
Journal on Satisfiability, Boolean Modeling, and Computation 10 (2016) 11–22

Hard satisfiable 3-SAT instances via autocorrelation

Srinivasan Arunachalam∗ arunacha@cwi.nl

Centrum Wiskunde & Informatica
Amsterdam
The Netherlands

Ilias Kotsireas† ikotsire@wlu.ca

Wilfrid Laurier University

Waterloo, Ontario

Canada

Abstract

We establish a reduction of a combinatorial problem defined via autocorrelation to an
instance of Boolean satisfiability. As a consequence, we obtain a family of hard satisfiable
3-SAT instances. The combinatorial problem that we reduce is the D-optimal matrices
problem. We generated a family of 3-SAT instances from the D-optimal matrices problem
with the motivation to solve interesting cases using the power of SAT solvers. We give a
detailed construction of the generated instances that were submitted to SAT competition
2014. Our reduction techniques is fairly straightforward and can be adapted to various
other problems that are defined via autocorrelation.

Keywords: SAT-solver, autocorrelation, D-optimal matrices

Submitted January 2016; revised September 2016; published December 2016

1. Introduction

The Boolean satisfiability problem, commonly referred to as SAT, is a well-known NP-
Complete problem and in fact the first problem that was proved to be NP-complete. It is
defined as the problem of determining whether a Boolean formula has an assignment of its
variables satisfying all its clauses. The Boolean formula is defined in terms of conjunctions
of clauses, each clause individually being a disjunction of literals. This is the well-known
conjunctive normal form (CNF).

Various combinatorial problems have been encoded as SAT problems in the past, see for
instance Chapter 17 in [5]. In this paper we establish a reduction of a combinatorial problem
defined via autocorrelation to an instance of 3-SAT for the first time. More specifically, we
consider the problem of finding D-optimal matrices for odd n, namely 2n × 2n square
matrices with entries {−1,+1}, whose determinant is maximal among all other matrices
with entries {−1,+1} of the same order. A widely believed conjecture is that D-optimal
matrices exist for all orders 2n that are not excluded by a constraint. See [9] and [6] for this

∗ Affiliated with Institute of Quantum Computing during most of this work and is grateful to Dr. Michele
Mosca for support from NSERC.
† Research supported by an NSERC grant. I am grateful to Dr. Michele Mosca for introducing me to the

research of the first Author.

c©2016 IOS Press, SAT Association and the authors.

S. Arunachalam and I. S. Kotsireas

and related problems. A combinatorial optimization formulation of the D-optimal matrices
problem can be found in [12]. D-optimal matrices can be used to construct Hadamard
matrices, which are important in Quantum Information and occur in many Engineering
applications. We are interested in particular in a specific kind of D-optimal matrices,
that arise from two n-bit sequences from {−1,+1}n whose corresponding autocorrelation
coefficients sum to the constant 2. There are many open cases in the D-optimal matrices
problem, which is one of the motivations behind formulating this problem in terms of
Boolean Satisfiability.

Often, we come across the dichotomy that although Boolean Satisfiability is NP-complete,
algorithmic progress and optimized implementations have resulted in SAT solvers which
have been able to solve huge instances in realistic time contrary to scaling of algorithms. The
annual SAT solving competitions [7] is a platform where people compete globally to solve
benchmark hard problems using their latest state-of-the-art SAT solvers. We submitted
some of the 3-SAT instances [2] of the D-optimal matrices problem that we generated
to the SAT competition. The results were encouraging, especially given the time-limit
constraint imposed by the organizers, and definitely demonstrated that our satisfiable 3-SAT
instances pose a significant challenge to SAT solvers. We believe that with the vast study
in Satisfiability solving algorithm, our 3-SAT reduction along with custom-tailored SAT
solvers have the potential to solve very large instances of the D-optimal matrices problem
and eventually be competitive enough with classical methods to solve open instances of the
D-optimal problem.

Another independent interest in our 3-SAT formulation of the D-optimal matrices prob-
lem is in the light of the paper by Cook and Mitchell [8] in which they claim that finding
hard satisfiable instances is a difficult problem. Experimental evidence employing various
heuristics has shown that the difficulty of SAT instances depends intricately on the number
of clauses and variables m, n. It is well known the hardest SAT instances occur near a
critical phase transition region αc = m/n ≈ 4.25, for which the given SAT instance is con-
sidered to be the toughest to solve. In this paper, the asymptotic clause/variable ratio for
the generated 3-SAT instances for the D-optimal matrices problem is approximately 3.25,
which intuitively implies that the generated instances should neither be too hard nor too
easy for SAT solvers. The widely believed conjecture that D-optimal matrices exist for every
odd n which is not excluded by a constraint, gives evidence for the existence of a satisfying
assignment for the corresponding 3-SAT instance and hence gives a natural technique to
generate hard satisfiable 3-SAT instances.

We briefly highlight some possible objections that one could pose while reading this paper.
The reduction from the D-optimal matrices to Boolean satisfiability is fairly straightforward.
Fair enough, we still find it interesting that small open case instances of the D-optimal
matrices problem could not be solved by a naive reduction. In fact, the naivety in our
reduction implies there is a lot of symmetry and structure in our SAT instances which could
have been used by SAT solvers based on DPLL in the SAT competition 2014. However, that
was not the case. The hardness of instances are solely based on the ratio between the clauses
and variables, which is not a good indication when the construction is optimized. That is
indeed quite true, but we believe from earlier non-optimized constructions that when the
ratio (or the hardness in the SAT instances) will in fact increase from the proposed 3.25.
We find it interesting already that such “relatively“ hard instances of satisfiability can be

12

Hard satisfiable 3-SAT instances via autocorrelation

obtained by such natural problems and our paper is the first to show the reduction from
the D-optimal matrices problem to satisfiability. We would also like to highlight here that,
definitely techniques such as Sequential Counter [13] and Totalizer [4] could be employed
to make our construction more efficient. Note that we are also dealing with various pseudo-
boolean constraints and there has been a lot of work ([1], [4], [11]) which could possibly
employed to further improve our construction. We leave this as a direction for future
research.
The rest of the paper is organized as follows. In Section 2, we provide the necessary back-
ground to define the D-optimal matrices problem in terms of the concept of autocorrelation.
In Section 3, we provide all the tools that are required for reducing the D-optimal matrices
problem to Boolean Satisfiability. In Section 4 we discuss in more detail the structure of the
generated 3-SAT instances, namely their number of variables and their number of clauses.
In [3], we consider all cases of the D-optimal matrices problem up until size n ≤ 100 and
construct the 3-SAT formulas for the corresponding instance. Finally in Section 5 we sum-
marize our results and mention some future directions which would be interesting to pursue.

2. Background

In this section, we introduce the autocorrelation formulation for the D-optimal matrices
problem, see [9] for more details.

Definition 1. Let n be odd and consider two n-bit sequences A = [a1, . . . , an] and B =
[b1, . . . , bn] both having elements from {−1,+1}. Let α = a1 + a2 + . . . + an, β = b1 +
b2 . . . + bn and let us assume (α, β) is a solution to the equation x2 + y2 = 4n − 2. A
solution to the D-optimal matrices problem consists of an assignment of the 2n binary
variables a1, . . . , an, b1, . . . , bn, such that the following 2 linear and n−1

2 quadratic equations
are satisfied: 

a1 + · · ·+ an = α,
b1 + · · ·+ bn = β,
n∑
i=1

(aiai+j + bibi+j) = 2, j = 1, . . . ,
n− 1

2
,

 . (1)

where the index i+ j is taken modulo n, when it exceeds n. The quantity
∑n

i=1 aiai+j for
j = 1, . . . , n−1

2 is called the (periodic) autocorrelation of the sequence A, at lag j.

Example 2. Let n = 9 and consider A = [1, 1, 1, 1, 1, 1, 1,−1,−1] and
B = [1, 1,−1, 1,−1, 1, 1, 1,−1]. Then we have α = 5, β = 3 satisfying α2 + β2 = 4n− 2 and∑n

i=1(aiai+j + bibi+j) = 2 for j = 1, . . . , 4. Therefore these two sequences form a solution
of the D-optimal matrices problem for n = 9. Note that any other cyclic permutation of
A,B is a solution as well.

Example 3. Let n = 11 and note that the equation α2 + β2 = 4n− 2 = 42 does not have
any integer solutions. Therefore there are no solutions to the D-optimal matrices problem
for n = 11.

It is immediate to see that the above formulation of the D-optimal matrices problem is
a constraint satisfaction problem (CSP) with the following parameters:

13

S. Arunachalam and I. S. Kotsireas

• 2n Variables: a1, a2, . . . , an, b1, . . . , bn

• Domain of all variables: {−1,+1}

• Constraints: (n− 1)/2 quadratic constraints and 2 linear constraints.

2.1 Transformation to {0, 1} variables

In order to formulate the D-optimal matrices problem as an instance of Boolean satisfiability,
we first apply a linear transformation to switch from {−1,+1} variables to {0, 1} variables.
This transformation is simply given by:

Ai =
ai + 1

2
; Bi =

bi + 1

2
, i = 1, . . . , n.

Hence the linear and quadratic equations (1) of the D-optimal matrices problem become:
A1 + · · ·+An =

α+ n

2
;

B1 + · · ·+Bn =
β + n

2
;

n∑
i=1

(AiAi+j +BiBi+j) =
n+ 1 + α+ β

2
, j = 1, . . . ,

n− 1

2
.


. (2)

Once we have solved equations (2) in the {0, 1} variables, we can use the inverse of the above
linear transformation to obtain the solution of the original equations (1) in the {−1,+1}
variables.

3. Tools for transformation

The essential tool that we employ for converting the CSP in the previous section to an
instance of SAT is the Tseitin transformation. Tseitin transformation [14] is a powerful
technique to convert any Boolean gate to a satisfiability instance. The idea is to introduce
a new variable for every formula, where the new variable evaluates to 1, if the formula is
satisfied. Any Boolean formula can be converted to a satisfiability clause with only a linear
increase in size of the formula. The following table shows the logical operators and their
respective SAT formulas.

Table 1: SAT formulation for every binary gate.

Boolean Gate Formula SAT formulation

AND gate xo = x1.x2 (x1 ∨ x2 ∨ xo) ∧ (x1 ∨ xo) ∧ (x2 ∨ xo)
NAND gate xo = x1.x2 (x1 ∨ x2 ∨ xo) ∧ (x1 ∨ xo) ∧ (x2 ∨ xo)

OR gate xo = x1 + x2 (x1 ∨ x2 ∨ xo) ∧ (x1 ∨ xo) ∧ (x2 ∨ xo)
NOR gate xo = x1 + x2 (x1 ∨ x2 ∨ xo) ∧ (x1 ∨ xo) ∧ (x2 ∨ xo)
NOT gate xo = x1 (x1 ∨ xo) ∧ (x1 ∨ xo)
XOR gate xo = x1 ⊕ x2 (x1 ∨ x2 ∨ xo) ∧ (x1 ∨ x2 ∨ xo) ∧ (x1

∨x2 ∨ xo) ∧ (x1 ∨ x2 ∨ xo)

14

Hard satisfiable 3-SAT instances via autocorrelation

In this section, we explain and construct circuits for the comparator, half-adder, full-
adder, which will be required to transform the CSP in Section 2 to a SAT instance. On the
way we shall also compute the number of clauses and variables that will be introduced by
employing each gate.

1. Comparator: The equality between two numbersA andB with binary representation
A1A1A2 . . . AN and B1B2B3 . . . BN respectively, can be performed by element wise
comparison of all the N bits. The following circuit is used to perform the operation
xi = Ai.Bi +Ai.Bi. Note that xi = 1 if and only if Ai = Bi and otherwise xi = 0.

Figure 1: Comparator circuit.

Given the outputs x1, x2, . . . , xN , the equality of the numbers A,B can be performed
by simply verifying if x1∧x2∧ . . .∧xN = 1. If this clause is satisfied, it implies A = B
else A 6= B. Satisfiability representation of the above circuit can be done using the
Tseitin transformation as follows:

(Ai ∨Bi ∨ x1
b) ∧ (Ai ∨ x1

b) ∧ (Bi ∨ x1
b) = 1;

(Ai ∨ x2
b) ∧ (Ai ∨ x2

b) = 1;

(Bi ∨ x3
b) ∧ (Bi ∨ x3

b) = 1;

(x2
b ∨ x3

b ∨ x
5
b) ∧ (x2

b ∨ x5
b) ∧ (x3

b ∨ x5
b) = 1;

(x1
b ∨ x5

b ∨ xi) ∧ (x1
b ∨ xi) ∧ (x5

b ∨ xi) = 1,

(3)

where the variables x1
b , x

2
b , x

3
b , x

4
b , x

5
b are buffer variables required for the computation

of the output bit xi. Totally there are 5 clauses to be satisfied for the equality of a
single bit with 7 variables, and hence equality of strings A and B would overall require
5N + 1 constraints with 7N variables.

2. Addition: A half-adder and full-adder are often employed to compute the sum of two
binary numbers. The full-adder involves the addition of 2 bits along with a carry-in
bit, which is absent for the half-adder. In order to compute the sum A12 +A13 + . . .+
An1 +B12 +B13 + . . .+Bn1 in Equation (1) we can compute it by pairwise addition
of the terms through a binary tree of depth log2(2N). The half-adder to compute the
sum of bits Ai, Bi can be described in the following figure,

The Tseitin transformation of the circuit to a SAT instance can be written as follows

(Ai ∨Bi ∨ xs) ∧ (Ai ∨Bi ∨ xs) ∧ (Ai ∨Bi ∨ xs) ∧ (Ai ∨Bi ∨ xs) = 1;

(Ai ∨Bi ∨ xc) ∧ (Ai ∨ xc) ∧ (Bi ∨ xc) = 1.
(4)

15

S. Arunachalam and I. S. Kotsireas

Figure 2: Half-adder circuit to compute sum of two bits Ai, Bi.

Similarly the full-adder circuit to compute the sum of bits Ai, Bi with carry-in bit Ci
can be described as follows, The Tseitin transformation of the full-adder circuit to a

Figure 3: Full-adder circuit to compute sum of two bits Ai, Bi with a carry-in bit Ci.

SAT instance can be written as follows

(Ai ∨Bi ∨ x1
b) ∧ (Ai ∨Bi ∨ x1

b) ∧ (Ai ∨Bi ∨ x1
b) ∧ (Ai ∨Bi ∨ x1

b) = 1;

(Ai ∨Bi ∨ x2
b) ∧ (Ai ∨ x2

b) ∧ (Bi ∨ x2
b) = 1;

(Ci ∨ x1
b ∨ xs) ∧ (Ci ∨ x1

b ∨ xs) ∧ (Ci ∨ x1
b ∨ xs) ∧ (Ci ∨ x1

b ∨ xs) = 1;

(x1
b ∨ Ci ∨ x

3
b) ∧ (x1

b ∨ x3
b) ∧ (Ci ∨ x3

b) = 1;

(x3
b ∨ x2

b ∨ xc) ∧ (x3
b ∨ xc) ∧ (x2

b ∨ xc) = 1.

(5)

Employing the tools of the half-adder and full-adder, we can compute the sum of two
numbers A,B with binary representation A1A2 . . . AN and B1B2 . . . BN respectively.
The following circuit shows one such example containing one half-adder and N − 1
full-adders

The binary representation of A+B can be read out as Out=CNSNSN−1 . . . S1. With
circuit constructions of the comparator, half-adder, full-adder we are ready to describe
the reduction from the CSP in Section 2.1 to Boolean satisfiability. In the next section
we explain the reduction to satisfiability and calculate the total number of clauses and
variables required for one such addition circuit.

4. Reduction to Boolean satisfiability

In this section we are finally ready to discuss the reduction of the CSP in Section 2 to Boolean
satisfiability. In the process, we employ some combinatorial computations to calculate the

16

Hard satisfiable 3-SAT instances via autocorrelation

Figure 4: Adder circuit to compute sum of two N digit numbers.

number of clauses and variables in the final SAT instance. This computation is helpful to
get an idea of the hardness of the instances generated through the Tseitin transformation.

Firstly, by symmetry it can be noted that instead of analyzing all (n − 1)/2 periodic
auto correlation in Equations (1), it suffices to analyze just once of them and generalize the
results to all of them. Secondly, the arguments for the (n − 1)/2 quadratic equations can
be applied to the 2 linear equations as well. Hence we restrict our attention to analyzing
one of the quadratic equation. The basic idea is to perform the summation in the shape
of a binary tree where the nodes represent gates to perform pairwise addition. The binary
binary tree takes inputs a sequence of 2N inputs and outputs the pairwise sum of these
terms. In order to obtain the exact number of instances of variables we break down the
reduction into three steps.1.

1. Given the sequence (A1, A2, . . . , AN , B1, B2, . . . , BN), we first need to compute the
auto correlation terms (or pairwise products) i.e. AiAj which requires an AND gate.
Since there are totally 2N such terms to be accounted for, we require 2N AND gates.
Without loss of generality, we denote the layer containing the 2N AND gates as the
0th level of the binary tree.

2. Given the auto correlation terms AiAj , BiBj we are required to compute the sum of
these 2N terms. The most efficient technique to compute the sum of these 2N terms
is through a binary tree of depth blog2(2N)c. Naturally 2N need not be a whole
power of 2, so we need to account for the extra terms. Before we continue to quantify
the number of clauses and variables, we introduce some notation.

• The binary tree consists of nodes which are effectively gates consisting of com-
positions of (Half adders denoted by H and Full-adders denoted as F).

• We say two gates interact, if the outputs of the individual gates are inputs to
the gate in the subsequent level of the binary tree.

It can easily be seen that Uj is the jth bit in the binary representation of 2N , in which
case the total number of unaccounted nodes Un is effectively the hamming weight of the
binary representation of 2N . There are many possibilities of how these unaccounted
nodes can interact, but by some elementary calculations it can be seen that the optimal
interaction (in terms of least number of introduced variables and clauses) occurs if

1. In Section 4.1 we give an example for N = 5

17

S. Arunachalam and I. S. Kotsireas

the unaccounted node in the kth level interacts with the first unaccounted node at
(k + j)th level and this process carries on till the blog2(2N)cth level. It remains to
account for the unaccounted nodes.

Without loss of generality, let us assume there were m unaccounted nodes in the
binary tree at levels k1, k2, . . . , km. Note that the last node of the binary tree always
corresponds to m = blog2(2N)c. The number of half-adders and full-adders required
for the summation of any two nodes in the xth, (x + y)th level is HyFxH (or totally
y + 1 H gates and x F gates). Hence the total number of adders required for the
summation of the unaccounted nodes are

m∑
i=1

Hki+1−kiFkiH. (6)

3. The last step for the reduction is to ensure the left and right hand side (LHS/RHS)
of the PAF Equations (1) are equal. We use the comparator as discussed in Section
3 to compare every bit. It should be noted that the overall number of comparators
depends on the number of bits in the constant of the Equation (1). If the number of
bits for the quantity on the LHS has more bits than the RHS, we could simply flip the
extra bits and check if they are 1 (effectively checking if the extra bits are 0). This
bit flip can simply be accomplished by the NOT gate.

Having analyzed the exact number of gates required to write down the PAF equations
as a SAT formulation we are ready to to analyze the exact number of variables and clauses
required for the SAT formulation. The following table summarises the number of clauses
and variables from Section 3 required by the individual gates for the SAT formulation.

Table 2: Number of clauses and variables for binary gates.

Binary gate No. of clauses introduced No. of variables introduces

AND gate 3 1

Comparator 11 5

Full Adder 17 5

Half Adder 7 2

NOT gate 2 1

The total number of clauses and variables for computing the summation in the binary
tree is

Nc =

blog2(2N)c∑
j=1

⌊
2N

2j

⌋
(17(j − 1) + 7); Nv =

blog2(2N)c∑
j=1

⌊
2N

2j

⌋
(5(j − 1) + 2). (7)

Depending on the binary representation (for the unaccounted nodes) of 2N we need to
compute the number of half-adders and full-adders required for the overall sum (which can
be computed from Equation (6)). Correspondingly clauses and variables need to be added

18

Hard satisfiable 3-SAT instances via autocorrelation

to the equation above. The number of comparators required for comparing both sides of
Equation (1) is

Hence the total number of clauses and variables in the quadratic equations are Nc +
N c
c + 6N (6N extra clauses for the 2N AND gates) and Nv +N c

v + 2N (2N terms for the
initial 2N variables in the problem) respectively.

The final combinatorial calculation involves the linear equations that are required to
be satisfied in Equation (1). Effectively we can repeat the calculations performed earlier,
instead now we consider the sum of N terms instead of 2N terms. The overall number of
clauses and variables for one of the two linear equations is

Nc =

blog2Nc∑
j=1

⌊
N

2j

⌋
(17(j − 1) + 7) + 11C1

count + 2 dlog2(N)e+ 1− C1
count,

Nv =

blog2Nc∑
j=1

⌊
N

2j

⌋
(5(j − 1) + 2) + 5C1

count + dlog2Ne+ 1− C1
count.

(8)

where C1
count =

⌊
log2

α+N
2

⌋
+ 1. Correspondingly for the other equation, we change

the variable α to β. As mentioned earlier, depending on the binary representation (for the
unaccounted nodes) of N we need to add the clauses and variables for the half-adders and
full-adders (which can be computed from Equation (6)). We have used these quantities to
compute the entries for the table in Section [3].

4.1 Example

In this section, we give an example of the SAT formulation for the specific case N = 5
corresponding to parameters α = 3, β = 3. We have employed tools employed in Section 3
and the reduction in the previous section to compute the number of clauses and variables
for this case. The PAF equations to be satisfied for this case are

A1A2 +A2A3 +A3A4 +A4A5 +A5A1 +B1B2 +B2B3 +B3B4 +B4B5 +B5B1 = 2;

A1A3 +A2A4 +A3A5 +A4A1 +A5A2 +B1B3 +B2B4 +B3B5 +B4B1 +B5B2 = 2;

A1 +A2 +A3 +A4 +A5 = 3;

B1 +B2 +B3 +B4 +B5 = 3.

It remains to be checked if the outputs of the quadratic and linear equations are equal
to 2 and 3 respectively which is done through the following comparator circuit.

Hence the SAT formulation concludes by checking if Out = 1, which is the case only if
the PAF equations are satisfied. A solution to the instance is A = (1, 1, 1, 0, 0) and B =
(1, 1, 1, 0, 0) which translates to the solution of a = (1, 1, 1,−1,−1) and b = (1, 1, 1,−1,−1)
to the D-Optimal matrices problem for N = 5.

5. Conclusion and future research

We have presented for the first time a technique for reducing a hard combinatorial problem
defined via autocorrelation to an instance of Boolean Satisfiability. The reduction was

19

S. Arunachalam and I. S. Kotsireas

(a) Computing LHS of the quadratic PAF Equation (1)
with periodicity 1.

(b) Computing LHS of the quadratic PAF Equation (1)
with periodicity 2.

(a) Computing LHS of the linear PAF Equations
(1).

(b) Validation of equality in the quadratic and linear
Equations (1).

performed through a series of transformations, namely a linear change of variables followed
by the Tseitin transformation on the underlying CSP. Our technique is applicable to many
other combinatorial problems that can be defined via autocorrelation. The specific problem
of D-optimal matrices we consider in this paper, provides a rich source of hard satisfiable
3-SAT instances, which can also be used as challenging benchmarks for SAT solvers. It
would be interesting to see if further research in improving SAT solvers will help solve some
of the open cases in the D-optimal matrices problem. Our construction helps in intuitively
realizing that there is a lot of structure in the D-optimal matrices problem, which is not

20

Hard satisfiable 3-SAT instances via autocorrelation

respected by Random Walk (or Walksat) based solvers. Consequently, they are bound to
take longer (or fail in a constrained execution time scenario) on the generated SAT instances,
however DPLL based solvers such as Minisat should technically perform much better on
such instances. Additional research is needed, in order to gauge whether the SAT encoding
should or should not include the vertical and horizontal combinatorial constraints of [12]
and in general the compression constraints of [10].

Acknowledgments

We are grateful to the Fields Institute for hosting the “Quantum Optimization” workshop
in October 2014. During the workshop we were able to discuss, clarify and finalize several
key aspects of this paper. We are grateful to the anonymous referees for their thorough
reading of our original submission, and their insightful comments and detailed suggestions,
that led us to improve our work.

References

[1] Amir Aavani, David G. Mitchell, and Eugenia Ternovska. New encoding for translat-
ing pseudo-boolean constraints into SAT. In Proceedings of the Tenth Symposium on
Abstraction, Reformulation, and Approximation, SARA 2013, 11-12 July 2013, Leav-
enworth, Washington, USA., 2013.

[2] Srinivasan Arunachalam and Ilias Kotsireas, 2014. Satisfiability through auto correla-
tion, in SAT competition.

[3] Srinivasan Arunachalam and Ilias Kotsireas, 2014. Satisfiability through autocorrela-
tion. https://sites.google.com/site/autocorthroughsat/home.

[4] Olivier Bailleux and Yacine Boufkhad. Efficient CNF encoding of boolean cardinality
constraints. In Principles and Practice of Constraint Programming - CP 2003, 9th
International Conference, CP 2003, Kinsale, Ireland, September 29 - October 3, 2003,
Proceedings, pages 108–122, 2003.

[5] Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh, editors. Handbook of
Satisfiability, 185 of Frontiers in Artificial Intelligence and Applications. IOS Press,
2009.

[6] Richard P. Brent and Judy-anne H. Osborn. General lower bounds on maximal deter-
minants of binary matrices. Electr. J. Comb., 20(2):P15, 2013.

[7] SAT Conference. Sat Competition. http://www.satcompetition.org/.

[8] Stephen A. Cook and David G. Mitchell. Finding hard instances of the satisfiability
problem: A survey. In Satisfiability Problem: Theory and Applications, Proceedings of
a DIMACS Workshop, Piscataway, New Jersey, USA, March 11-13, 1996, pages 1–18,
1996. Edited by: Dingzhu Du, Jun Gu, Panos M. Pardalos.

21

https://sites.google.com/site/autocorthroughsat/home
http://www.satcompetition.org/

S. Arunachalam and I. S. Kotsireas

[9] Dragomir Z. Djokovic and Ilias S. Kotsireas. New results on D-optimal matrices. J.
Combin. Des., 20(6):278–289, 2012.

[10] Dragomir Z. Djokovic and Ilias S. Kotsireas. Compression of periodic complementary
sequences and applications. Des. Codes Cryptogr., 74(2):365–377, 2015.

[11] Niklas Eén and Niklas Sörensson. Translating pseudo-boolean constraints into SAT.
JSAT, 2(1-4):1–26, 2006.

[12] Ilias S. Kotsireas and Panos M. Pardalos. D-optimal matrices via quadratic integer
optimization. J. Heuristics, 19(4):617–627, 2013.

[13] Carsten Sinz. Towards an optimal CNF encoding of boolean cardinality constraints.
In Principles and Practice of Constraint Programming - CP 2005, 11th International
Conference, CP 2005, Sitges, Spain, October 1-5, 2005, Proceedings, pages 827–831,
2005.

[14] G. S. Tseitin. On the complexity of derivation in propositional calculus. In Automation
of Reasoning, pages 466–483. Springer, 1983.

22

	Introduction
	Background
	Transformation to variables

	Tools for transformation
	Reduction to Boolean satisfiability
	Example

	Conclusion and future research

