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Abstract.

BACKGROUND: Robotic therapy (RT) has been internationally recognized for the motor rehabilitation of the upper limb.
Although it seems that RT can stimulate and promote neuroplasticity, the effectiveness of robotics in restoring cognitive
deficits has been considered only in a few recent studies.

OBJECTIVE: To verify whether, in the current state of the literature, cognitive measures are used as inclusion or exclusion
criteria and/or outcomes measures in robotic upper limb rehabilitation in stroke patients.

METHODS: The systematic review was conducted according to PRISMA guidelines. Studies eligible were identified through
PubMed/MEDLINE and Web of Science from inception to March 2021.

RESULTS: Eighty-one studies were considered in this systematic review. Seventy-three studies have at least a cognitive
inclusion or exclusion criteria, while only seven studies assessed cognitive outcomes.

CONCLUSION: Despite the high presence of cognitive instruments used for inclusion/exclusion criteria their heterogeneity
did not allow the identification of a guideline for the evaluation of patients in different stroke stages. Therefore, although
the heterogeneity and the low percentage of studies that included cognitive outcomes, seemed that the latter were positively
influenced by RT in post-stroke rehabilitation. Future larger RCTs are needed to outline which cognitive scales are most
suitable and their cut-off, as well as what cognitive outcome measures to use in the various stages of post-stroke rehabilitation.

Keywords: Stroke, rehabilitation, cognitive outcome, robotic, upper limb, robotic rehabilitation, systematic review

1. Introduction

According to the World Health Organization
(WHO), cerebral stroke is “rapidly developing clini-
cal signs of focal (or global) disturbance of cerebral
function, with symptoms lasting 24 hours or longer or
leading to death, with no apparent cause other than of
vascular origin” and it is considered the second lead-
ing cause of death, the third leading cause of disability
worldwide and the first leading cause of disability in
the elderly.

Although the prevalence of cerebral stroke almost
doubled from 1990 to 2010, from 2.7% to 4.9%
for ischemic stroke and from 1.0% to 1.9%
for haemorrhagic stroke, overall mortality in the
same period decreased by 20% in ischemic stroke

and by 25% in haemorrhagic stroke (SPREAD,
2016).

This results in an increase in the population with
disability-related strokes in recent years — 13.9 mil-
lion stroke survivors in 1990 vs 25.7 million stroke
survivors in 2013 (Feigin et al., 2015), which experi-
ences limitations in ADL and mobility (Kwakkel and
Kollen, 2013).

Among the various body districts, upper limb
is considered one of the most affected by the
cerebrovascular event: at hospital admission after
stroke, more than two-thirds of people have arm
paresis (and therefore have limited hand-arm func-
tion), resulting in reduced upper extremity function,
which persists in half of the population affected by
this disease to six months after stroke (Mehrholz
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et al., 2020), due to the complex functions it
performs.

In fact, due to the execution of different and fine
movement such as reaching, grasping, manipulation,
arm transport, but also for its delicate task in percep-
tion the recovery of upper limb is complicated but
fundamental simultaneously. As a result, the main
goal of hand rehabilitation is to optimize dexterity
in order to restore a sufficient grade of autonomy in
ADL (Houwink et al., 2013).

International guidelines for the rehabilitation of
the patient with cerebral stroke (Morone et al., 2021;
SPREAD, 2016) reported that robotic therapy (RT)
seems to be a safe and tolerable alternative for
upper limb rehabilitation in patients with stroke, as it
improves muscle strength, motor control and promote
functional recovery of the limb. Indeed, RT seems to
be a way to increase the amount and the intensity of
the therapy, motivating patients to do more repeti-
tions and prolong therapeutic time, as well as can be
considered a way to standardize treatment (Gueye et
al., 2021).

Besides motor impairment, cognitive decline is
often present in stroke survivors: about 30% ischemic
stroke survivors show a cognitive impairment which
is determined by the MMSE score is lower than
27 (Sun et al., 2014). Several studies confirmed the
high prevalence of cognitive impairment after stroke
(Lamb et al., 2013; Nys et al., 2005; Pollock et
al., 2014) and underlined its significant influence on
motor learning strategies (Chen et al., 2013; Thon,
2015), functional recovery, and quality of life (Alt
Murphy et al., 2017; Mullick et al., 2015); in fact,
the recovery of cognitive impairments have a cru-
cial importance for reintegration into everyday life
(Blackburn et al., 2013).

By recent studies, it seems that robotic and tech-
nological devices bring stimulation and promoting
neuroplasticity (Bressi et al., 2020) through their
engaging design (Gueye et al., 2021).

In particular, Xing et al. (2020) highlighted that RT
can also play an important role in cognitive recov-
ery: these devices can be useful in encouraging an
improvement in neuroplasticity, by stimulating alter-
ations in connectivity in some areas (i.e. premotor
cortex, cerebellum, M1 and supplementary motor
area).

In fact, with the implementation of new graph-
ical interfaces and more ecological scenarios, as
well as more cognitively demanding tasks, robot
can allow an active physical and cognitive engage-
ment of patients during robotic therapy by adaptive

assistance (Riener et al., 2006), promoting patient’s
engagement (Marchal-Crespo et al., 2010), cognitive
challenge (Metzger, Lambercy, Califfi, Conti, et al.,
2014), automated task difficulty adaptation (Metzger,
Lambercy, Califfi, Dinacci, et al., 2014) and visual
and auditory feedback (Saposnik and Levin, 2011).

Despite its importance, the efficacy of robotics in
restoring cognitive deficits was considered in only
few recent studies (Adomaviciené et al., 2019; Aprile
etal.,2021; Taravati et al., 2022), that also highlighted
the importance of cognitive evaluation as the initial
cognitive functions are positively associated with the
functional outcome after robot-assisted therapy.

Moreover, cognitive impairment is not often con-
sidered as a clinical outcome or as a criterion for
inclusion/exclusion of robotic interventions: a recent
systematic review on 66 articles and 2214 participants
highlighted that most trials that assessed the efficacy
of upper limb assisted RT after stroke excluded indi-
viduals with cognitive impairments (76% of included
studies) and that only a few trials (15% of included
studies) measured cognitive outcomes (Everard et al.,
2020).

This review confirmed the scarcity of information
on the impact of robotic rehabilitation on the cog-
nitive outcome in patients with stroke and the need
to deeply analyse the relationship between cognitive
recovery and rehabilitation.

Starting from these preliminary data, the aim of
this review is to verify whether, in the current state of
the literature, cognitive measures are used as inclu-
sion or exclusion criteria and/or outcomes measures
in robotic upper limb rehabilitation in stroke patients.

2. Materials and methods
2.1. Data sources and searches

PubMed and Web of Science were used to per-
form the literature search. The electronic search
was conducted on March 2021. To avoid missing
some key studies, cross-referencing was used from
each publication obtained through the electronic
search. The search strategies, combining relevant
search terms with Boolean operators (OR/AND),
are listed in Table 1, for the two databases, sepa-
rately. The protocol was registered on PROSPERO
(no CRD42021288946). The Preferred Reporting
Items for Systematic Reviews and Meta-Analysis
(PRISMA) statement was followed in the reporting.
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2.2. Inclusion criteria

In agreement with the PRISMA guidelines (Page
et al., 2021), the inclusion criteria were set follow-
ing the PICOTS-SD (Brown, 2020) (participants,
intervention, comparisons, outcomes, timing of out-
come measurement, settings, study design) strategy,
as reported below:

e Participants (P)=persons with stroke;

e Intervention (I)=upper limb robotic rehabilita-
tion focused on the recovery of upper limb motor
function;

e Comparisons (C)=conventional treatment, no
treatment, or treatment with other robotic or
technological devices or healthy participants;

e Outcome (O)=upper limb motor function
measured by clinical scales or instrumental
parameters;

e Timing of outcome measurement (T)=before
and after the intervention;

e Settings (S)=inpatient or outpatient settings;

e Study design (SD)=randomized controlled trial
(RCT).

We therefore included an RCT on patients with
stroke comparing an upper limb robotic rehabilita-
tion with other interventions (such as conventional
treatment, or other devices) focused on the recovery
of upper limb motor function measured by clinical
scales or instrumental parameters. RCTs with two
or more arms were considered. If studies did not use
robotic devices or were not focused on stroke patients,
they were excluded from this review.

2.3. Study selection and data extraction

Two independent reviewers evaluated the studies
retrieved from the electronic search based on the titles
and abstracts of the studies. After this preliminary
screening process, the full text of all eligible studies
was analyzed and independently evaluated to deter-
mine whether or not they met the inclusion criteria.
A third reviewer was brought in to resolve any dis-
agreements on the study’s eligibility between the two
reviewers. The flow diagram of the article selection
procedure is reported in Fig. 1. After inclusion, the
study characteristics, research goals, and main find-
ings were extracted and summarized. Specifically,
the extracted information included: total number of
patients randomized, mean time since the acute event
of the enrolled patients (classified as lower or higher
than 6 months), description and dose of the interven-

tion in the experimental group, description, and dose
of the intervention in the control group(s), primary
and secondary outcomes. The PEDro scale (Cashin
and McAuley, 2020) was used to assess the method-
ological quality of the studies.

Moreover, in line with the goal of this review, the
following data were considered and analyzed: pres-
ence of cognitive inclusion criteria (with description,
when applicable), cognitive outcome measures (with
description, when applicable), and any investigation
of the relationship between motor and cognitive out-
comes (with description, when applicable).

3. Results
3.1. Data synthesis

We found 880 records through the research
method. After duplicates were removed, articles were
screened for title and abstract, and 90 records were
assessed for eligibility.

After full-text reading, 81 studies were included
in the qualitative analysis of this systematic review.
Figure 1 reports the flowchart of the research.

Supplementary Table 1 summarizes the char-
acteristics of the included studies. According to
the inclusion criteria, all reports are RCTs pub-
lished between 2000 (Volpe et al., 2000) and 2021
(Ambrosini et al., 2021; Chinembiri et al., 2021;
Doost et al., 2021; Gueye et al., 2021; H. C. Lee et
al., 2021; Park, 2021).

3.2. Population

The studies included a total population of 3922
stroke patients. The sample size varied from 12
(Brokaw et al., 2014; Daly et al., 2005; Iwamoto et
al., 2019) to 770 (Rodgers et al., 2019a).

Time onset varied according to studies’ inclusion
criteria: twenty-nine studies included only patients
whose time since the stroke event was under 6
months; thirty-three studies included only chronic
stroke patients while the remaining studies included
both phases. Time between stroke onset and start of
treatment was specified in 67 studies and it ranged
between 14 days (Gueye et al., 2021; Volpe et al.,
2000) and 9 months (Park, 2021). Supplementary
Table 1 reports population characteristics.
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Table 1
Search strategy

PubMed

#1 “Stroke’’[MeSH Terms]

#2 “Cerebral hemorrhage’’[MeSH Terms]

#3 (Cerebral hemorrhage[Tiab]) OR (Cerebral hemorrhages[Tiab]) OR (Cerebral
haemorrhage[Tiab]) OR (Cerebral haemorrhages[Tiab]) OR (Cerebral hemorrhagic[Tiab]) OR
(Cerebrovascular accident[ Tiab]) OR CVA OR (Cerebrovascular disease [Tiab])

#4 “Brain ischemia’’[MeSH Terms]

#5 (Brain ischemia [Tiab]) OR (Brain ischaemia [Tiab])

#6 Paresis [MeSH Terms]

#7 Plegia [Mesh]

#8 (hemiplegia [Tiab])

#9 #1 OR #2 OR #3 OR #4 OR #5 OR #6 OR #7 OR #8

#10 Robotics [Mesh] OR “Exoskeleton Device’’[Mesh]

#11 robot*[tiab] OR “robot assisted’’[tiab] OR exoskelet*[tiab] OR “end effector*’’[tiab] OR
electromechani*[tiab] OR electro-mechani*[tiab]

#12 #10 OR #11

#13 “Upper Extremity’’[Mesh] OR “Shoulder’’[Mesh] OR “Arm’’[Mesh] OR “Elbow’’[Mesh] OR
“Forearm’’[Mesh] OR “Wrist’’[Mesh] OR “Hand’’[Mesh]

#14 “upper extremity’’[tiab] OR “upper limb’’[tiab] OR shoulder[tiab] OR arm[tiab] OR
elbow([tiab] OR forearm[tiab] OR wrist[tiab] OR hand[tiab] OR finger*[tiab]

#15 #13 OR #14

#16 “randomized controlled trial”’[pt]

#17 “controlled clinical trial’’[pt]

#18 randomized[tiab]

#19 placeboltiab]

#20 “clinical trials as topic’’[mesh: noexp]

#21 “randomly’’[tiab]

#22  “trial”’[ti]

#23 #16 OR #17 OR #18 OR #19 OR #20 OR #21 OR #22

#24 animals [mh] NOT humans [mh]

#25 #23 NOT #24

#26 #9 AND #12 AND #15 AND #25

‘Web of Science

#1 TS=(stroke OR CVA OR “cerebrovascular disease” OR “cerebrovascular accident” OR
hemiparesis OR hemiplegia OR paresis) OR TI=(stroke OR CVA OR “cerebrovascular disease”
OR “cerebrovascular accident” OR hemiparesis OR hemiplegia OR paresis) OR AB=(stroke OR
CVA OR “cerebrovascular disease” OR “cerebrovascular accident” OR hemiparesis OR
hemiplegia OR paresis)

#2  TS=(“upper limb” OR “upper extremity” OR arm OR forearm OR wrist OR finger OR hand) OR
TI=(“upper limb” OR “upper extremity” OR arm OR forearm OR wrist OR finger OR hand) OR
AB=(“upper limb”” OR “upper extremity” OR arm OR forearm OR wrist OR finger OR hand)

#3 TS=(random* OR randomized OR “randomized controlled trial” OR RCT) OR TI=(random* OR
randomized OR “randomized controlled trial” OR RCT) OR AB=(random* OR randomized OR
“randomized controlled trial” OR RCT)

#4 TS=(robot* OR orthos* OR orthotic* OR automat* OR “computer aided” OR “Computer
assisted” OR device* OR electromechanical OR electromechanical OR mechanical OR
mechanised OR mechanized OR driven) OR TI=(robot* OR orthos* OR orthotic* OR automat*
OR “computer aided” OR “Computer assisted” OR device* OR electromechanical OR
electromechanical OR mechanical OR mechanised OR mechanized OR driven) OR AB=(robot*
OR orthos* OR orthotic* OR automat* OR “computer aided” OR “Computer assisted” OR
device* OR electromechanical OR electromechanical OR mechanical OR mechanised OR
mechanized OR driven)

#5 TS=Rehab* OR AB =rehab* OR TI=rehab*

#6 #1 AND #2 AND #3 AND #4 AND #5
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Fig. 1. PRISMA 2020 flow diagram for new systematic reviews which included searches of databases, registers and other sources.

3.3. Intervention

Robot upper limb training was used in the interven-
tion group of all included studies. Complete treat-
ment characteristics are reported in Supplementary
Table 1.

3.4. Robotic treatment characteristics

All studies have at least one group that underwent
RT. According to the treated district, in 18 studies
(Abdullah et al., 2011; Chinembiri et al., 2021; Cho
& Song, 2019; Fazekas et al., 2007; Han Yoo et al.,
2012; Horsley etal., 2019; Iwamoto et al., 2019; Kahn
et al., 2006; Klamroth-Marganska et al., 2014; M.
Lee et al., 2018; Park et al., 2020; Perini et al., 2021;
Qianetal.,2017; Rodgers et al., 2019b; Serrezuela et
al., 2020; Takahashi et al., 2016; Timmermans et al.,
2014; Tramontano et al., 2020) the entire upper limb
was treated; shoulder was rehabilitated in five stud-
ies (Burgar et al., 2011; Cho and Song, 2021; Kim
et al., 2019; Lum et al., 2002; Straudi et al., 2020);
only Mazzoleni et al. (2019) considered wrist reha-
bilitation, while hand rehabilitation was considered
in 13 studies (Ang et al., 2014; Calabro et al., 2019;
Grigoras et al., 2016; Y. Huang et al., 2020; Hwang et
al., 2012; H. C. Lee et al., 2021; Orihuela-Espina et

al., 2016; Park, 2021; Ranzani et al., 2020; Sale et al.,
2014; Susanto et al., 2015; Vanoglio et al., 2017; Vil-
lafafie et al., 2018). None of the studies rehabilitated
only elbow or forearm joints.

The remaining studies combined the treatment of
two or more different districts: 20 (Ambrosini et al.,
2021; Carpinella et al., 2020; Daly et al., 2005, 2019;
Dehem et al., 2019; Doost et al., 2021; Gandolfi et
al., 2019; K. W. Lee et al., 2016; Lee KW et al.,
2017; S. H. Lee et al., 2020; Lo et al., 2010; Lum
et al., 2002; Masiero et al., 2007, 2014; McCabe et
al., 2015; Rabadi et al., 2008; Rosenthal et al., 2019;
Tomi¢ et al., 2017; Volpe et al., 2000; Xu et al., 2020)
rehabilitated shoulder and elbow; robotic rehabilita-
tion for forearm and wrist was considered in eleven
studies (Hesse et al., 2005, 2014; Housman et al.,
2009; Hsieh et al., 2011, 2016; Hsu et al., 2019; C.
S. Hung, Hsieh, Wu, Chen, et al., 2019; C. S. Hung,
Hsieh, Wu, Lin, et al., 2019; C. Shan Hung et al.,
2019; Liao et al., 2012; Wu et al., 2012); wrist and
hand was treated in two studies (Kutner et al., 2010;
Wolf et al., 2015); Qian et al. (2019) used a robotic
device for elbow, wrist and hand rehabilitation, while
five studies (Daunoraviciene et al., 2018; Gueye et
al., 2021; Jiang et al., 2021; Taveggia G et al., 2016;
Zengin-Metli et al., 2018) underwent RT for shoulder,
elbow and hand.
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Conroy et al. (2019) combined two robots, one for
shoulder and elbow and the other for wrist, as well as
Edwards et al. (2019); Aprile et al. (2020) used dif-
ferent robotic devices for the treatment of the upper
limb, treating shoulder, elbow, wrist, and hand in dif-
ferent phases; Conroy et al. (2011) rehabilitated, with
robotic devices, shoulder and elbow in one group and
forearm and wrist in another, while Brokaw et al.
(2014) combined a robot for shoulder rehabilitation
with one for hand rehabilitation.

Robotic characteristics (i.e., name, industry and
country of production were specified in all studies
except seven (Abdullah et al., 2011; Grigoras et al.,
2016; Y. Huang et al., 2020; Qian et al., 2017, 2019;
Serrezuela et al., 2020; Susanto et al., 2015) that used
their own robotic prototypes to treat patients enrolled.
Bi-Manu Track (Reha-Stim Co., Berlin, Germany)
(Hesse et al., 2003) was the most used robotic
device, followed by Armeo Spring (Hocoma AG,
Volketswil, Switzerland) (Armeo®Spring — Hocoma,
n.d.), Amadeo (Tyromotion, Graz) (Balasubramanian
et al., 2010), Mit Manus (Interactive Motion Tech-
nologies, Cambridge, MA) (Aisen et al., 1997) —also
described as InMotion2 (Interactive Motion Tech-
nologies, Inc., Cambridge, MA, USA) (Krebs et al.,
1998).

Except for Brokaw et al. (2014) and Kutner et al.
(2010) — who reported the total time of RT — and
Rosenthal et al. (2019) — who didn’t specify session
duration — all studies specified RT duration charac-
teristics (i.e., total of sessions, sessions per week,
duration of each session). RT ranged from 2 to 64
sessions, with an average of 4 sessions per week.
Duration of each RT varied from 20 to 120 min.

Therefore, patients performed conventional ther-
apy, propaedeutic therapy, or additional therapy (i.e.,
functional electrical stimulation — FES) in more
than half of the studies. Characteristics of RT and
additional therapy are reported in Supplementary
Table 1.

3.5. Comparison

All studies have at least one control group. All con-
trol groups are composed of patients who have the
same baseline characteristics as the robotic group,
except for Doost et al. (2021), who used a group of
healthy subjects to normalize the obtained data.

In sixty studies patients in the control group under-
went conventional therapy, of these in three studies
(Burgar et al., 2011; Masiero et al., 2007; Volpe et al.,

2000) patients were exposed to the robot in addition
to the traditional treatment.

Regarding the remaining studies, in fifteen stud-
ies, a comparison underwent two different types of
RT: Iwamoto et al. (2019) and Conroy et al. (2019)
combined RT and conventional therapy.

Therefore, in four studies (Daly et al., 2005, 2019;
Hesse et al., 2005; McCabe et al., 2015) func-
tional neuromuscular electrical stimulation (FNS)
or FES was used in control group. Characteristics
of comparison population and their rehabilita-
tion programme are reported in Supplementary
Table 1.

3.6. Cognitive inclusion/exclusion criteria

A total of seventy-three article included cognitive
inclusion or exclusion criteria.

Nineteen studies looked at both cognitive inclusion
and exclusion criteria, twenty-nine looked at only
inclusion criteria, and twenty-five looked at cognitive
exclusion criteria.

A total of forty-nine studies considered cognitive
inclusion criteria and thirty-seven used a single or
more scales to evaluate cognitive inclusion perfor-
mances.

The Mini Mental State Examination (MMSE) (Fol-
stein et al., 1975) was the most used cognitive
screening (twenty-nine studies out of forty-six stud-
ies), however the cutoff varied based on the studies:
24 points was the cutoff longer used (Calabro et al.,
2019; Gandolfi et al., 2019; Han Yoo et al., 2012;
Hsieh et al., 2011; Hsu et al., 2019; Hung CS et al.,
2019; Kutner et al., 2010; Perini et al., 2021; Tra-
montano et al., 2020), followed by 22 (Hsieh et al.,
2016; C. S. Hung, Hsieh, Wu, Chen, et al., 2019; C.
Shan Hung et al., 2019; Liao et al., 2012; Wu et al.,
2012), 21 (Daunoraviciene et al., 2018; Y. Huang et
al., 2020; Qianetal.,2017,2019; Susantoetal.,2015)
(50,68,73,104,106), 20 (Ambrosini et al., 2021; Sale
et al., 2014), 18 (Jiang et al., 2021; Masiero et al.,
2007). Only Dehem et al. (2019) used a cut-off of
15 points, but it was also required that patients had
the ability to “understand instructions”. Therefore,
Rosenthal et al. (2019) did not specify the cutoff
utilized.

Five studies specified the use of Korean version
of MMSE (Park and Kwon, 1989) with different cut
offs according to each study: three studies (Cho and
Song, 2019, 2021; Park, 2021) settled it at 24 points;
Lee et al. (2018) considered 21 points while Lee



Table 2
PEDro scale
Author, year of publication Eligibility = Random Concealed Baseline Blind Blind Blind Adequate  Intention-  Between-  Point Tot
criteria*® allocation  allocation ~ compara- subjects therapists ~ assessors follow-up  to-treat group estimates
bility analysis compar- and
isons variability

Abdullah HA, 2011 1 1 1 1 0 0 1 1 0 1 0 6/10
Ambrosini E, 2021 0 1 0 1 0 0 1 1 0 1 1 6/10
Ang KK, 2014 1 1 0 1 0 0 1 1 0 1 1 6/10
Aprile I, 2020 1 1 0 1 0 0 1 0 1 1 1 6/10
Brokaw EB, 2014 1 1 0 0 0 0 1 0 0 1 1 4/10
Burgar CG, 2011 1 1 0 1 0 0 1 1 0 1 1 6/10
Calabro RS, 2019 1 1 1 1 0 0 1 1 1 1 1 8/10
Carpinella I, 2020 1 1 1 1 0 0 1 1 1 1 1 8/10
Chinambiri B, 2021 1 1 0 0 0 0 1 1 0 1 1 5/10
Cho KH, 2019 0 1 1 1 0 0 1 1 1 1 1 8/10
Cho KH, 2021 1 1 1 1 0 0 1 1 1 1 1 8/10
Conroy SS, 2011 1 1 0 1 0 0 1 1 0 1 1 6/10
Conroy SS, 2019 1 1 0 1 0 0 1 1 0 1 1 6/10
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*Eligibility criteria was not used to calculate the PEDro score.
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et al. (2017) considered patients with a MMSE > 10
points.

Other scales used were: Lowenstein Occupational
Therapy Cognitive Assessment (LOTCA) (Hsu et
al., 2019), Line Bisection Test and the Korean ver-
sion of the Motor-free Visual Perception Test—Third
Edition (MVPT-3) (Park, 2021), Catherine Bergego
Scale (Gueye et al., 2021), Cognistat instrument
(Lum et al., 2002) and Short Portable Mental Status
Questionnaire (Wolf et al., 2015).

Regarding the exclusion criteria, forty-four studies
considered at least one cognitive evaluation. Similar
to cognitive inclusion criteria, MMSE (Folstein et al.,
1975) is the most used assessment scale, although
the cutoff is not standardized: it varied from 20
(Carpinella et al., 2020) to 27 (Orihuela-Espina et
al., 2016), however the most commonly used value
is 21 (Daunoraviciene et al., 2018; Lum et al., 2006;
Straudi et al., 2020; Taveggia G et al., 2016). There-
fore, Kim et al. (2019) evaluated their patients using
Korean version of the MMSE (Park and Kwon, 1989),
with a 15 points cut-off. Another evaluation scale
used to evaluate severe cognitive deficit was the Lev-
els of Cognitive Functioning-Revised (Ranzani et al.,
2020).

Other assessment scales used could be classified
according to the neuropsychologic impairments: the
Alexander Scale (Hwang et al., 2012) was the only
assessment scale for apraxia; the Bell Test (Masiero
et al., 2014) was used to assess attention level, while
the Barrage Test (Masiero et al., 2014) and the
Star Cancellation Test (Wolf et al., 2015) were used
to assess neglect. Regarding aphasia, four assess-
ments were used: the NIH Stroke Scale (question
IX) (Hwang et al., 2012), the Neuropsychological
Aphasia Test (Masiero et al., 2014), the Gellanza-
Coen Test (Masiero et al., 2014) and the Goodglass
and Kaplan Test (Ranzani et al., 2020). Supplemen-
tary Table 1 reports data on cognitive inclusion and
exclusion criteria.

3.7. Cognitive outcome

Seven studies (Daunoraviciene et al., 2018; Gueye
etal.,2021; Iwamoto etal.,2019; Park, 2021; Ranzani
et al., 2020; Volpe et al., 2000; Zengin-Metli et al.,
2018) analyzed cognitive outcomes.

The most used was the Functional Indipendence
Measure (FIM) cognitive subscore that was analyzed
in three studies (Iwamoto et al., 2019; Volpe et al.,
2000; Zengin-Metli et al., 2018); the MMSE was used
in two studies (Ranzani et al., 2020; Zengin-Metli et

al., 2018). Other measures of cognitive outcomes are:
the Addenbrooke’s Cognitive Examination-Revised
(ACE-R) (Daunoraviciene et al., 2018), the Frontal
Assessment Battery (FAB) (Ranzani et al., 2020) and
the Montreal Cognitive Assessment (MoCA) (Gueye
et al., 2021).

Unilateral spatial neglet was investigated in two
different studies with three different scales: the Albert
Test (AT) (Park, 2021; Ranzani et al., 2020), the Line
Bisection Test (LBT) (Park, 2021) and the Catherine
Bergego Scale (CBS) (Park, 2021).

In all the studies, a clinical cognitive evaluation
was performed before and after the treatment. One
study (Iwamoto et al., 2019) carried out mid-term
pre-treatment and post-treatment evaluations every 5
days, while Ranzani et al. (2020) assessed follow-up
evaluations at 8§ weeks and 6 months after the end
of treatment. Results are shown in Supplementary
Table 1.

Significant improvement in between group analy-
sis is shown in ACE-R (Daunoraviciene et al., 2018).
FIM cognitive subscore showed significant improve-
ment in both experimental and control groups in two
out of three studies (Volpe et al., 2000; Zengin-Metli
et al., 2018).

Ranzani et al. (2020) observed minor improve-
ments — not statistical significant — in both groups
over time in FAB score.

Regarding MMSE, Zengin-Metli et al. (2018)
found a significant improvement in the control group,
maybe because a significant difference was observed
between the robot and the control group in terms
of pre-treatment MMSE levels (pretraining: 17 nor-
mal robotic group vs 8 normal and 6 mild in control
group), while no significant improvement was found
in Ranzani et al. (2020). Therefore, no significant
improvement was found in MoCA results (Gueye et
al., 2021).

Regarding unilateral spatial neglet, Park et al.
(2021) found that RT reduces hemispatial neglect
symptoms in the participants’ activities of daily
living: AT and LBT improved significally in
experimental group, while CBS showed significant
improvement in both groups, but a statistically sig-
nificant difference in changes in RT group. Instead,
Ranzani et al. (2020) observed only minor improve-
ments in both groups over time.

3.8. Methodological quality

Methodological quality was assessed with PEDro
scale (Cashin and McAuley, 2020): according to the
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compilation guidelines of the assessment scale, “eli-
gibility criteria” was not used to calculate the PEDro
score. According to the literature, in order to simplify
the interpretation of results, articles were classified
in four categories: a total PEDro score of 0-3 are
considered ‘poor’, 4-5 ‘fair’, 6-8 ‘good’, and 9-10
‘excellent’. Therefore, for trials evaluating complex
interventions (e.g., exercise) a total PEDro score of
8/101s optimal (Summary of Measurement Properties
of the PEDro Scale — PEDro, n.d.).

Details of the PEDro score are reported in Table 2:
the lower evaluation was 2/10 (Fazekas et al., 2007)
and the higher was 8/10 (Calabro et al., 2019;
Carpinella et al., 2020; Cho and Song, 2019, 2021;
Gandolfi et al., 2019; Horsley et al., 2019; Hsieh et
al., 2016; Hsu et al., 2019; Y. Huang et al., 2020; C.
S. Hung, Hsieh, Wu, Lin, et al., 2019; C. Shan Hung
et al., 2019; Klamroth-Marganska et al., 2014; Park,
2021; Perini et al., 2021; Rodgers et al., 2019b; Tim-
mermans et al., 2014; Tramontano et al., 2020; Wu et
al., 2012).

Most of the studies (sixty-three over eighty-one)
were considered “good”, while there were no “excel-
lent” evaluations.

“Random allocation” was undertaken by all studies
while “concealed allocation” was considered in only
28 studies and “baseline comparability” in 71 studies.
Most of the studies did not consider the blinding of
patients and therapists; of all the articles included,
six articles (Doost et al., 2021; Edwards et al., 2019;
Mazzoleni et al., 2019; Park, 2021; Perini et al., 2021;
Wu et al., 2012) and two (Edwards et al., 2019; Wu
et al., 2012) dealt with the therapists. Assessors were
blind in 66 out of 81 studies.

Regarding the statistical analysis, 66 studies had
“adequate follow-up”, thirty-nine studies reported
“intention-to-treat analysis”, while “between-group
comparisons” were reported in 78 studies and “point
estimates and variability” were reported in 76 studies.

4. Discussion

Stroke survivors experience motor dysfunction and
impaired memory and cognition. These symptoms
are associated with disruption of normal neuronal
function, interhemispheric connections and synaptic
activity, and thus disruption of the normal neural cir-
cuit. Physical exercise is considered an effective and
feasible rehabilitation strategy to improve cognitive
and motor recovery after ischemic stroke through the
facilitation of neuroplasticity.

Cognitive disorders are frequently in stroke
patients: a pooled data analysis conducted in 2009 (V.
S. Huang and Krakauer, 2009) showed a prevalence
of 38% (95% confidence intervals, 32% to 43%) of
post-stroke cognitive impairment in the first year
after stroke. This confirms the needing of an early
and routine assessment of the cognitive disorder. In
order to structure an efficient individual rehabilitative
protocol, predict future outcomes, such as cognitive
impairment, and evaluate the effectiveness of inter-
vention are fundamental in stroke rehabilitation. In
fact, cognitive impairment can influence the recov-
ery of motor and activity daily living: functions like
attention and memory allow people to stay focused
and improve the ability to cope with the proposed
tasks, moreover these cognitive functions form the
foundation of all cognitive performances. So if a
patient is exercised in attention and memory he could
improve easily in cognitive functioning (Aprile et al.,
2021).

In addition, the hand and the upper limb are a
powerful organizer of human experience and play a
central role in cognitive processes: motor recovery
is not only related to the motor processes but also
to the development of cognitive and sensory strate-
gies (Sallés et al., 2017). Without hand functions (i.e.,
grasping or manipulation), important information,
connected with tactile, somatosensory and proprio-
ceptive system, cannot be developed resulting in a
limited reworking at the central level.

Consequently, it becomes fundamental to analyze
both motor and cognitive outcomes when talking
about upper limb rehabilitation: to obtain a recovery
that focuses on the quality of functions and abilities,
it is important to promote an adequate reorganization
of neural patterns and an adequate activation of the
existing patterns prior to the injury.(Aryaetal., 2011)

The aim of this review is to verify whether, in the
current state of the literature, cognitive measures are
used as inclusion or exclusion criteria and/or out-
come measures in robotic upper limb rehabilitation
in stroke patients.

The results of this review show that 90% (seventy-
three out of eighty-one) of the included studies had
at least one cognitive inclusion or exclusion crite-
ria, while cognitive outcomes were only assessed in
seven studies (9%). The high percentage of criteria for
cognitive inclusion and exclusion shows that stroke
rehabilitation focuses mainly on motor recovery
(Everard et al.,, 2020) robotic and/or electrome-
chanical devices in combination with traditional
neuromotor approaches promote motor control and
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functional recovery of the limb in patients with stroke
(SPREAD, 2016).

Research on stroke rehabilitation is focusing on
demonstrating the effectiveness of new rehabili-
tative approaches based on current knowledge of
neuroplasticity mechanisms. Among these, robotic
rehabilitation is a useful therapy because it seems
to have a positive effect on neuronal plastic-
ity(SPREAD, 2016), due to its characteristics of
intensity, repeatability, significance and multisenso-
riality.

Modern models of cognitive rehabilitation
embrace the plastic processes of the brain involved
in relearning or recovery of cognitive function
following brain injury and with that follows that
cognitive rehabilitation training needs to be delivered
frequently, intensively and with appropriate level of
difficulty to have an effect (Wilms, 2020).

Moreover, some recent studies have proven that RT
could influence cognitive abilities as well as motor
functions, for example, RT seems to reduce neglect
compared to visual cueing in the neglect sides (Park,
2021; Reinhart et al., 2012) and could cause cortical
activity changes (shown by functional MRI) (Calabro
et al., 2016). This underlines the need of a cognitive
evaluation at the rehabilitation beginning, during and
at the end of the rehabilitation treatment.

Therefore, the exclusion of people with cognitive
problems makes it impossible to generate clinical
considerations for the whole population affected by
stroke, because the results are limited to a low per-
centage of stroke population (Everard et al., 2020).
In line with Everard et al. (2020) and Stinear et al.
(2020), in this systematic review emerges the need
to implement trials that include this type of patients
to verify the positive cognitive effects of RT on
stroke patients affected by cognitive decline post-
stroke. The cognitive evaluation also allows not to
exclude any patient a priori but rather to evaluate the
rehabilitation margins including the use of robotics /
technology to implement recovery.

Another result that emerges from this review is
the lack of a common line for both inclusion and
exclusion criteria, with consequent limitation of the
evaluation of the effects of robotic rehabilitation ther-
apies and increased risks of overestimation and/or
underestimation.

A recent systematic scoping review (Saa et al.,
2019) highlighted that the MMSE is the most used
scale, although a heterogeneity of the cognitive
instruments used is still present. This result is in
line with ours, moreover in this systematic review

also emerges the lack of a common cut-off between
the studies: a recent study (Bour et al., 2010) high-
lighted how cut-off score in the screening for at least
4 impaired domains and dementia were 26/27 and
23/24 with a sensitivity of 0.82 and 0.96, respectively
(Bour et al., 2010).

The MMSE has modest qualities in screening for
mild cognitive disturbances and is adequate in screen-
ing for moderate cognitive deficits or dementia in
stroke patients 1 month after stroke, however Huang
et al. (2009) reported that the MoCA have a higher
sensitivity and specificity for initial cognitive func-
tional screening after stroke. It would be useful to
develop a guideline that identifies which scale and
cutoff should be used in the various stages of post-
stroke rehabilitation.

The heterogeneity in the inclusion and exclusion
criteria is also present in the studies that investigated
the effects of robotic rehabilitation on cognitive per-
formance: in four out of the seven included studies
(Daunoraviciene et al., 2018; Park, 2021; Ranzani et
al., 2020; Volpe et al., 2000), there was an improve-
ment in some memory-attentive performances, with
consequent effect on daily autonomy (Daunoravi-
ciene et al., 2018; Park, 2021). It is important to
emphasize that in the study of Zengin-Metli (Zengin-
Metli et al., 2018) the MMT increased only in the
control group because a significant difference was
observed between the robot and the control group in
terms of pre-treatment MMT levels: 17 of 20 patients
in experimental group and 8 in the control group were
in the normal cognitive level while 6 were mild cogni-
tive impairment in the control group. Instead, Ranzani
et al. (2020) pointed out that small changes in control
and study groups could be linked to the saturation of
the scales used in their study in a mildly/moderately
impaired population.

The heterogeneity of the rehabilitative protocols,
the lack of comparability with the baseline of the
patients included and the use of no standard assess-
ment protocols do not allow the generalization of the
results, both in a positive and negative sense.

Further randomized and controlled trials with an
adequate number of patients are therefore needed,
with a battery of similar cognitive tests in order
to compare the different studies and generalize the
results obtained according to the various stroke
phases.

This systematic review has some limitations: het-
erogeneous evaluations and treatments, all stroke
patients were included, without rigid stratification for
clinical and radiological characteristics. These could
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lead to a failure to generalize our results. Therefore,
studies until 2021 were included, the lack of 2022
may have excluded studies that could have led to
different results in this review.

5. Conclusion

This systematic review highlights that more than
90% of the studies included considered cognitive
inclusion and exclusion criteria, while only 9% con-
sidered cognitive outcomes.

Future larger RCTs are needed in order to outline
which clinical scales are most suitable and with which
cut-off, as well as what cognitive outcome measures
to use in the various stages of post-stroke rehabilita-
tion. Therefore, future studies are needed to test the
use of robotics in patients with cognitive impairment
in order to generalize the results obtained with RT in
stroke patients.

Finally, we must not forget that the same cogni-
tive difficulties affect motor recovery and residual
disabilities in a decisive way. Containing and improv-
ing these difficulties would also have a significant
impact on social and health expenditure for greater
preservation of patients’ autonomy.
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