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Abstract. Research on gut microbiota has increased in popularity over the past decade, with evidence associating different
dietary habits with changes in the makeup of the rich ecosystem of microorganisms that performs a variety of functions
and induces a range of health effects, within and well beyond the gastrointestinal tract. Similarly, intermittent fasting (IF),
an umbrella term describing various regimens of periods of voluntary abstinence from food and drink, has classically been
associated with favourable impacts on cardiovascular risk factors, body weight, circadian biology, and, more recently, the
gut health. The objective of this PRISMA systematic review was to summarize the peer-reviewed literature of clinical trials
related to the impact of IF regimens on the gut microbiota. A MEDLINE search was conducted using PubMed and the
keywords “intermittent fasting”, “gut microbiota”, “microbes”, and others. Whilst the field is still in its infancy, an emerging
body of evidence suggests beneficial effects of IF on the health of the gut through increasing the microbial diversity and
abundance, with possible clinical implications related to improving the immune function and ameliorating the metabolic
status. Further research in larger clinical trials is warranted before practical recommendations for the public health can be
made.

Keywords: Intermittent fasting, periodic fasting, alternate-day fasting, whole-day fasting, time-restricted feeding, gut micro-
biota, microbes

1. Background

Both human and animal studies demonstrate a ben-
eficial impact of intermittent fasting (IF), a term
describing several regimens of periods of voluntary
abstinence from food and drink, on various aspects
of health. IF regimens can be categorized into fast-
ing for up to 24 hours once or twice a week with ad
libitum food intake for the remaining days, known as
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periodic prolonged fasting (PF) or intermittent calorie
restriction (ICR) [1]; eating for 8 hours then fasting
for the other 16 hours of the day (time-restricted feed-
ing, TRF); and alternating between feasting and fast
days (alternate-day fasting, ADF) [2, 3] (Table 1).
IF has classically been recognized to ameliorate obe-
sity [2], insulin resistance [4], dyslipidemia [5], blood
pressure [4] and inflammation [6]. More recently, IF
has been shown to also benefit the gut microbiota
[7], a term describing the trillions of microorgan-
isms (bacteria, viruses, protozoa, and fungi),which
are present in the human gut and are involved in
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Table 1

Comparison of different types of intermittent fasting

Type of IF Description Metabolic states involved

Alternate day fasting Alternating feast (ad lib intake) and fast days (≤ 25%
of energy needs)

Fed, post-absorptive, fasting (short duration, likely
< 36 hours between meals)

Time-restricted fasting Eating only during certain time periods (i.e., 8 hours),
then fasting for remaining hours of the day

Fed, post-absorptive (maximum duration between meals
is usually < 16 hours)

Periodic fasting Fasting for up to 24 hours once or twice a week with
ad lib intake on the remaining days

Fed, post-absorptive, fasting (up to 48 hours between
meals depending on whether fast days are consecutive)

virtually all aspects of health [8, 9]. This is a vast and
complex microbial community, with over 1000 bacte-
rial species identified and approximately 160 species
found in the gut of any one person [10], and the most
abundant bacterial phyla in the adult gastrointestinal
tract are Firmicutes and Bacteroidetes [11, 12].

The gut microbiota provides many benefits to the
host, such as the biosynthesis of certain vitamins
and essential amino acids, and the generation of
short-chain fatty acids (SCFAs) as metabolic by-
products from undigested food components [13].
SCFAs, including butyrate, propionate, and acetate
are a major source of energy for the intestinal cells
and may strengthen the intestinal barrier [14] and
improve the gut integrity [15], which is paramount
in promoting optimum colonic health and function;
resulting in better immunity [16]. SCFA produc-
tion is influenced by gut microbiota composition and
diet, with primarily butyrate and acetate decreas-
ing the inflammatory response, whilst increasing the
anti-inflammatory response of the adaptive immune
system [17]. In addition, butyrate methylates pro-
moter regions, thus influencing gene expression in
enterocytes, macrophages and immune cells; defi-
cient SCFA can disrupt these processes, which can
lead to an autoimmune response and disease [17].
Furthermore, SCFA and butyrate specifically controls
the function and size of the regulatory T cell network
by stimulating the induction and fitness of regulatory
T cells in the gut [18–20]. In addition, the micro-
biota is involved in many critical functions to ensure
that optimum immune responses can be produced,
including aiding development and maturation of lym-
phoid structures and potentiation of the function of
innate immune cells [21]. Whilst, the microbiota
is critical for maturation of the immune system, in
return, the latter determines the composition of the
microbiota. As such, disrupted microbial composi-
tion has been associated with several diseases in
humans. However, the intricate immune/microbial
interactions make it difficult to determine whether
dysbiosis, the imbalance of gut microbiota, is a cause

and/or a consequence of immune dysregulation and
disease initiation or progression [21].

Diet is reported as a major factor influencing gut
microbiota and several studies have investigated the
impact of different dietary components, including
carbohydrates, predominantly fibre, and plant-based
diets, on the gut microbiota [22–26]. Nuts and other
plant-based foods that are abundant in polyunsatu-
rated and monounsaturated fats and, occasionally,
polyphenols and other phytochemicals have been
shown to increase bacterial diversity, as well as the
beneficial butyrate-producing bacteria revealing a
positive metabolic effect [27–28].

With rapidly advancing screening used to anal-
yse and differentiate complex ecosystems, the role
of microbiota in a significant number of gastroin-
testinal diseases has become increasingly clear [29,
30]. Dysbiosis may contribute to the pathogenesis of
a vast range of such diseases, including inflamma-
tory bowel disease (IBD), celiac disease, colorectal
cancer, Clostridium difficile infection, and obesity
[31]. For instance, studies [32–35] have found IBD
patients to have less bacterial diversity in the gut and
reduced numbers of Bacteroidetes and Firmicutes,
potentially leading to decreased concentrations of
butyrate that is, along with other SCFAs, believed
to have a direct anti-inflammatory effect [33, 36,
37]. Greater diversity in the microbial commu-
nity has also been associated with a healthier gut
microbiome [38–40]; a diverse array of bacteria pro-
motes microbiome capability, and is imperative for a
healthy host–microorganism balance to ensure opti-
mal metabolic and immune function.

For this reason, the gut microbiome has become a
promising target for prediction, prevention and treat-
ment of diseases [8]. Given that it is evident that diet
is a significant modulator of the gut health and micro-
biota diversity [22–26], and that dietary restrictions
such as IF may also contribute to such effect [9],
the objective of this review was to summarize the
peer-reviewed literature of clinical trials related to
the impact of IF regimens on the gut microbiota.
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Fig. 1. PRISMA 2009 flow diagram.

2. Methods

The design of the study is a qualitative system-
atic review in line with the Preferred Reporting
Items for Systematic Reviews and Meta-analyses
(PRISMA) checklist (Fig. 1). A literature review was
performed independently by two reviewers, KLW and
MA using PubMed. Search criteria included clinical
trials published in English between January 2000 and
April 2020 with the keywords “intermittent fasting”,
“periodic fasting”, “time-restricted”, “alternate-day
fasting”, “whole day fasting”, “gut microbiota”, and

“microbes”. References were reviewed from seminal
papers to identify additional articles.

3. Results and discussion

Based on the inclusion criteria, 98 clinical stud-
ies were identified and six articles were included in
this review [8, 41–45] (Fig. 1). Other studies were
excluded as they did not specifically examine the
role of IF on the gut microbiota. The excluded arti-
cles investigated the effect of alternative nutrients’
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Table 2

Summary of studies included in the present review

Reference Participants (n) Duration and type of fasting Comparison group Change in microbial
Composition

He et al. (2019) [8] Healthy adults aged
18–40 years (n = 16)

1 week: water-only fasting
(n = 6)

1 week: juice fasting
(n = 10)

↓ Fusobacterium
water-only fasting

↔ Akkermansia
water-only fasting

↔ juice fasting
Remely et al. (2015)

[41]
Overweight (n = 13) CR and PF/TRF

(non-traditional fasting
regimen) (600–800 kcal)

None ↑ Lactobacillus
↑Enterobacteria
↑ Akkermansia

Cignarella et al.
(2018) [42]

Adults with MS (n = 16) 15 days: ADF 15 days: ad libitum ↑ Bacteroides
↑ Lactobacillus
↑ Prevotella (fasting

group)
Özkul et al. (2019)

[43]
Healthy adults aged

31–56 years (n = 9)
29 days: Ramadan fasting

/TRF
None ↑ Bacteroides

↑ Akkermansia
Gabel et al. (2020)

[44]
Obese adults (n = 14) 12 weeks: TRF None ↔

Özkul et al. (2020)
[45]

Healthy adults (n = 9) 29 days: Ramadan fasting
/TRF

None ↑ Bacteroides
↑ Butyricicoccus
↑ Faecalibacterium
↑ Roseburia
↑ Allobaculum
↑ Eubacterium
↑ Dialister
↑ Erysipelotrichi

Abbreviations: ADF, alternate-day fasting; CR, calorie restriction; MS, multiple sclerosis; PF, periodic fasting; TRF, time-restricted feeding;
↑, statistically significant increase (p < 0.05); ↔, no change.

or foods such as gluten, yogurt, high-fat and/or
high-sugar diet on the gut microbiota. Main micro-
biota-related findings of studies included in the
present review are summarized in Table 2 and are
discussed below.

Cignarella et al. 2008 [42] initiated a 15-day ran-
domized controlled pilot trial to multiple sclerosis
(MS) subjects experiencing relapse; where seventeen
subjects were equally randomized to ADF vs ad libi-
tum diet. No bacteria were significantly different at
day 15 between the two groups, but the abundance
of Faecalibacterium, Lachnospiracea incertae sedis
and Blautia showed an increasing trend after 15 days
of IF [42]. Faecalibacterium and Blautia belong to the
Clostridia clusters XIV and XIVa (in the Firmicutes
phylum) and have been shown to increase regulatory
T cell (Treg) accumulation in the colon [46]. These
bacteria are important as they produce acetate and
have been observed to be decreased in MS subjects
[47]. As such, the increase in the Clostridia clusters
XIV and XIVa with IF may function to counterbalance
the dysbiosis usually observed in MS [42].

In a 2019 study of sixteen healthy subjects
aged 18–40 years and have BMI >18.5 kg/m2, six

individuals were allocated to a water-only fast and
ten were assigned a juice fast for one week [8].
Daily stool sample collection, prior to and post fast-
ing, started from two weeks before fasting until four
weeks after. The authors hypothesized that water only
fasting may be a potential therapeutic strategy in
reducing Fusobacterium, which has been shown to
promote colorectal cancer [8]. However, the differ-
ential abundance findings suggest that the impact of
fasting on individual microbial taxa is unique and per-
sonalized. Despite this individualized effect, relative
abundance of Fusobacterium was decreased across
all participants in group 1 (P < 0.05) when com-
pared with pre-fasting controls. This finding was not
reported in group 2 (P > 0.05), however pre-fasting
relative abundance of Fusobacterium was increased
in group 1 compared with group 2 participants. In all
participants, post water-only fasting Fusobacterium
remained consistently reduced. In addition, eight out
of ten subjects were not affected by juice fasting,
with no increased homogeneity between subjects.
These findings suggest that water-only fasting may
have a long-lasting effect on the microbiota and a
more homogenous microbial community; indicating
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increased homogeneity and alterations in microbiota
demonstrated in water-only fasting may not be neces-
sarily due to the absence of solid food [8]. The authors
anticipated relative abundance of Akkermansia in
the water-only fast participants since Akkermansia
uses mucin as a sole substrate [48]. However, they
observed no increase in the relative abundance of
Akkermansia after fasting. This suggests that there
could be other bacteria that utilize mucin, which com-
pete with Akkermansia in the gut during water-only
fasting.

There are a limited number of small-scale human
studies that consider the role of Akkermansia mucini-
phila, a species of bacteria reported to thrive when
undergoing fasting conditions [43, 45], and which
may represent 3–5% of the healthy gut micro-
biota [49-50]. One small intervention study of
obese patients demonstrated significant improvement
in microbiota diversity and showed a significant
increase in A. muciniphila after a week of mild
fasting (Remely et al, 2015) [41]. This pilot study
[41] assigned thirteen overweight subjects to a non-
traditional fasting regimen that involved a limited
period of abstinence from solid food and natural stim-
ulants. The fasting regimen was low in energy with
an intake of 2.5 L/day of calorie-free liquid (water,
herbal tea) or vegetable broth (600–800 calories/day)
followed by a probiotic formula. Microbiota diversity
was shown to increase due to fasting and probiotic
intervention between the time points T1 (before fast-
ing), T2 (during fasting) and T3 (after 6-weeks of
probiotic intervention (P = 0.05), and between the
time points T2–T3 (P = 0.02) [41]. In addition, the
authors reported a significant increase in Akkerman-
sia between the time points (T1–T3: P = 0.03, T1–T2:
P = 0.47, T2–T3: P = 0.47).

In a pilot study by Özkul et al., [2019] [43],
9 subjects were included in a fasting protocol
involving a 17 h fast/day for 29 days during the
month of Ramadan. A significantly increased abun-
dance of A. muciniphila and B. fragilis group was
observed in all subjects after fasting when compared
with baseline levels (P = 0.004 and 0.008, respec-
tively). A similar Ramadan-based study involving
nine subjects by Özkul et al., [2020] [45] demon-
strated increased microbial richness (P = 0.016) and
differing microbiota composition after 29 days
vs before fasting (P = 0.025). Butyricicoccus pulli-
caecorum (P = 0.002), Faecalibacterium prausnitzii
(P = 0.003), and Roseburia (P = 0.02) were the major
species that showed a significant increase after the
end of Ramadan fasting. A.muciniphila (P = 0.005)

and Bacteroides spp (P = 0.02) were also signifi-
cantly increased post fasting. This finding is similar
to that of Remely et al., 2015 [41] in which the
authors reported increased A.muciniphila in over-
weight subject post fasting. Roseburia has the ability
to metabolise dietary components, generate SCFAs
and influence the integrity of the intestinal epithe-
lial barrier, whilst supporting immunity with its
anti-inflammatory capabilities [51]. F. prausnitzii
is an anti-inflammatory commensal bacterium that
also produces SCFAs [52], whilst B. pullicaecorum
has recently been shown to be one of the main
butyrate-producing bacterial species with the ability
to promote intestinal epithelial barrier integrity with
its anti-inflammatory capabilities. Furthermore, in a
2018 study [53] in an antibiotic-disrupted microbiota,
depleted B. pullicaecorum was observed.

Finally, in a 12-week pilot study by Gabel et al.
2020 [44], 14 obese adults were allocated to daily 8-
hour feeding/16-hour fasting TRF intervention. At
baseline, the two most common phyla were Fir-
micutes and Bacteroidetes, at 61.2% and 26.9%,
respectively, of total abundance. The authors hypoth-
esized that the proportion of Firmicutes would
decrease and the proportion of Bacteroidetes would
increase with TRF, and that these improvements
would be associated with weight reduction. Whilst
the results indicated that TRF reduced body weight
(P < 0.05), TRF did not significantly alter the diver-
sity or overall gut microbiota composition, with no
significant changes in the abundance observed at the
end of the trial [44]. These findings are contradic-
tory to what has generally been observed with caloric
restricted diets [54–56], which have all reported ben-
eficial changes in gut microbiota composition and/or
diversity. The authors concluded that in view of these
previous findings, it is possible that the weight reduc-
tion (2%) and caloric restriction (20%) produced in
their study was not sufficient and subsequently, did
not impact the gut microbiota composition benefi-
cially [44].

4. Conclusion

Chronic calorie restriction (CR) has been reported
to elicit metabolic changes, including shaping the
gut microbial community in humans [57] and mice
[58]. Fecal microbiota of subjects exercising long-
term CR may also be more diverse and richer than in
individuals consuming Western-style diets [59–61].
Data suggests that chronic CR is, however, difficult
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to adhere to [62] and thus IF could be a more feasi-
ble method for compliance. Although, it still needs
to be established whether individuals can maintain
IF for long terms or obtain the similar IF benefits
observed in animal studies [63–65]. Furthermore, it
is still not known which individuals would benefit the
most from IF, which form of IF is the most effective,
whether there are sex-based differences, or variations
between healthy individuals and those present with
certain disease. In addition, all the relevant studies
have small sample sizes, a drawback that limits the
generalizability of the observed effects. Therefore,
future research should take these limitations into con-
sideration for better understanding of the role of IF
on gut health.

In conclusion, whilst current research is still in its
infancy stage, findings of the available human stud-
ies, thus far, suggest that IF may play a potentially
beneficial role in enhancing changes in gut micro-
biota composition and diversity. Fasting has been
demonstrated to increase the abundance of protective,
beneficial microbial families, such as Bifidobacteri-
aceae, Lactobacillaceae and Akkermanisaceae. The
initial findings may be promising for the use of fasting
to beneficially influence and alter the gut micro-
biota. However, further confirmation is warranted,
with larger clinical trials with longer observation
timeframes needed to replicate the available findings
before clinical recommendations may be made on the
role of IF in the gut health.
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