publish raw or
already aggregated multidimensional data sets. How-
ever, QB lacks the underlying metadata for multidi-
mensional models and OLAP operations. The set of
MD concepts, such as, hierarchy levels along a cube
dimension, semantics of the relationships between lev-
els, semantics and definitions of aggregate functions
are missing in QB vocabulary, are essential in an MD
schema to enable OLAP analysis. Therefore, Kämp-
gen et al. define an OLAP data model on top of QB
by using SKOS [30] extensions14 to support multi-
dimensional hierarchies [26,27]. However, the pro-
posed model has some limitations on levels to exist
only in one hierarchy. The OLAP operations are made
available on the data cubes with the proposed model
but restricting the cubes with only one hierarchy per
dimension. Etcheverry et al. propose QB4OLAP [7]
as an extension to the QB vocabulary, which supports
modeling a complete MD data cube and querying the
cube with OLAP operations on the Semantic Web.
Modeling of MD data on the Semantic Web motivated
the publication of datasets from several domains (e.g.,
statistical data sets from EuroStat and World Bank
data, AirBase air quality data, and many other envi-
ronmental and governmental open data) as RDF data
cubes [47].

The need of fully multi-dimensional semantic data
warehouses (where OLAP operations are enabled in
SPARQL) made the QB4OLAP vocabulary prominent.
Therefore, RDF data cubes from statistical and envi-
ronmental domains [10,12,43] are published with an
extended QB vocabulary. Moreover, semantic Extract-
Transform-Load (ETL) tools automate and ease the
process of annotating and publishing open data with
QB4OLAP on the Semantic Web [5,31,32]. Therefore,
we can see more and more multi-dimensional datasets
annotated with QB4OLAP on the Semantic Web.

These multi-dimensional semantic modeling ap-
proaches and querying with OLAP on the Seman-
tic Web lead us to find ways for modeling, publish-

14http://www.w3.org/2011/gld/wiki/ISO_Extensions_to_SKOS

http://www.w3.org/2011/gld/wiki/ISO_Extensions_to_SKOS

30 N. Gür et al. / Multidimensional enrichment of spatial RDF data for SOLAP

ing, and querying spatial data warehouses in partic-
ular since modeling and querying spatial data bring
new challenges. QB4SOLAP [13] – a spatial exten-
sion to a fully multi-dimensional QB4OLAP vocab-
ulary emerges the need of modeling and publishing
geo-semantic data warehouses on the Semantic Web.

Modeling and publishing (non multi-dimensional)
spatial data on the Semantic Web has been a focus by
many communities and research groups. Some of the
efforts for standardizing and aligning vocabularies to
describe spatial data (e.g., locations, geometries, etc.)
are GeoSPARQL [34] by the Open Geospatial Consor-
tium (OGC), Basic Geo (WGS84 lat/long) Vocabulary
by W3C Semantic Web Interest Group [4], NeoGeo
Vocabularies by GeoVocab working group [40], IN-
SPIRE Directive metadata on the Semantic Web [35],
and GeoNames Ontology [45] among many others.

These standards have been commonly used in a
wide range of projects. Government Linked Data
(GLD) working group listed some of these geo-
vocabularies as standards to publish governmental
linked data sets [20]. Andersen et al. re-use some of
these vocabularies for publishing governmental and
spatial data on the Semantic Web [2]. LinkedGeoData
is a big contribution to the Semantic Web, which inter-
actively transforms OpenStreetMap data to RDF data
[41]. The GeoKnow project focuses on linking geospa-
tial data from heterogeneous sources [39]. More recent
works by Kyzirakos et al. to transform geospatial data
into RDF graphs using R2RML mappings [28] and
geo-semantic labelling of open data [33] by Neumaier
et al. show that spatial data on the Semantic Web will
keep growing. However, none of these standards con-
siders the MD aspects of spatial data for geo-semantic
data warehouses.

Large volumes of spatial data on the Semantic Web
yield a need for advanced modeling and analysis of
such data. As mentioned earlier, QB4SOLAP [13]
remedies this need. Aggregate functions, cardinality
relationships, and topological relations are rich sources
of knowledge in spatial data cubes in order to query
with spatial OLAP operations in SPARQL [15].

QB4ST [3] is a recent attempt to define extensions
for spatio-temporal components to RDF Data Cube
(QB). However, it has the inherent limitations of QB
to support OLAP dimensions with hierarchies, lev-
els, and aggregate functions. Lack of OLAP hierar-
chies and aggregate functions in QB4ST hinders to
define and operate with topological relations at hierar-
chy steps or spatial aggregate functions on spatial mea-
sures, which are essential MD concepts for SOLAP

operators. These spatial MD concepts in geo-semantic
data warehouses are defined together with SOLAP to
SPARQL query mappings in [15].

Metadata enrichment and MD analysis Increasing
popularity of RDF data cubes and MD OLAP cubes on
the Semantic Web raised interest in tools and frame-
works that can ease the annotation and querying of MD
data on the Semantic Web from existing RDF sources.

Ibragimov et al. present a framework for exploratory
OLAP over Linked Open Data (LOD), where the MD
schema of the data cube is annotated with QB4OLAP
[22]. Based on this MD schema, they propose a sys-
tem that is capable of querying data sources, extract-
ing and aggregating data to build OLAP cubes in RDF
[23] and querying in a federated setup [21]. Similarly,
Gallinucci et al. propose an exploratory OLAP ap-
proach, namely iMOLD by interactively MD modeling
of linked data [11]. Their approach allows users to en-
rich RDF cubes with aggregation hierarchies through
a user-guided process. During this interactive process,
the recurring modeling patterns that express roll-up re-
lationships between RDF concepts are recognized in
the LOD, then these patterns are translated into ag-
gregation hierarchies to enrich the RDF cube. Varga
et al. enables OLAP analysis with the QB2OLAP tool
in [43] over statistical data published with QB vo-
cabulary, by applying dimensional enrichment steps
described thoroughly in [44]. The proposed enrich-
ment steps allow users to enrich a QB dataset with
QB4OLAP concepts such as fully-fledged dimension
hierarchies. However, none of these frameworks and
approaches supports spatial data warehouses and SO-
LAP operations.

In this paper, we propose a framework, where OLAP
cubes in RDF can be enriched with spatial MD con-
cepts from the QB4SOLAP vocabulary by employing
RDF2SOLAP enrichment algorithms over QB4OLAP
triples. This allows users to query MD cubes with SO-
LAP operators in SPARQL. Optionally, users can uti-
lize GeoSemOLAP [14] tool on top of QB4SOLAP
data sets, which helps users formulate SOLAP queries
in SPARQL.

7. Conclusion and future work

Motivated by the need to conciliate MD/OLAP RDF
data cubes and spatial data on the Semantic Web as
geo-semantic data warehouses, we have presented a
number of contributions in this paper. As a first at-

N. Gür et al. / Multidimensional enrichment of spatial RDF data for SOLAP 31

tempt to enrich RDF data cubes with spatial concepts,
we have shown that the QB4SOLAP vocabulary yields
the need for fully-fledged spatial data warehouse con-
cepts (that is built on top of non-spatial QB4OLAP and
RDF Data Cube (QB) vocabularies), by demonstrating
the running use case examples from real world gov-
ernmental open data sets from various domains (i.e.,
environment, farming) with complex geometry types.
We introduced running use case examples annotated
both with QB4OLAP and QB4SOLAP vocabularies,
in RDF triples and formalized the RDF triples as pa-
rameters to use in the enrichment algorithms. Second,
we have built our conceptual architecture in relation
to existing semantic (spatial) OLAP tools (e.g., on top
of the QB2OLAPem enrichment module and at the
back-end of GeoSemOLAP). Third, we have provided
hierarchical enrichment algorithms for two cases that
cover finding explicit hierarchy steps with direct links
between the level members and finding implicit hierar-
chy steps (without direct links between the level mem-
bers) by comparing geometry attributes of the level
members. We have defined and deployed the necessary
algorithms as spatial helper functions for finding spa-
tial attributes and comparing these attributes to derive
topological relations. Fourth, we have presented the
factual enrichment phase for both implicit and explicit
fact-level relations between the fact and level mem-
bers. Moreover, we have presented how to re-define the
fact schema after the factual enrichment phase in an
automated manner. Re-defining the fact schema also
includes finding the spatial measures and associating
them with spatial aggregate functions. In the end, we
have implemented all the algorithms that are designed
for both hierarchical enrichment and factual enrich-
ment processes, then we presented the details of our
implementation.

Finally, we have evaluated our approach and its ac-
curacy as well as the implementation with the under-
lying technologies by comparing the number of topo-
logical relations found in the RDF2SOLAP framework
(between the level members in spatial hierarchies and
between the level members and the fact members, re-
spectively, during the hierarchical enrichment phase
and the factual enrichment phase) against two different
non-SW environments. We have presented the experi-
mental set-up and our comparison baselines and con-
cluded our evaluation with technical lessons learned.

In conclusion, RDF2SOLAP facilitates the spatial
enrichment of RDF data cubes and fills an important
gap in our vision of SOLAP on the Semantic Web de-
spite of the challenges and restrictions in supporting

complex spatial data types with the current state of the
most common triple stores [18,19,24].

Several directions are interesting for future re-
search: creating a comprehensive benchmark by im-
plementing the RDF2SOLAP enrichment algorithms
on different platforms and testing on different use
cases, deriving spatial hierarchy levels and level mem-
ber instances from external geo-vocabularies and ex-
tending our approach in QB4SOLAP, GeoSemO-
LAP and RDF2SOLAP to handle highly dynamic
spatio-temporal data and multi-dimensional analytical
queries [25]. Another line of future work would be run-
time optimizations for scalable querying of spatial data
warehouses [9] exploiting specifics of Linked Data
Management [16,17]. Moreover, it is also important
to develop query optimization techniques for OLAP
queries on semantic DW/RDF data, similar to the ones
developed for cubes and XML data [36,37,49]. Fur-
thermore, to achieve scalable querying and runtime op-
timization, new research directions can be taken with
binary serialization of the QB4SOLAP RDF data such
as header dictionary triples (HDT), which is a com-
pact data structure that can be compressed and kept
in-memory, thus it enables high performance (and also
concurrent) querying.

Acknowledgements

This research is partially funded by the European
Commission through the Erasmus Mundus Joint Doc-
torate Information Technologies for Business Intelli-
gence (EM IT4BI-DC), the Danish Council for Inde-
pendent Research (DFF) under grant agreement no.
DFF-8048-00051B, Aalborg University’s Talent Pro-
gramme, and the Poul Due Jensen Foundation.

Appendix. Implementation details

In this section, first we provide the details on how
the algorithms from Section 4 are implemented to gen-
erate spatially enriched RDF triples with QB4SOLAP
(Sections A.1, A.2, A.3, and A.4). Afterwards, we dis-
cuss our implementation choices in Section 4.3 and
present the results of applying the algorithms on the
use case data (GeoFarmHerdState) in Section 5 (Ta-
ble 3).

32 N. Gür et al. / Multidimensional enrichment of spatial RDF data for SOLAP

A.1. QB4SOLAP triples generation

To implement the algorithms from Section 4, we
have chosen a use case data set that can be annotated
with multi-dimensional concepts in QB4OLAP and
has the required spatial properties to be enriched as a
fully spatial multidimensional cube with QB4SOLAP.
The required spatial properties are: 1) Level members
in a (spatial) hierarchy must have spatial attributes,
where the geometry of the attributes should be differ-
ent than only a simple point geometry type, e.g., poly-
gon, line, etc. Thus we can implement the hierarchi-
cal enrichment (Section 4.1). 2) Fact members should
have spatial measures, thus we can implement the fac-
tual enrichment (Section 4.2).

Therefore, we have chosen GeoFarmHerdState as
use case, which we have already used as running ex-
ample throughout the paper. In Section 2, we dis-
cussed the spatial multi-dimensional concepts of the
GeoFarmHerdState data cube and in Section 4 we pro-
vided RDF triple snippet examples of those concepts:
(a) spatial hierarchy structure with QB4SOLAP (List-
ing 1), (b) level members annotated with QB4OLAP
and with QB4SOLAP after hierarchical enrichment
(Listing 2), (c) spatial fact schema (Listing 3), and
(d) spatial fact members with spatial measures (List-
ing 4). A full overview of the GeoFarmHerdState cube
with spatial and non-spatial dimensions can be found
in our previous work [12] and on our project website
http://extbi.cs.aau.dk/GeoFarmHerdState/.

Note that we use the non-spatial annotation of the
GeoFarmHerdState data cube with QB4OLAP as an
input to our algorithms, which is publicly available
from our SPARQL endpoint15 with corresponding
namespaces for schema data triples16 and instance data
triples.17

We query the endpoint and extract RDF data in
JSON format as an input to our implementation of the
four main enrichment algorithms; Algorithm 3 – de-
tectSpatialHS, Algorithm 4 – discoverSpa-
tialHS, Algorithm 5 – detectFactLevel, and
Algorithm 6 – discoverFactLevel.

In the following, we show the implementation high-
lights of each algorithm and helper function along with
code snippets.

15SPARQL Endpoint: http://lod.cs.aau.dk:8890/sparql.
16QB4OLAP schema: http://extbi.cs.aau.dk/geofarm/qb4olap/

farm-qb4olap-schema.ttl.
17QB4OLAP instances: http://extbi.cs.aau.dk/geofarm/qb4olap/

farm-qb4olap-input.tar.gz.

A.2. Detecting explicit topological relations

Detecting explicit topological relations are ad-
dressed in the following algorithms: Algorithm 3 –
detectSpatialHS and Algorithm 5 – detect-
FactLevel. In both cases the source data has ex-
plicitly defined roll-up relations, which means there is
a direct relation between level members with skos:
broader for hierarchy steps (e.g., Listing 2, Line 7)
and there is a direct relation between a fact member
and a base level member’s foreign key URI (e.g., List-
ing 4, Line 2)

The input variables for Algorithm 3 – detect-
SpatialHS are the triples with roll-up relations of
the hierarchy steps (GI

RU(hs)) and the attributes of
level members (GI

A(lm)) from the instance data graph.
Explicit skos:broader relations are annotated in
the instance graph of hierarchy steps (GI

RU(hs)).
Therefore, we query the endpoint by filtering with the
explicit skos:broader relations between all the
level members. We fetch the results of the query in
Node.js in JSON format.

The input variables for Algorithm 5 – detect-
FactLevel are the triples with fact members
(GI

F M(F)) and the attributes of level members
(GI

A(lm)) from the instance data graph. Explicit fact-
level relations (by referring to the foreign key URI
of level members) are annotated in the instance graph
of fact members (GI

F M(F)). Therefore, we query the
endpoint with all the fact members and the correspond-
ing attributes of level members. We fetch the results of
the query in Node.js in JSON format.

Initially, we need to provide the explicit (roll-up) re-
lations between the level members and fact-level mem-
bers to implement Algorithms 3 and 5 for detecting the
(explicit) topological relations. As mentioned above,
we provide these relations from the data set by query-
ing the endpoint and fetching the results of the query
in Node.js in JSON format.

The next step is to retrieve the spatial attribute and
measure values from the attributes of the level mem-
bers and fact members.

Retrieving attribute and measure values In this step,
we retrieve the (spatial) attribute values and measure
values of level members and fact members by access-
ing object (o) of the each triple pattern t = (s, p, o)

from the instance graphs of attributes of level members
(GI

A(lm)) and fact members (GI
F M(F)) (Listing 5).

This is followed by passing the getLevelMem-
berAttributes and getMeasures constants to

http://extbi.cs.aau.dk/GeoFarmHerdState/
http://lod.cs.aau.dk:8890/sparql
http://extbi.cs.aau.dk/geofarm/qb4olap/farm-qb4olap-schema.ttl
http://extbi.cs.aau.dk/geofarm/qb4olap/farm-qb4olap-schema.ttl
http://extbi.cs.aau.dk/geofarm/qb4olap/farm-qb4olap-input.tar.gz
http://extbi.cs.aau.dk/geofarm/qb4olap/farm-qb4olap-input.tar.gz

N. Gür et al. / Multidimensional enrichment of spatial RDF data for SOLAP 33

Listing 5. Get level member attributes and fact member measures

Listing 6. Filtering spatial data types

getSpatialValues constant18 as explained below
(filtering spatial values) and given in Listing 6.

Filtering spatial values Before employing spatial
analysis functions, we have to filter the spatial at-
tributes of level members and spatial measures of fact
members. Spatial values are always an object (o) value
in a triple pattern t = (s, p, o), which is defined as
spatial literals Ls (Section 4). Therefore, we have re-
trieved the attribute and measure values as objects as
mentioned above.

We have shown the helper function Algorithm 1 –
getSpatialValues, which is used in the main
algorithms. We have implemented this helper func-
tion on Node.js by filtering the WKT geometries from
the input JSON data as exemplified in Listing 6. We
create a locationString constant that takes a
string value from getLevelMemberAttributes
(Line 2). The string value is the last index location of a

18We differentiate measure and level attribute values in seperate
constants since a measure is annotated as qb:MeasureProperty
and a level attribute is annotated as qb4o:LevelAttribute in
the schema graph.

triple pattern constructed in getLevelMemberAt-
tributes.19

Finding topological relations Each of the four main
enrichment algorithms (Algorithms 3, 4, 5, and 6)
returns an instance graph of level members or fact
members with topological relations annotated in
QB4SOLAP. To find these topological relations we
have introduced a helper function in Algorithm 2 –
relateSpatialValues. This algorithm is imple-
mented by using boolean functions (spatial predicates)
from the Turf.js library for relating spatial values and
finding the appropriate topological relations. The li-
brary supports the following topological relations with
corresponding predicates between certain spatial data
types (Table 7). A complete list of functions and details
can be found online at http://turfjs.org/docs.

We grouped the available Turf.js spatial boolean
functions in Table 7 under three main topological re-
lations (EQUALS, WITHIN, INTERSECTS), with re-
spect to the simplification rules for grouping topolog-
ical relations (Section 4.1.1) and explained along with
Fig. 8 and Table 1. In Table 7, Turf.js built-in functions
(predicates) are shown with #boolean prefix. In paren-
theses, we show how we have named them in our im-
plementation by using the corresponding built-in func-
tions.

Listing 7 provides an overview of the implemen-
tation of the boolean functions from Table 7 that are
called in the main function for relating spatial values
(relateSpatialValues) shown in Listing 8. We provide
examples for each of the main topological relations
(EQUALS, WITHIN, INTERSECTS).

This first spatial boolean function in Listing 7 is
equals (Lines 1–8), which can be between any pair
of the same spatial data type (Table 7). We have
grouped child level spatial (attribute) values and par-
ent level spatial (attribute) values by their unique id
(URI) for each spatial level attribute. This allows us
to use javascript array prototype (instance) methods,
e.g., every or some, where we can create our own
spatial predicate equalswith condition to satisfy that
every (grouped) child level attribute values should
be equal to every (grouped) parent level attribute
values. This ensures the multi-point, multi-line, and
multi-polygon data types can be covered in our imple-
mentation.

19Similarly, we create a second locationString(2) for spa-
tial measure values that takes the string value from getMeasures,
which is not repeated in Listing 6.

http://turfjs.org/docs

34 N. Gür et al. / Multidimensional enrichment of spatial RDF data for SOLAP

Table 7

Turf.js spatial Boolean functions

EQUALS WITHIN INTERSECTS

#booleanEqual:
(equals) between
POINT-POINT
LINE-LINE
POLYGON-POLYGON

#booleanWithin:
(within) between
LINE-POLYGON
POLYGON-POLYGON

#booleanPointInPolygon:
(within) between
POINT-POLYGON

#booleanCrosses:
(crosses) between
LINE-POLYGON

#booleanOverlap:
(overlaps) between
POLYGON-POLYGON

#booleanPointOnLine:
(intersects)
between
POINT-POLYGON

For example, in the source data, we had multi-
polygons for drainage areas, where each unique drain-
age areas is a multi-polygon that is composed of sev-
eral polygons. To simplify we did not store multi-
polygon data in RDF. Instead, we have annotated each
unique drainage area as several polygons (of the multi-
polygon), where each polygon of the drainage area is
bound to its drainage area via unique id – URI of the
drainage area. This means in the instance graph of par-
ent level members GI

A(lmp)
(drainage areas), there will

be triple patterns t = (s, p, o), where many differ-
ent polygons – objects (o) have the same subject (s) –
URI of a unique drainage area to represent the multi-
polygon.

To handle these multi-polygons, we gather them
in a bounding box by using turf.bboxPolygon
and turf.bbox functions in Listing 7 (Lines 13–
14). In Listing 7 (Lines 10–18) depicts how several
polygons of the same parent level can be put into
a bounding box, which is passed as a parameter to
our second spatial boolean function within. Finally,
the function returns in Lines 19–23 with condition
to satisfy that every (grouped) child level attribute
value should be within the simplified parent level
polygon – parentLevelMultipolygonBound-
inxBox (Line 23).

The third spatial boolean function in Listing 7 is
crosses (Lines 24–31), where we re-use the Turf.js
spatial predicate booleanCrosses. This function
is very similar to overlaps in implementation. The
only difference is crosses occurs between LINE-
POLYGON, overlaps occurs between POLYGON-
POLYGON. For both cases, the condition to satisfy is
that some of the (grouped) child level attribute val-
ues should cross/overlap some of the (grouped) parent
level attribute values.

Listing 7. Spatial Boolean functions

Listing 8 uses our own spatial predicates (explained
above) to implement the helper function Algorithm 2 –
relateSpatialValues. Note that we have fol-
lowed the simplification rules for grouping topological

N. Gür et al. / Multidimensional enrichment of spatial RDF data for SOLAP 35

Listing 8. Relating spatial values

relations (Fig. 8), aligned with switch cases for spatial
data type pairs from Algorithm 2 in our implementa-
tion.

In our implementation illustrated in Listing 8,
we create two functions childLevelGeoType

Listing 9. Detecting topological relations (between level members)

(Line 3) and parentLevelGeoType (Line 6),
which returns the geometry type of a given attri-
bute value. This way we can implement
switch(geoType(vac), geoType(vap)) cases from
Algorithm 2 – relateSpatialValues.

Detecting topological relations Finally, we have im-
plemented detecting topological relations algorithms
(Algorithms 3 and 5) with a bottom-up approach af-
ter implementing the core helper functions. In the fol-
lowing, we show the function implemented on Node.js
for detecting topological relations (Listing 9) between
level members, which is covered in Algorithm 3. The
same approach with minor differences (in parameter
passing) is used in our implementation for detecting
topological relations between fact-level members (Al-
gorithm 5).

Listing 9 is constructed with the main function de-
tectSpatialHierarchySteps with parameters
of parentLevelMembers, childLevelMem-

36 N. Gür et al. / Multidimensional enrichment of spatial RDF data for SOLAP

bers, and explicitRelations.20 In Line 5, the
constant spatialHierachySteps takes the ex-
plicitRelations between child level and par-
ent level members, and creates constants for those
in Lines 8 and 9. The next step is to get the spa-
tial values of the level members (child level mem-
bers Lines 10–14 and parent level members Lines 15–
19), where we utilize the helper function getSpa-
tialValues, which is described in Listing 6. In
Line 20, we create a constant topoRel, which takes
the helper function relateSpatialValues (List-
ing 8) with two parameters childLevelSpatial-
Values and parentLevelSpatialValues that
are created, in Lines 10 and 15, respectively. Next, we
return the topological relations (topoRel) as pred-
icates (p) between Lines 24–26. If a topological re-
lation is not found, we keep the explicit relation as
skos:broader (Line 26). Finally, we return the
new results by replacing the explicitRelations
with spatialHierarchySteps (Lines 28–32).

We now discuss our results in Table 3, for both cases
covered in Algorithms 3 and 5, together with a number
of input level members and fact members.

A.3. Discovering implicit topological relations

Discovering implicit topological relations is ad-
dressed in the following algorithms: Algorithm 4 –
discoverSpatialHS and Algorithm 6 – dis-
coverFactLevel. In both cases the source data
has not any defined roll-up relations (with skos:
broader), or has missing spatial hierarchy steps be-
tween level members. Similarly, a fact level member
has no defined relation link to any spatial level member
of its dimensions.

The input variables for Algorithm 4 – discover-
SpatialHS are the triples with dimensions (GS

D), hi-
erarchies in dimensions (GS

H (d)), levels in hierarchies
(GS

L(h)) from the schema graph, and level members
of levels (GI

LM(l)) and the attributes of level mem-
bers (GI

A(lm)) from the instance data graph. There-
fore, we query the endpoint by filtering with the
schema elements qb4o:hasHierarchy, qb4o:

20We do not repeat a similar listing in the paper for detecting topo-
logical relations between fact-level members (Algorithm 5) where
the parameter childLevelMembers from Listing 9 corresponds
to fact members and parentLevelMembers corresponds to base
level members in the implementation of detecting topological rela-
tions between fact-level members.

inDimension, and qb4o:hasLevel. We fetch
the results of the query in Node.js JSON format.

The input variables for Algorithm 6 – discov-
erFactLevel are the triples with dimensions (GS

D),
hierarchies in dimensions (GS

H (d)), levels in hierar-
chies (GS

L(h)) from the schema graph, and fact mem-
bers (GI

F M(F)), level members of levels (GI
LM(l)) and

the attributes of level members (GI
A(lm)) from the in-

stance data graph. Therefore, we query the endpoint
by filtering with the schema elements qb4o:has-
Hierarchy, qb4o:inDimension, and qb4o:
hasLevel. We fetch the results of the query in
Node.js JSON format.

The following listing (Listing 10) shows how we
implement a schema wrapper by filtering the schema
graph at our endpoint with predicates for schema el-
ements (Lines 3, 7, 11, and 14). Once we get to
the levels, we filter the level members in each level
with qb4o:memberOf predicate (Line 11). After-
wards, we group level members by level that are in
the same hierarchy and pass these grouped level mem-
bers as inputs to a similar function as in Listing 9,
which is called detectSpatialHierarchyS-
tepsExpensive. This function takes only two pa-
rameters without explicit relations (two sets of level
members grouped by level: parentLevelMem-
bers and childLevelMembers). We run this al-
gorithm several times for each pair of grouped level
members (by level) within the same hierarchy as
our approach is discovering implicit relations be-
tween level members and fact-level members. For fact
members we similarly use one parameter (i.e., par-
entLevelMembers) as the grouped level members

Listing 10. Discovering topological relations (schema wrapper)

N. Gür et al. / Multidimensional enrichment of spatial RDF data for SOLAP 37

(by level), and the other parameter is fact members
(i.e., childLevelMembers), which are annotated
as qb:Observation. In the detectSpatial-
HierarchyStepsExpensive function we utilize
the same helper functions that are implemented with
child-parent topological relations and simplification
rules defined in Section 4.1.1 along with Fig. 8 and
Table 1. This ensures to apply spatial boolean predi-
cates (on geometries of level members and fact mem-
bers) with relateSpatialValues helper func-
tion only between the appropriate spatial data types
given in Tables 1 and 7. Since there are no explicit
relations in detectSpatialHierarchyStep-
sExpensive function, relateSpatialValues
helper function is called NumberOf childLevelMembers ×
NumberOf parentLevelMembers in one iteration, where
with detectSpatialHierarchySteps func-
tion, the helper function is called only
NumberOf explicitRelations times.

We now discuss our results in Table 3 for both cases
covered in Algorithms 4 and 6, together with a number
of input level members and fact members.

A.4. Generating the fact schema

Finally, we implement the enrichment of the fact
schema based on spatially enriched fact instances
(members). To extract the input variables for Algo-
rithm 7 – defineSpatialFactDSD, we use the
spatially enriched fact members (by Algorithms 5
and 6) and non-spatial fact schema.

The first step of generating the fact schema is to look
for detected and discovered topological relations be-
tween the fact and level members and then annotate
each of them with qb4so:topologicalRela-
tion in the fact schema as given in Listing 3. The
next step is to identify the spatial data types with helper
functions getMeasures and getSpatialVal-
ues (Listings 5 and 6). Finally, for each of the identi-
fied spatial data types we annotate the fact schema with
the corresponding spatial aggregate function, e.g., spa-
tial data type POINT can have ConvexHull aggregate
function, LINE can have Union etc.

In our implementation of detecting and discov-
ering topological relations between fact members
and level members, we have only encountered the
qb4so:within topological relation. Thus, the fact
schema enrichment implementation generates Lines 4
and 5 as exemplified in Listing 3. As spatial measures
in fact members, we have found the POINT spatial
data type. Therefore, the fact schema enrichment im-

plementation generates Lines 6 and 7, annotating that
the spatial measure has qb4so:ConvexHull aggre-
gate function, as exemplified in Listing 3.

After the spatial enrichment is fully completed, both
schema21 and instance22 data has been published via
the same SPARQL endpoint with QB4SOLAP.

References

[1] A. Abelló, O. Romero, T.B. Pedersen, R. Berlanga, V. Nebot,
M.J. Aramburu and A. Simitsis, Using semantic web tech-
nologies for exploratory olap: A survey, IEEE Transactions
on Knowledge and Data Engineering 27(2) (2015), 571–588.
doi:10.1109/TKDE.2014.2330822.

[2] A.B. Andersen, N. Gür, K. Hose, K.A. Jakobsen and T.B. Ped-
ersen, Publishing Danish Agricultural Government data as se-
mantic web data, Semantic Technology 8943 (2014), 178–186.
doi:10.1007/978-3-319-15615-6_13.

[3] R. Atkinson, QB4ST: RDF data cube extensions for spatio-
temporal components, W3C Working Group, 2017, https://
www.w3.org/TR/qb4st/.

[4] D. Brickley, Basic geo (WGS84 lat/long) vocabulary, W3C Se-
mantic Web Interest Group, 2003, https://www.w3.org/2003/
01/geo/.

[5] R.P. Deb Nath, K. Hose and T.B. Pedersen, Towards a pro-
grammable semantic extract-transform-load framework for se-
mantic data warehouses, in: Proceedings of the 18th Inter-
national Workshop on Data Warehousing and OLAP, 2015,
pp. 15–24. doi:10.1145/2811222.2811229.

[6] M.J. Egenhofer and J. Herring, A mathematical framework for
the definition of topological relationships, in: Fourth Interna-
tional Symposium on Spatial Data Handling, 1990, pp. 803–
813. doi:10.1080/02693799108927841.

[7] L. Etcheverry, A. Vaisman and E. Zimányi, Modeling
and querying data warehouses on the semantic web using
QB4OLAP, in: Data Warehousing and Knowledge Discovery,
Vol. 8646, Springer, 2014, pp. 45–56. doi:10.1007/978-3-319-
10160-6_5.

[8] V. Gaede and O. Günther, Multidimensional access meth-
ods, ACM Computing Surveys (CSUR) 30(2) (1998), 170–231.
doi:10.1145/280277.280279.

[9] L. Galárraga, K. Ahlstrøm, K. Hose and T.B. Pedersen, An-
swering provenance-aware queries on RDF data cubes under
memory budgets, in: The Semantic Web – ISWC 2018, Springer
International Publishing, Cham, 2018, pp. 547–565. doi:10.
1007/978-3-030-00671-6_32.

[10] L. Galárraga, K.A.M. Mathiassen and K. Hose, QBOAirbase:
The European air quality database as an rdf cube, in: Interna-
tional Semantic Web Conference (Posters, Demos & Industry
Tracks), 2017.

21http://extbi.cs.aau.dk/geofarm/qb4solap/
geofarm-qb4solap-schema.ttl

22http://extbi.cs.aau.dk/geofarm/qb4solap/
geofarm-qb4solap-output.tar.gz

https://doi.org/10.1109/TKDE.2014.2330822
https://doi.org/10.1007/978-3-319-15615-6_13
https://www.w3.org/TR/qb4st/
https://www.w3.org/TR/qb4st/
https://www.w3.org/2003/01/geo/
https://www.w3.org/2003/01/geo/
https://doi.org/10.1145/2811222.2811229
https://doi.org/10.1080/02693799108927841
https://doi.org/10.1007/978-3-319-10160-6_5
https://doi.org/10.1007/978-3-319-10160-6_5
https://doi.org/10.1145/280277.280279
https://doi.org/10.1007/978-3-030-00671-6_32
https://doi.org/10.1007/978-3-030-00671-6_32
http://extbi.cs.aau.dk/geofarm/qb4solap/geofarm-qb4solap-schema.ttl
http://extbi.cs.aau.dk/geofarm/qb4solap/geofarm-qb4solap-schema.ttl
http://extbi.cs.aau.dk/geofarm/qb4solap/geofarm-qb4solap-output.tar.gz
http://extbi.cs.aau.dk/geofarm/qb4solap/geofarm-qb4solap-output.tar.gz

38 N. Gür et al. / Multidimensional enrichment of spatial RDF data for SOLAP

[11] E. Gallinucci, M. Golfarelli, S. Rizzi, A. Abelló and
O. Romero, Interactive multidimensional modeling of linked
data for exploratory olap, Information Systems (2018). doi:10.
1016/j.is.2018.06.004.

[12] N. Gür, K. Hose, T.B. Pedersen and E. Zimányi, Enabling
spatial OLAP over environmental and farming data with
QB4SOLAP, in: Semantic Technology, Vol. 10055, Springer,
2016, pp. 287–304. doi:10.1007/978-3-319-50112-3_22.

[13] N. Gür, K. Hose, E. Zimányi and T.B. Pedersen, Modeling
and querying spatial data warehouses on the semantic web,
in: Semantic Technology, Vol. 9544, Springer, 2015, pp. 1–20.
doi:10.1007/978-3-319-31676-5_1.

[14] N. Gür, J. Nielsen, K. Hose and T.B. Pedersen, GeoSemOLAP:
SOLAP on the semantic web made easy, in: Proceedings of
the 26th International Conference on World Wide Web, 2017,
pp. 213–217. doi:10.1145/3041021.3054731.

[15] N. Gür, T.B. Pedersen, E. Zimányi and K. Hose, A foundation
for spatial data warehouses on the semantic web, Semantic Web
Journal 9(5) (2018), 557–587. doi:10.3233/SW-170281.

[16] A. Harth, K. Hose and R. Schenkel (eds), Linked Data Man-
agement, Chapman and Hall/CRC, 2014. doi:10.1201/b16859.

[17] O. Hartig, K. Hose and J.F. Sequeda, Linked data manage-
ment, in: Encyclopedia of Big Data Technologies, S. Sakr and
A.Y. Zomaya, eds, Springer, 2019. doi:10.1007/978-3-319-
63962-8_76-1.

[18] K. Hose and R. Schenkel, RDF stores, in: Encyclopedia of
Database Systems, L. Liu and M.T. Özsu, eds, 2nd edn,
Springer, 2018. doi:10.1007/978-1-4614-8265-9_80676.

[19] W. Huang, S.A. Raza, O. Mirzov and L. Harrie, Assessment
and benchmarking of spatially enabled RDF stores for the
next generation of spatial data infrastructure, ISPRS Interna-
tional Journal of Geo-Information 8(7) (2019), 310. doi:10.
3390/ijgi8070310.

[20] B. Hyland and B.V. Terrazas, Cookbook for open govern-
ment linked data, W3C Government Linked Data Work-
ing Group, 2011, https://www.w3.org/2011/gld/wiki/Linked_
Data_Cookbook.

[21] D. Ibragimov, K. Hose, T.B. Pedersen and E. Zimányi, Process-
ing aggregate queries in a federation of SPARQL endpoints, in:
The Semantic Web. Latest Advances and New Domains – 12th
European Semantic Web Conference, ESWC 2015, Portoroz,
Slovenia, May 31–June 4, 2015. Proceedings, 2015, pp. 269–
285. doi:10.1007/978-3-319-18818-8_17.

[22] D. Ibragimov, K. Hose, T.B. Pedersen and E. Zimányi, To-
wards exploratory OLAP over linked open data – a case study,
in: Enabling Real-Time Business Intelligence, Springer, 2015,
pp. 114–132. doi:10.1007/978-3-662-46839-5_8.

[23] D. Ibragimov, K. Hose, T.B. Pedersen and E. Zimányi, Op-
timizing aggregate SPARQL queries using materialized RDF
views, in: The Semantic Web: 15th International Semantic Web
Conference (ISWC’16), Springer, 2016, pp. 341–359. doi:10.
1007/978-3-319-46523-4_21.

[24] T. Ioannidis, G. Garbis, K. Kyzirakos, K. Bereta and
M. Koubarakis, Evaluating geospatial RDF stores using the
benchmark Geographica 2, 2019, arXiv preprint, https://arxiv.
org/abs/1906.01933 arXiv:1906.01933.

[25] K.A. Jakobsen, A.B. Andersen, K. Hose and T.B. Pedersen,
Optimizing RDF data cubes for efficient processing of ana-
lytical queries, in: COLD, 2015, http://ceur-ws.org/Vol-1426/
paper-02.pdf.

[26] B. Kämpgen and A. Harth, No size fits all – running the
star schema benchmark with SPARQL and RDF aggregate
views, in: Extended Semantic Web Conference, Springer, 2013,
pp. 290–304. doi:10.1007/978-3-642-38288-8_20.

[27] B. Kämpgen, S. O’Riain and A. Harth, Interacting with sta-
tistical linked data via OLAP operations, in: The Semantic
Web: ESWC 2012 Satellite Events, Vol. 7540, Springer, 2012,
pp. 87–101. doi:10.1007/978-3-662-46641-4_7.

[28] K. Kyzirakos, D. Savva, I. Vlachopoulos, A. Vasileiou, N. Kar-
alis, M. Koubarakis and S. Manegold, GeoTriples: Transform-
ing geospatial data into RDF graphs using R2RML and RML
mappings, Journal of Web Semantics 52 (2018), 16–32. doi:10.
1016/j.websem.2018.08.003.

[29] E. Malinowski and E. Zimányi, Representing spatiality in
a conceptual multidimensional model, in: Proceedings of
the 12th Annual ACM International Workshop on Geo-
graphic Information Systems, GIS’04, ACM, New York, NY,
USA, 2004, pp. 12–22, http://doi.acm.org/10.1145/1032222.
1032226. doi:10.1145/1032222.1032226.

[30] A. Miles and S. Bechhofer, SKOS Simple Knowledge Organi-
zation System namespace document, W3C Recommendation,
2009, https://www.w3.org/TR/skos-reference/.

[31] R.P.D. Nath, K. Hose, T.B. Pedersen and O. Romero, SETL:
A programmable semantic extract-transform-load framework
for semantic data warehouses, Information Systems 68 (2017),
17–43. doi:10.1016/j.is.2017.01.005.

[32] R.P.D. Nath, K. Hose, T.B. Pedersen, O. Romero and A. Bhat-
tacharjee, SETLBI: an integrated platform for semantic busi-
ness intelligence, in: Companion of the 2020 Web Conference
2020, Taipei, Taiwan, April 20–24, 2020, 2020, pp. 167–171.
doi:10.1145/3366424.3383533.

[33] S. Neumaier and A. Polleres, Geo-semantic labelling of open
data, SEMANTiCS 2018 – 14th International Conference on
Semantic Systems, Procedia Computer Science (2018). doi:10.
1016/j.procs.2018.09.002.

[34] Open Geospatial Consortium, GeoSPARQL: A geographic
query language for RDF data, W3C Recommendation, 2014.

[35] K. Patroumpas, N. Georgomanolis, T. Stratiotis, M. Alexakis
and S. Athanasiou, Exposing INSPIRE on the semantic web,
Web Semantics 35(P1) (2015), 53–62. doi:10.1016/j.websem.
2015.09.003.

[36] D. Pedersen, J. Pedersen and T.B. Pedersen, Integrating XML
data in the TARGIT OLAP system, in: Proceedings. 20th
International Conference on Data Engineering, IEEE, 2004,
pp. 778–781. doi:10.1109/ICDE.2004.1320045.

[37] D. Pedersen, K. Riis and T.B. Pedersen, Query optimiza-
tion for OLAP-XML federations, in: Proceedings of the 5th
International Workshop on Data Warehousing and OLAP
(DOLAP’02), ACM, 2002, pp. 57–64. doi:10.1145/583890.
583899.

[38] S. Rivest, Y. Bédard, M.-J. Proulx, M. Nadeau, F. Hubert and
J. Pastor, SOLAP technology: Merging business intelligence
with geospatial technology for interactive spatio-temporal ex-
ploration and analysis of data, ISPRS Journal of Photogram-
metry and Remote Sensing 60(1) (2005), 17–33. doi:10.1016/j.
isprsjprs.2005.10.002.

[39] G. Rojas, G. Giannopoulos and J.J.L. Daniel Hladky, Manag-
ing geospatial linked data in the GeoKnow project, in: The Se-
mantic Web in Earth and Space Science. Current Status and
Future Directions, Vol. 20, IOS Press, 2015, p. 51. doi:10.
3233/978-1-61499-501-2-51.

https://doi.org/10.1016/j.is.2018.06.004
https://doi.org/10.1016/j.is.2018.06.004
https://doi.org/10.1007/978-3-319-50112-3_22
https://doi.org/10.1007/978-3-319-31676-5_1
https://doi.org/10.1145/3041021.3054731
https://doi.org/10.3233/SW-170281
https://doi.org/10.1201/b16859
https://doi.org/10.1007/978-3-319-63962-8_76-1
https://doi.org/10.1007/978-3-319-63962-8_76-1
https://doi.org/10.1007/978-1-4614-8265-9_80676
https://doi.org/10.3390/ijgi8070310
https://doi.org/10.3390/ijgi8070310
https://www.w3.org/2011/gld/wiki/Linked_Data_Cookbook
https://www.w3.org/2011/gld/wiki/Linked_Data_Cookbook
https://doi.org/10.1007/978-3-319-18818-8_17
https://doi.org/10.1007/978-3-662-46839-5_8
https://doi.org/10.1007/978-3-319-46523-4_21
https://doi.org/10.1007/978-3-319-46523-4_21
https://arxiv.org/abs/1906.01933
https://arxiv.org/abs/1906.01933
http://arxiv.org/abs/arXiv:1906.01933
http://ceur-ws.org/Vol-1426/paper-02.pdf
http://ceur-ws.org/Vol-1426/paper-02.pdf
https://doi.org/10.1007/978-3-642-38288-8_20
https://doi.org/10.1007/978-3-662-46641-4_7
https://doi.org/10.1016/j.websem.2018.08.003
https://doi.org/10.1016/j.websem.2018.08.003
http://doi.acm.org/10.1145/1032222.1032226
http://doi.acm.org/10.1145/1032222.1032226
https://doi.org/10.1145/1032222.1032226
https://www.w3.org/TR/skos-reference/
https://doi.org/10.1016/j.is.2017.01.005
https://doi.org/10.1145/3366424.3383533
https://doi.org/10.1016/j.procs.2018.09.002
https://doi.org/10.1016/j.procs.2018.09.002
https://doi.org/10.1016/j.websem.2015.09.003
https://doi.org/10.1016/j.websem.2015.09.003
https://doi.org/10.1109/ICDE.2004.1320045
https://doi.org/10.1145/583890.583899
https://doi.org/10.1145/583890.583899
https://doi.org/10.1016/j.isprsjprs.2005.10.002
https://doi.org/10.1016/j.isprsjprs.2005.10.002
https://doi.org/10.3233/978-1-61499-501-2-51
https://doi.org/10.3233/978-1-61499-501-2-51

N. Gür et al. / Multidimensional enrichment of spatial RDF data for SOLAP 39

[40] J.M. Salas and A. Harth, NeoGeo vocabulary specification,
GeoVocab Working Group, 2012, http://geovocab.org/doc/
neogeo/.

[41] C. Stadler, J. Lehmann, K. Höffner and S.A. Linkedgeo-
data, A core for a web of spatial open data, Semantic
Web 3(4) (2012), 333–354, https://dl.acm.org/doi/10.5555/
2590208.2590210. doi:10.3233/SW-2011-0052.

[42] A. Vaisman and E. Zimányi, Spatial data warehouses, in: Data
Warehouse Systems, Springer, 2014, pp. 427–473. doi:10.1007/
978-3-642-54655-6.

[43] J. Varga, L. Etcheverry, A.A. Vaisman, O. Romero, T.B. Peder-
sen and C. Thomsen, QB2OLAP: enabling OLAP on statistical
linked open data, in: 32nd IEEE International Conference on
Data Engineering, 2016, pp. 1346–1349. doi:10.1109/ICDE.
2016.7498341.

[44] J. Varga, A.A. Vaisman, O. Romero, L. Etcheverry, T.B. Ped-
ersen and C. Thomsen, Dimensional enrichment of statistical
linked open data, in: Web Semantics: Science, Services and
Agents on the World Wide Web, Vol. 40, Elsevier, 2016, pp. 22–
51. doi:10.1016/j.websem.2016.07.003.

[45] M. Wick and B. Vatant, Geo names ontology, GeoNames,
2012, http://www.geonames.org/ontology.

[46] World Wide Web Consortium, SPARQL query language for
RDF, W3C Recommendation, 2008, https://www.w3.org/TR/
sparql11-query/.

[47] World Wide Web Consortium, Data cube implementa-
tions, 2011, https://www.w3.org/2011/gld/wiki/Data_Cube_
Implementations.

[48] World Wide Web Consortium, The RDF data cube vocabu-
lary, W3C Recommendation, 2014, https://www.w3.org/TR/
vocab-data-cube/.

[49] X. Yin and T.B. Pedersen, Evaluating XML-extended OLAP
queries based on physical algebra, Journal of Database
Management (JDM) 17(2) (2006), 85–116. doi:10.4018/jdm.
2006040105.

[50] E. Zimanyi, Advanced Data Warehouse Design: From Con-
ventional to Spatial and Temporal Applications. Data-Centric
Systems and Applications, Springer, 2008. doi:10.1007/978-3-
540-74405-4.

http://geovocab.org/doc/neogeo/
http://geovocab.org/doc/neogeo/
https://dl.acm.org/doi/10.5555/2590208.2590210
https://dl.acm.org/doi/10.5555/2590208.2590210
https://doi.org/10.3233/SW-2011-0052
https://doi.org/10.1007/978-3-642-54655-6
https://doi.org/10.1007/978-3-642-54655-6
https://doi.org/10.1109/ICDE.2016.7498341
https://doi.org/10.1109/ICDE.2016.7498341
https://doi.org/10.1016/j.websem.2016.07.003
http://www.geonames.org/ontology
https://www.w3.org/TR/sparql11-query/
https://www.w3.org/TR/sparql11-query/
https://www.w3.org/2011/gld/wiki/Data_Cube_Implementations
https://www.w3.org/2011/gld/wiki/Data_Cube_Implementations
https://www.w3.org/TR/vocab-data-cube/
https://www.w3.org/TR/vocab-data-cube/
https://doi.org/10.4018/jdm.2006040105
https://doi.org/10.4018/jdm.2006040105
https://doi.org/10.1007/978-3-540-74405-4
https://doi.org/10.1007/978-3-540-74405-4

	Introduction
	Preliminaries
	Spatial data warehouses and SOLAP
	QB4SOLAP: Spatial RDF data cube vocabulary for SOLAP operations

	System architecture
	RDF2SOLAP enrichment algorithms
	Hierarchical enrichment phase
	Spatial helper functions
	Detecting spatial hierarchy steps
	Discovering spatial hierarchy steps

	Factual enrichment phase
	Detecting explicit fact-level relations
	Discovering implicit fact-level relations
	Defining spatial fact DSD

	Implementation choices

	Experimental evaluation
	Experimental setup
	Development time comparison
	Runtime comparison
	Annotation quality comparison
	Experimental summary

	Related work
	Conclusion and future work
	Acknowledgements
	Appendix. Implementation details
	QB4SOLAP triples generation
	Detecting explicit topological relations
	Discovering implicit topological relations
	Generating the fact schema

	References

