Journal on Satisfiability, Boolean Modeling and Computation 7 (2010) 35-58

Ordered Binary Decision Diagrams,
Pigeonhole Formulas and Beyond®

Olga Tveretina olga.tveretina@kit.edu
Carsten Sinz carsten.sinz@kit.edu
Institute for Theoretical Computer Science

Karlsruhe Institute of Technology (KIT)

Germany

Hans Zantema h.zantema@tue.nl
Department of Computer Science, TU Eindhoven

Institute for Computing and Information Sciences, Radboud University, Nijmegen

The Netherlands

Abstract

Groote and Zantema proved that a particular OBDD computation of the pigeonhole
formula has exponential size, and that limited OBDD derivations cannot simulate reso-
lution polynomially. Here we show that an arbitrary OBDD refutation of the pigeonhole
formula has exponential size: we prove that for any order of computation at least one in-
termediate OBDD in the proof has size €(1.14™). We also present a family of CNFs that
show an exponential blow-up for all OBDD refutations compared to unrestricted resolution
refutations.

KEYWORDS: ordered binary decision diagrams, resolution, pigeonhole formulas, lower
bounds

Submitted October 2009; revised March 2010; published March 2010

1. Introduction

The reason for this study comes from the interest in giving theoretical explanations of the
efficiency of algorithms for satisfiability testing. Many of these algorithms are based either
on resolution or on ordered binary decision diagrams (OBDDs).

The resolution rule in propositional logic is a single valid inference rule that produces a
new clause implied by two clauses containing complementary literals [11]. This technique
uses proof by contradiction and is based on the fact that any sentence in propositional logic
can be transformed into an equivalent sentence in Conjunctive Normal Form (CNF).

Presently, many of the state-of-the-art satisfiability solvers are based on the DPLL
procedure, which is a variant of resolution in combination with search. At the same time,
resolution based solvers can be highly inefficient for solving some structured problems and
require time exponential in the size of an input instance. The most famous example of such

* This work was supported in part by the “Concept for the Future” of Karlsruhe Institute of Technology
within the framework of the German Excellence Initiative.

(©2010 Delft University of Technology and the authors.

O. TVERETINA ET AL.

CNF is the pigeonhole formula that formalizes a very simple principle that n + 1 objects
cannot be placed into n holes.

An OBDD, also referred to as a Reduced OBDD (ROBDD) or just a BDD, is a data
structure that is used to represent Boolean functions [2, 19]. OBDDs have some interesting
properties: they provide compact and canonic representations of Boolean functions, and
there are efficient algorithms for performing logical operations on OBDDs. As a result,
OBDDs have been successfully applied to a wide variety of tasks, particularly in VLSI
design and CAD verification.

The OBDD approaches for SAT solving can be divided into two groups:

(1) The first group is based on using the Apply operator (join rule) to build an OBDD
for a conjunction of clauses. Thus, for a given order on variables, an OBDD for the
CNF is built, which is then checked for equality to the terminal node 0.

(2) The second group utilizes symbolic quantifier elimination and allows, besides using
the Apply operation, to eliminate variables via existential quantification. Allowing ex-
istential quantification can lead to significant speed-ups for certain kinds of structured
instances. E.g., it is known that there are proofs of polynomial size for the pigeonhole
principle using this proof system [3].

A proof system based on OBDDs was proposed by Atserias et al. [1]. The authors
introduce a very general proof system based on constraint propagation. OBDDs are a
special case of this proof system. Their proof system has four rules: Axiom, Join, Projection,
and Weakening. The first two rules, Axiom and Join, correspond to an application of the
Apply operator. Projection and Weakening are introduced to reduce the size of intermediate
OBDDs. The Projection rule corresponds to an application of existential quantification.
Hence, this proof system contains lines that are OBDDs derived by any of the above rules.
It was shown that the OBDD proof system containing all four rules is strictly stronger than
resolution [1] but it is still exponential [8].

It was proven for the first time in [16] that OBDD proof systems with the two rules
Axiom and Join, corresponding to the Apply method, have an exponential lower bound on
refutations of the pigeonhole formula. However, the lower bound €2(1.14™) presented in this
paper is stricter in comparison with €(1.025") in [16]. We also demonstrate a family of
CNF's that requires exponential increase for all OBDD refutations based on Apply method,
i.e. OBDD refutations without existential quantification, to simulate unrestricted resolution
refutation. The formulas are the pigeonhole formulas extended with additional clauses as
in [4]. These formulas are CNFs parameterized by n and have size O(n?). Cook has shown
that there is a resolution refutation for these formulas of size O(n?) [4]. We show that an
arbitrary OBDD Apply refutation has size 29,

Related work. There has been a lot of research on the relation of different propositional
proof systems [5, 18] and, in particular, on the relation of different forms of resolution and
OBDDs [9, 15, 17].

In [6] Groote and Zantema proved that limited OBDD derivations cannot simulate
resolution refutations polynomially. The considered OBDD system joins the clauses of a
CNF in the order as they are listed, following the shape of the formula, i.e. to build
the OBDD for C; A (Cy A Cs), first the OBDD for Cy A C3 is built and then the one

36

ORDERED BINARY DECISION DIAGRAMS, PIGEONHOLE FORMULAS AND BEYOND

for C1 A (Ca A C3). They present a lower bound for refutations of a formula of the form
-z A (z A ¢), where ¢ is a formula that is hard for both OBDDs and resolution. But this
formula is refuted trivially if we proceed as (—z A x) A .

In [3] a direct construction of polynomial size OBDD refutation of pigeonhole formulas
in presence of existential quantification is presented. Another interesting result by Segerlind
in [13] is that the OBDD derivations with the Axiom rule, a tree-like application of the
Join rule and the Projection rule cannot efficiently simulate DAG-like resolution derivations.

Contribution. Our result differs from previous work in various ways. We strengthen the
result of [6]. In [6] the only OBDD computation of the pigeonhole formulas considered that
first computes the conjunction of all positive clauses, then the conjunction of all negative
clauses, and finally the conjunction of these two. In our setting, the clauses of the pigeonhole
formula may be processed in any arbitrary order. We show that for any OBDD refutation
of the pigeonhole formula some of the intermediate OBDDs have size exponential in n. A
consequence of our result is that the gap between polynomial and exponential in the OBDD
refutation framework for pigeonhole formula is caused by existential quantification, i.e. by
the Projection rule.

The difference with respect to [13] and [3] is the following. We consider a weaker OBDD
proof system containing only two rules, Axiom and Join. For this proof system we show
that an unrestricted application of it cannot simulate resolution polynomially. At present
it is not known whether there is an exponential separation between tree-like and DAG-like
OBDD proof systems based on the Apply method. Therefore, we cannot say whether a
tree-like proof system from [13] subsumes the OBDD proof system considered in this paper.
Still a direct proof of exponential separation between an unrestricted OBDD Apply proof
system and unrestricted resolution is presented for the first time in this paper. Moreover,
although for a weaker proof system, we quantitatively improve the lower bounds on OBDD
refutations presented in [12, 13].

2. Propositional proof systems

We consider propositional formulas in Conjunctive Normal Form (CNF). Basic blocks for
building CNF's are propositional variables that take the values false or true. The set of
propositional variables is denoted by Var. A literal is either a variable x or its negation —zx.
A clause is a disjunction of literals, and a CNF is a conjunction of clauses. By | we denote
the empty clause. In the following, for convenience, we consider clauses as sets of variables,
and a CNF as a set of clauses.

By Cls(¢) we denote the set of clauses contained in a CNF ¢ and by Var(p) we denote
the set of variables contained in the CNF ¢. By A : Var — {true, false} we denote a function
that assigns variables either to true or to false. We write I’ |=p true if a CNF F' takes a
value true for an assignment A and F' [=p false if I takes a value false.

2.1 Resolution

The resolution principle, due to Robinson [11], is a method to construct proofs by con-
tradiction. The resolution rule produces a new clause implied by two clauses containing
complementary literals. The resulting clause contains all literals except the complementary
ones. Formally this can be presented as following.

37

O. TVERETINA ET AL.

Cu{l} Du{-l}
cubD
Thus, from clauses CU{l} and DU{—l} a new clause CUD is derived. A clause CUD is
called a resolvent of C' U {l} and D U{~l}. The resolution proof rule defines a proof system
in which there are no axiom schemata, and only one proof rule, resolution. The proofs by
resolution start with clauses of the input CNF and derive new clauses until a contradiction
which is expressed as the empty clause is obtained.

Resolution:

Definition 1 (Resolution refutation). A resolution refutation of an unsatisfiable CNF ¢ is
a sequence of CNFs ¢ = g, 01, ..., pn with the following properties.

o v, =pi1U{C;}, i=1,...,n, where C; is a resolvent of two clauses in p;_1.
o L cyp,and L&y fori=0,...,n—1.

We say that n is the size of the resolution refutation.

2.2 OBDDs as a proof system

A binary decision diagram (BDD) is a a rooted, directed, acyclic graph, which consists
of decision nodes and two terminal nodes 0 and 1. Each decision node is labeled by a
propositional variable from Var and has two child nodes called a low child and a high child.
The edge from a node to a low (high) child represents an assignment of the variable to 0 (1).
Such a BDD is called an ordered BDD (OBDD) if different variables appear in the same
order on all paths from the root. Therefore, OBDDs assume that there is a total order <
on the set of variables, and every node in the OBDD is less then its children with respect
to this order.

An OBDD is said to be reduced if the following two rules are not applicable: 1) merge
isomorphic subgraphs; 2) eliminate any node whose two children are isomorphic. We assume
all our OBDDs to be reduced.

These OBDDs have the following property: For a fixed order < on the set of variables,
every propositional formula ¢ is uniquely represented by an OBDD B(y, <). Together
with the efficient computation, this unicity is the main property to be exploited in BDD
technology. In particular, two formulas ¢ and 1 are equivalent if and only if B(p, <) =
B(¢, <).

Given a propositional formula ¢ and an order on variables <, we define the size of an
OBDD B(¢g, <) representing ¢ with respect to < as the number of its internal nodes and
denote it by size(B(p, <)).

In this paper we consider OBDDs as a propositional proof system. Since we are dealing
only with unsatisfiable CNFs, we give a definition of an OBDD refutation adapting the
definition from [3].

Definition 2 (OBDD refutation). Given a total order on variables <, an OBDD refutation
of an unsatisfiable CNF ¢ is a sequence of OBDDs

Bl(‘Pl, '<)7 SRR Bn(@”? '<)

such that By, (pn, <) is the OBDD representing the constant false, and for each B;(y;, <),
1 <1 < n, exactly one of the following holds:

38

ORDERED BINARY DECISION DIAGRAMS, PIGEONHOLE FORMULAS AND BEYOND

A

b)
® &
0

[0]

N
)@ o
G—& Ko,
[0] [0]

A
[1]

Figure 1. OBDD refutation of p = (z Vy V z) A (—z V y) A =y A —z for the order on variables
T <y <2

o (AXIOM) B;(pi, <) represents one of the clauses C € p;

e (JOIN) there are OBDDs By/(pir, <) and B (i, <) such that 1 < i’ < i’ < i and
i = Qi N\ i

The size of the OBDD refutation is defined as Y ;- size(B;(¢s, <)).

When it is convenient, instead of B(p, <) we write B(y) or just B. By Cls(B(y)) we
mean the set of clauses and by Var(B(y)) the set of variables contained in (.

Example 1. Figure 1 depicts an OBDD refutation of CNF ¢ = (xVyVz)A(—zVy)A—yA—z
for the order on wariables © < y < z. OBDDs a) — d) correspond to applications of
Axiom rule and OBDDs e) — g) correspond to applications of Join rule.

The size of the OBDD representing a propositional formula F' for a given order on
variables < is described by the structure theorem from [14].

Theorem 1 (Sieling and Wegener, 1993). Let m;, i < n, be the number of subfunctions of a
Boolean function f(x;, ..., x,), which are obtained by replacing the variables x1,...,x;—1 by
constants and which depend essentially on z; (a function f depends essentially on a variable
Y if fly=o # fly=1)- Then the OBDD for f with respect to the order x1 < x2 < -+ < ¥,
contains exactly m; nodes labelled x; which are reached for the different subfunctions.

The above observation is very simple and helpful to prove lower bounds. In this paper we
use Theorem 2 which is a variant of Theorem 1 and was presented in [6]. We use B = {0, 1}
to denote the set of Boolean constants.

39

O. TVERETINA ET AL.

Theorem 2. Suppose for a given formula ¢ the following holds:
o |Var(p)| =n;

e < is a total order on the set of variables Var(p);

e x1,...,xk are the smallest k elements with respect to < for some k < n;
o AC{1,...,k};
o z=(2',...,2F) ¢ BF.

For all distinct 71, 7o € B¥ such that % = x% = 2 for all i ¢ A there exists a
Y € B such that o(T1,Y) # (T2, 7).

Then the size of the OBDD B(p, <) is at least 2!4l.

The proof of the lower bounds presented in Section 4 is based on Theorem 2. However,
in order to obtain a lower bound we still have to solve some combinatorial problems.

3. Pigeonhole formulas and beyond

The pigeonhole formulas is a family of unsatisfiable CNF's parameterized by n. They are
often used as a standart benchmark for checking efficiency of (UN)SAT algorithms. It is very
easy to give an argument for unsatisfiability of these formulas but most of the techniques
need time exponential in n to produce a formal proof of unsatisfiability.

In our paper we consider also another class of unsatisfiable CNFs that we call as extended
pigeonhole formulas. These formulas were introduced by Cook in his paper on the extended
resolution proof of the pigeonhole formulas [4].

3.1 Pigeonhole formulas

The pigeonhole principle states that n holes can hold at most n objects with one object in
a hole. The propositional formulas describing this principle were introduced as following.
Atomic proposition P;; says that ¢ is mapped to j, and the set of clauses PHP,, states that
there is a one-to-one map from the set {1,...,n+ 1} to the set {1,...,n}.

Definition 3 (Pigeonhole Formulas). The pigeonhole formula PHP,, n > 0, is defined as
follows.

n+l n
PCo= A\ Pyl NCo= A\ [PV P,
i=1 j=1 1<i<j<n+1
1<k<n

PHP,, = PC,, ANC,,.

The formula PC,, states that at least one variable is true in all n + 1 rows and the
formula NC,, states that at most one variable is true in all n columns. These formulas
were studied intensively in relation to complexity of different propositional proof systems,

1

ORDERED BINARY DECISION DIAGRAMS, PIGEONHOLE FORMULAS AND BEYOND

and in particular, it has been proved in [7] that every resolution proof for PHP,, has size
exponential in n.

The variables of the pigeonhole formula can be seen as entries of a matrix with n + 1
rows and n columns, where the variables are placed according to the indexes. We denote
such a matrix by Matrix(PHP,,). Then the i-th row corresponds to the clause \/?:1 P;; and
vice versa. Therefore, if it is needed, we can refer to a row as to a clause.

3.2 Extended pigeonhole formulas

Years before a proof of an exponential lower bound on resolution refutation for the pigeon-
hole formulas was found by Haken, Cook showed that there exists a short proof of PHP,
with extended resolution of size polynomial in n [4]. The idea of Cook was to define new
variables Q; as Qij = Pij V (Pin A Pog15), 1 <i<n,1 <j <n—1and to describe this
equivalence by the set Q,, of the following clauses.

(1) Qi; V Py,

(2) Qij vV =P V =Ppy1j,

(3) =Qij V Pij V =P,

(4) =Qij V Pij V ~Pry1j.

We rename the variables as follows: We denote P;; by P;; and PZ’; = Piljfl \Y% (Pi]ffl A
Pf;llj) for1<k<n—-1,1<i<n—k+1,1<j<n-—k Then using the idea of Cook,
we can define extended pigeonhole formulas.

Definition 4 (Extended Pigeonhole Formulas). The extended pigeonhole formula EPHP,,

for n > 1 is defined as EPHP,, = PHP,, A /\;1:1 EC;, where clauses ECf1 are constructed as
follows.

(1) ECl = A 1<ken—1, [PhV-PET,
1<j<n—k

s k k—1 k-1
(2) ECn = /\ 1<k<n-—1, [Pz] v _'Pin Vv _‘PnJrLJ']’
1<i<n—k+1,
1<j<n—k

(3) EC) = A\ 1<ken—1, [FP5 v PET v PR,
1<i<n—k+1,
1<j<n—k

(4) EC, = /\152511;,1’%131"3 VRSV P
1<j<n—k

The resulting EPHP,, formula has interesting properties. It is constructed by adding
4n(n —1)(n+1)/3 new clauses to PHP,,. Hence, it is a simple unsatisfiable CNF with size
polynomial in n. There is a resolution refutation of EPHP,, with size O(n?) [4]. But, as we
prove in Section 5, all OBDD refutations of EPHP,, have size exponential in n. Moreover,
for each OBDD refutation of EPHP,, there is a corresponding OBDD refutation of PHP,,
such that lower bound on the OBDD proof of EPHP,, is not smaller than lower bound on
the OBDD proof of PHP,,.

"

O. TVERETINA ET AL.

Theorem 3 (Cook). There is a resolution refutation of EPHP,, n > 1, of size O(n%).

We present here a proof of the above theorem because it is missing in the original paper
and we think that it is of interest itself. In our proof we follow the idea from [4] that from
EPHP,, one can derive the clauses PHP,,_; in O(n?) resolution steps.

Proof of Theorem 3. Let P, be the set QQ,, but after renaming the variables, i.e.

1 0 1 0 0 1 0 0

5 ino

=PV PV =P)
The proof has the following steps.

(1) Show that P}V ---V Pil’nfl, 1 < i < n, can be derived from PHP,, and the set of
clauses IP,, in O(n) resolution steps.

(2) Show that ~Pj V=P, 1<i<j<n,1<k<n-—1,can be derived from PHP, and
the set of clauses P, in O(n?) resolution steps.

After repeating the above steps n—1 times one produces the set of clauses PHP; from which
the empty clause can be derived in two resolution steps. It results in a resolution refutation
of size O(n*). The size of the refutation can be expressed alternatively as O(N*/3), where
N is a number of clauses in EPHP,,.

(1) We show how to derive P} V---V P!, _, from PHP,, and the set of clauses P,,.

(a) Pyv---VPBl, VP isderived from Py V---V P} and PyV-P), 1< j<n—1.

(b) PyV---VPB., V-P), . 1<j<n-—1,is derived from (a) and P}V =P} Vv
~Pi1e

(c) —|Pi?n VP V-V P s derived from PY, VeV P and =PV
B T?—i—l,n'

(d) Py V---VPY VP V--- VP! | is derived from (a) and (c).

(e) PLV---V Pi{n_2 is derived from (b) and (d).

(2) We show how —P} v —|lek can be derived from PHP,, and the set of clauses P, in
O(n?) resolution steps.
(a) ﬁPiik v ﬁéﬂjlk v éa,g 1 18 derived from =P} Vv =Pj and -Pj V Py V P}, and
-P, VP, VP .
ik ik n+1,k
) =PL v ﬂlek V =P is derived from (a) and ~Pj V —PY, | ;.
) =PLV _'lek v —JD;»)/,C is derived from (a) and —|P]Qk v —|PS+U€.
) P}V =P}V Py is derived from (b) and —Pj, vV PV Py,
(e) =PL v ﬂlek V P, is derived from (c) and =Py, V Pjok Vv P
(f) =PLV _‘lek Y —|Pj(-)n is derived from (d) and =P2 V —|Pjon.
) —PL v ﬂlek is derived from (e) and (f).

Hence, we have shown the correctness of the theorem by presenting the resolution steps. [

"

ORDERED BINARY DECISION DIAGRAMS, PIGEONHOLE FORMULAS AND BEYOND

4. Technical background

In this section we introduce notations and technical lemmas that will be used throughout
the paper. Some combinatorial properties of square matrices are presented in Lemma 1.
Lemma 2 generalizes a well-known fact about binary trees claiming the existence of subtrees
with a weight lying between a and 2a for any definition of weight as a sum of the weights
of its leaves.

4.1 Notations

Let S~ denote a set containing the |n?/2] smallest elements of Var(PC), where < is a
given order on variables and PC}, is obtained from PC, by removing an arbitrary clause.
And S, = Var(PHP,,)\S«. We denote by S* and by S? the following sets:

S = {Py € Var(PHP,,) | Py, = nax P4} and ST = Var(PHP,)\S%.

cd €9 <

Suppose By, ...,B; is an OBDD refutation on PHP,,. Then for each B; we define
S, = S* NVar(B;) and SL = Var(B;)\S5%.
Moreover, we define

Cls™9(B;) = Cls(B;) N Cls(NC,,) and Cls?*(B;) = Cls(B;) N Cls(PC,,).

4.2 Technical lemmas

Lemma 1 was presented for the first time in [16], but with a smaller coefficient ¢ = %— %\/ﬁ ~
0.146. This lemma is of interest from a point of view of Ramsey Theory that typically asks
questions of the form: How many elements of some structure must there be to guarantee
that a particular property will hold?

Groote and Zantema in [6] considered an n x m matrix containing entries equally colored
white and black and proved that such a matrix has either v/2(n —1)/2 rows or v/2(m —1)/2
columns containing both a black and a white entry. Lemma 1 presents another combinatorial
property of a matrix containing entries equally colored white and black. In comparison with

3_ 1

[16] we present another proof that gives us a better ¢ = § — ;v/5 =~ 0.19098.

Lemma 1. Consider a matrizc M = {m;;}, 1 <i <n, 1< j <mn. Let the matriz entries
be colored equally white and black, i.e. the difference between the number of white entries
and the number of black entries is at most one. Let m = |cn] for ¢ = % — i 5 ~ 0.19098.
Then at least one of the following holds.

e One can choose m rows, and in every of these rows a white and a black entry, such
that all these 2m entries are in different columns.

e One can choose m columns, and in every of these columns a white and a black entry,
such that all these 2m entries are in different rows.

Proof. Starting by the given matrix repeat the following process as long as possible.

13

O. TVERETINA ET AL.

Choose a row in the matrix containing both a white and a black entry and not
chosen previously. Remove both the column containing the white entry and the
column containing the black entry.

Assume this repetition stops after k steps. Write x = k/n. If > ¢ the first property of the
lemma holds and we are done. In the remaining case we have x < c¢. We assume that the
second property of the lemma does not hold, and then we will derive a contradiction.

The remaining matrix M’ consists of n rows and n(1 — 2z) columns. The zn chosen
rows in M’ can be either mixed or monochromatic, and the other n — xn rows consist either
only of white entries or only of black entries (otherwise the process of choosing rows could
continue).

We denote by R(M’) the set of the zn rows chosen by the above process and contained
in the remaining matrix M’, and we denote by R'(M’) the set of n(1 — x) rows that were
not chosen and that are also contained in M.

Assume that in R'(M’), pn of the rows are totally white and gn of the rows are totally
black. Then p+ ¢ =1 — x, where all the numbers p, ¢, z are reals in the interval [0, 1].

Assume that in R(M’), there are in total azn? white entries and bzn? black entries,
where a, b are real numbers in the interval [0,1]. It is easy to see that such a and b exist
since the total number of the entries in R(M’) is less than zn?. Since the total number of
the entries in R(M’) is (a + b)zn® = (1 — 2x)xn?, we obtain a + b =1 — 2x.

The total number of white entries in the remaining matrix M’ is p(1 — 2z)n? + axn?.
This is strictly less than n?/2 since at least one row was chosen. So

p(1—2x) +azx < %,
and similarly ¢(1 — 2z) + ba < 3 for the black entries.

Now assume that ¢ > ¢ and p +a > ¢. We will construct at least m = [cn] columns
in M’ satisfying the second property of the lemma. For the first an choose a white entry
from a mixed row and a black entry in the same column from a full black row. This can
be repeated at least [= min(an, gn) times. If [= gn, we are done. If [< gn, the process
is continued by choosing pn entries from the full white rows. Since ¢ > cand p+a > ¢
we have chosen at least cn columns in this way, yielding the second property of the lemma.
Since we assume this second property does not hold, we conclude

g<cVp+a<ec

By symmetry we similarly obtain p < ¢V ¢+ b < ¢. Since the combination of ¢ < ¢ and
p < ¢ can not occur due to r < ¢ < .2 and p+ q = 1 — x, we either have p+a < c or
q + b < c. By symmetry we may assume without loss of generality that p + a < c¢. Now
substituting b=1—2z —aand g=1—2 —p in ¢(1 — 2x) + bx < % we obtain

(1—x—p)(1—2x)—|—(1—2x—a)x<%

hence
1
1—p+(2p—a—2)x<§.

u

ORDERED BINARY DECISION DIAGRAMS, PIGEONHOLE FORMULAS AND BEYOND

ool JeoJel@le
L YoX X JelOle)

Figure 2. Anexample of a 7 x 7 matrix with entries equally colored black and white.

Since x < ¢ and 2p — a — 2 < 0 (the latter since p < 1 and a > 0), we conclude
1
1—-p+(2p—a—2)c< 5

Since p + a < ¢ we conclude

1
1—p—|—(3p—c—2)c<§.

Hence, 1 — ¢ — 2c — p(1 — 3¢) < % Since ¢ > p and 1 — 3¢ > 0, this yields
1
5:2c2—3c+1:1—c2—2c—c(1—3c)<

1
2)
contradiction, using ¢ = % - %\/5]

By fine-tuning the argument the constant ¢ in Lemma 1 can be improved. We conjecture
that it also holds for ¢ = 1 — %\/5 ~ 0.293. Choosing the n x n matrix in which the left
upper k X k-square is black for k ~ % and the rest is white, one observes that this value

will be sharp. As our main result involves an exponential lower bound, we do not focus on
the precise optimal value of c.

Example 2. Consider a square 7 x 7 matriz with 24 black and 25 white entries as depicted
in Figure 2. For this example there are three rows such that one can pick up one black and
one white entry in each row in such a way that all entries are in different columns. At the
same time Lemma 1 gives us much lower but a guaranteed bound.

The intuition behind Lemma 1 and how it will be used in the subsequent proof is as
follows: The matrix elements correspond one-to-one to propositional variables of the PHP,,
formula where the last positive clause is dropped. For a given order <, the colors black
and white correspond to variables in the upper and lower part of an OBDD. As Lemma 1
covers all possible colorings of the matrix, it is applicable to all possible orders <. Then,
depending on the order of variables, we either apply Lemma 3 or Lemma 4 to obtain an
intermediate OBDD (containing a subset of all PHP,, clauses) with a given property. For
each variable in the upper part of the OBDD we can find a variable in the lower part that
influences the truth value. Thus, we can apply Theorem 2.

15

O. TVERETINA ET AL.

The OBDD representing an unsatisfiable CNF is just a terminal node 0. Therefore,
we have to show that for an arbitrary order on variables and an arbitrary way to combine
clauses there is an intermediate OBDD of a size exponential in n. Hence, we start by the
simple observations describing some properties of intermediate OBDDs. And the following
lemma generalizes a well-known fact about binary trees claiming the existence of subtrees
with a weight lying between a and 2a.

Lemma 2. Let C be a finite set, R C C with |R| > 2, and By,...,B; C C a sequence with:
1. B=C
2. For each B; (1 <1i<1), either B; =0, B; = {c} for c € C, or B; = BjU By, for some
Ik with j < k <.

Then, for each a with ﬁ <a< %, there is a j <l such that

a|R| <|Bj N R| < 2a|R)|.
Proof. We give a proof by contradiction. Suppose, for each Bj, either |B; N R| < a|R| or
|B; N R| > 2a|R).

As BN R = C N R = R, the inequality |B; N R| > 2a|R| holds for the final element B;
of the sequence. On the other hand, for singletons B; = {c}, we have |B; N R| = 0 < a|R|
for ¢ ¢ R, and |B; N R| = 1 < a|R| for ¢ € R, as a > 1/|R|. Moreover, for B; = 0,
|B; N R| < a|R| obviously holds. Following now the predecessors of B; (via the construction
by set union) in the sequence B; backwards, we finally arrive at an index k for which the
following holds:

e |By N R| > 2a|R|, and

e Bj, = By U By, where |By N R| < a|R| and |Bgr N R| < a|R)|.
As B,NR = (Bk/UBk//)ﬁR = (Bk/ﬁR>U(BkH ﬂR), and thus ’BkﬁR‘ < ’Bk/ﬂR‘—HBkwﬂR’ <
2a|R|, we arrive at a contradiction to |Bx N R| > 2a|R|. O

Lemma 3. Suppose Bq,...,B; is an OBDD refutation either on PHP,, or on EPHP,, and
R C CIs(PC,,) with |R| > 4. Then there is an i <l such that

IR|/4 < |CIs(B;) N R| < |R|/2.

Proof. Follows directly from Lemma 2.
O

Let By,...,B; be an OBDD refutation either on PHP,, or on EPHP,,. For each i <1, we
define J; as follows:
J;i = {] € {1, .. .,n} ’ Ela,b : —uDaj V —quj S C|S(Bi) & Paj € S< & ij S S>.}

Lemma 4. Suppose By,...,B; is an OBDD refutation either on PHP, or on EPHP,, for a
total order on variables <. Let G C {1,...,n} such that |G| > 4. Then there is an i <l
such that

GI/4 < 1N G| < [Gl/2.
Proof. Follows from Lemma 2, using C = {1,...,n}, R=G,a=1/4, and Jy,..., J; for the
sequence (B;)1<i<, for which the precondition of Lemma 2 holds, as is easily checked. [

1

ORDERED BINARY DECISION DIAGRAMS, PIGEONHOLE FORMULAS AND BEYOND

Figure 3. A5 x 4 matrix for PHP5. The black and the white entries represent elements from the
sets S and S\ correspondingly.

5. Exponential lower bound on OBDD refutations of PHP, and EPHP,,

In this section we prove lower bounds on OBDD refutations of the pigeonhole formula
PHP,, and related extended pigeonhole formula EPHP,,. We start by proving lower bound
for PHP,, and the proof of lower bound for EPHP,, is a direct consequence of it.

5.1 Lower bound on OBDD refutations of PHP,,

Our proof of lower bound on OBDD refutations of PHP,, is based on Theorem 2 and Lemmas
1-4. Before presenting the details of a formal proof we start with an example to give some
intuition behind it.

Example 3. Let us consider PHP4. This formula can be presented with a 5 x 4 matrix, as
for example in Figure 3.

Suppose one of the intermediate OBDDs is an OBDD depicted in Figure 4 and it rep-
resents

3 4
ALV Pl A [2Pog v =Py,
i=2 j=1
where Py1 < P31 < P39 < Pyy < Po3 < P33 < Poy < Pay.

Our proofs of lower bounds on OBDD refutations are based on Theorem 2. Hence, we
need to choose set A satisfying the theorem conditions. For this we use Lemma 1. The
black and white entries represent elements of sets S~ and S. correspondingly. We collect
the black entries satisfying Lemma 1 in A. The white entries satisfying Lemma 1 are used
to prove the conditions of Theorem 2.

We apply Lemma 1 and Theorem 2 to this example and collect the variables P»; and
Py in A. According Theorem 2 the size of the OBDD is at least 21{/21:P32} = 4. For
this particular example the size of the OBDD is much larger. This raises an open question
whether lower bounds presented in this paper can be improved.

Lemma 5. Let By,...,B; be an OBDD refutation of PHP,, and < be an order on variables.
Assume that there are two sets, a set R of rows and a set ST of entries of Matrix(PHP,,)
such that the following holds:

e For each r € R there are P,q, Py € ST such that Pr, € S— and Py, € S,

e For distinct Py, Pog € ST, b+ d.

17

O. TVERETINA ET AL.

Figure 4. An OBDD for /\?:2[\/?:1 R]] N [—|P24 V —|P34}, where Po; < P31 < P3y < Poo <
P23 < P33 < Py < P34.

Then there is an i <l such that
size(B;) > 21%/4,

Proof. Let for 1 < <1,
R" = CIs(B;) N R.

We apply Lemma 3. Thus we know that there is an ¢ < [such that
|R|/4 < |R'| < |R|/2,
and we get
2|R!|+1 < |R).

Since for each C' € Cls*?®(B;), either C € R or C € PC,, and |PC,| = n + 1, we compute

9B < (n+1)-(RI-IR))
(n+1) = (IR +1) - |Ri)

n — |R|.

<
<

We denote Ré = Cls”**(B;)\R’. By definition R’ C Cls"**(B;). Hence, we obtain

|RI| = IClspos(Bi)l—lRi!
< n-2|R.

1

ORDERED BINARY DECISION DIAGRAMS, PIGEONHOLE FORMULAS AND BEYOND

For each row r € R’ we fix an entry that is in the set S-. We collect these elements in the
set A. For each row r € R’ we also fix an entry that is in Sy and collect these elements in
the set Y. Suppose

Re={j|3i:Pj€AUY}.

Since the set of rows R’ satisfies Lemma 1, we get

|R°| = 2|R'.
Let J =n — |R°|. Then we obtain
J=n—2|R|
and
|[Ri| < |J].

Taking into account |R?| < |J|, for each row in R? we fix one entry, collect these entries in
the set X. We require the following.

o for distinct Py, P.gq € X, b # d;
e for each Py € X, b ¢ RC.

We define
X_< :SiﬁX, a.nd X>_ :S;QX

We apply Theorem 2 on
k= ‘S:’v

where S% = S* NVar(B;). Let for j =1,...,k,

o — 1, if Zj S X<
771 0, otherwise

Choose distinct 7', 7’ € B* such that z; = a); = z; for all z; ¢ A. Then there is j" such that
zj # 2. Let Y = (Ykt1,---,Yq), where ¢ = |Var(B;)|, be the vector defined for y; € Y by

|0, if y; is in the same row as
J 1, otherwise

and for y; € Y by

Yi= 0, otherwise

Hence, the subset of clauses represented by B; evaluates to x; for the assignment (7, 7%)
and to z, for the assignment (7',7). Taking into account that |A| > |R|/4, by Theorem
2, we obtain

size(B;) > 2141 > olFI/4,

19

O. TVERETINA ET AL.

Lemma 6. Let By,...,B; be an OBDD refutation of PHP,, and < be a given order on
variables. Assume that there is a set Q of columns and a set S? of entries of Matrix(PHP,,)
such that the following holds:

e For each q € Q) there are Pyq, Py € S9 such that P,y € S5 and Py € S
e For distinct Py, Pog € S9, a # c.

Then there is an © <l such that
size(B;) > 2/1Q1/4,

Proof. Let
Q5 = {j | Ja,b: Py VB € Cls(B;) & P,j € Ss & Py € S. }.
By Lemma 4, there is an ¢ < [such that

QI/4 <]Q°] < 1Ql/2.

For each column in Q¢ we fix one entry that is in the set S5 and collect these elements
in A. For each column in @ we also fix one entry that is in the set S. and collect these
elements in the set Y. Let

Q" ={i|3:PjcAUY}.

Suppose
Q° = Q\Qy.
Then we get
Q°>Ql/2.
For each j € Q¢ we fix Poj, Po,j € S€Q. where Pu;j € S< and Py,; € S... We collect Fy;; in
X~ and we collect P,; in X, for all j € Q°. We define

Q ={a|3b:Pypec X UX.}.
By Lemma 1 all entries collected in Q" are from different rows. Hence, we obtain
Q"] = 2]Q°].
Taking into account that Q¢ > |Q|/2, we get
Q > Q|
and since Q7 is a natural number we get
Q" >1Q|+ 1.

We denote
Q= CIspOS(Bi)\@.

No restrictions are posed on the size of the set Cls?**(B;). Hence,

1 < |CIsP5(By)| < n + 1.

50

ORDERED BINARY DECISION DIAGRAMS, PIGEONHOLE FORMULAS AND BEYOND

We take into account that |Q"| > |@Q| + 1 and compute

Q1 < (+1)-[Q7
< (1) -(QI+1)
= n-1Ql

We define J = {j |Ja : P,; € Var(PHP,,) & j & Q}. Then

[Jl=n—-]Ql
Therefore,
Q[< [JI].
We take into account |Q*| < |J| and for each row r € @Q* we fix one entry and collect these
entries in the set W. We require the following;:
e for distinct Py, Py € W, b # d;
e for each Py, € W, b ¢ Q°.

We apply Theorem 2 on

k=5%],
where S%, = S* U Var(B;). We denote W =S, "W and W, = S. NW. For j=1,...,k
we define

b — 1, leJ€X<UW<
771 0, otherwise

Choose 7', 7" € B* such that @ # 7/ and z; = x; = z; for all 2; ¢ A. Since z # 2’

there is a j' such that x; # 27,. Let Y = (Yk+1,- - - Yq), where ¢ = |Var(B;)|, be the vector
defined for y; € Y by

| 1, it y; is in the same column as z;
Yi 0, otherwise

and for y; € Y by
771 0, otherwise

Hence, the subset of clauses represented by B; evaluates to -z for the assignment (7, 7%)
and to —z’, for the assignment (@', %). Taking into account that |A| > |Q|/4, by Theorem
2 we obtain

size(B;) > 2141 > 2l@l/4,

O]

Theorem 4. For every order < on the set of variables, the size of each OBDD refutation
of PHP,, is 29(").

51

O. TVERETINA ET AL.

Proof. Let n > 20, and By,...,B; be a OBDD refutation of PHP,,. We prove that for an
arbitrary total order on variables < there is ¢ <[such that

size(B;) > 2"(1—1VH/4 5 1 147,

Hence, the size of an arbitrary OBDD refutation on PHP,, is 22", First we apply Lemma
1 to the matrix representing PCy, where PC}, is obtained from PC,, by removing one (arbi-
trary) clause. Then one of the following holds.

(1) There is a set of [n(2 — 1/5)] rows (we denote this set by R) and there is a set of

2|n(2 — 1/5)] entries (we denote this set by S¥) such that the following holds:

— For each r € R there are P,q, Py € ST such that P,, € S~ and P, € S...
— For distinct Py, Py € ST, b #d.

(2) There is a set of [n(2 — 1/5)| columns (we denote this set by @) and there is a set

containing 2|n(2 — £1/5)| entries (we denote this set by S%) such that the following
holds:

— For each g € Q there are Pyy, Py, € S@ such that P,y € S and Py, € S
— For distinct Py, Pog € S9, a # c.
We obtain by Lemma 5 in the first case
size(B;) > 21Fl/4 = 2”(%_%\/5)/4,
and by Lemma 6 in the second case

size(B;) > 21Q1/4 = on(i-1VH)/4,

From this we conclude that an arbitrary OBDD refutation of PHP,, has size exponential in
n.]

5.2 Lower bound on OBDD refutations of EPHP,,

In this section we give a formal proof that an arbitrary OBDD refutation of EPHP,, has a
lower bound exponential in n.

Theorem 5. For every order < on the set of variables, the size of each OBDD refutation
of EPHP,, is 29("),

First we need to prove intermediate lemmas.

Lemma 7. Let F and G be CNFs such that F C PHP,, and G C /\111 ECL. Assume that
A : Var — {true, false} is an assignment of variables such that F' =4 true. Then there is an
assignment A’ : Var — {true, false} such that for each P;; € Var(F), A'(P;;) = A(P;;) and
FUG =4 true.

52

ORDERED BINARY DECISION DIAGRAMS, PIGEONHOLE FORMULAS AND BEYOND

Proof. It follows straightforwardly from the construction of /\411 ECE. O]

Lemma 8. Let FF C PHP,,, G C /\411 ECL. Then for any order on variables <
size(B(F UG, <)) > size(B(F, <)).

Proof. Our proof is based on Theorem 1. It is sufficient to show that if B(F, <) has k nodes
labeled with a variable P;; then B(F UG, <) has at least k£ nodes labeled with Pj;. To prove
this we need to show the following.

(1) If there is a node in B(F, <) labeled with a variable P;; then there is a corresponding
node in B(F U G, <) labeled with Pj;.

(2) For two distinct nodes in B(F, <) labeled with a variable Pj; there are two distinct
nodes in B(F'U G) labeled with P;;.

Now we prove the above statements.

(1) Suppose n; € B(F, <) is labeled with a variable P;;. Then the sub-OBDDs rooted at
the left child and the right child of the node are not isomorphic and therefore cannot
be merged. It follows from Lemma 7 that there is a node ny € B(F U G, <) labeled
with P;; such that the sub-OBDDs rooted at the left child and the right child of this
node are not isomorphic and therefore cannot be merged. Hence, there is a node in
B(F UG, <) labeled with a variable P;;.

(2) Let ni,n} € B(F, <) be distinct nodes labeled with a variable P;;. Then the sub-
OBDDs rooted either at the left children of the nodes or at the right children of the
nodes (or both) are not isomorphic and therefore cannot be merged. Let us assume
that the sub-OBDDs that are not isomprphic rooted at the left children of the nodes.
It follows from Lemma 7 that there are nodes na,n € B(F U G, <) labelled with a
variable P;; such that the sub-OBDDs rooted at the left children of these node are
not isomorphic and therefore cannot be merged. We conclude that there are distinct
nodes ng,nhy € B(F UG, <) labeled with a variable P;;.

By Theorem 1, we conclude that size(B(F U G, <)) > size(B(F, <)). O
Now we are ready to give a proof of Theorem 5.

Proof of Theorem 5. Let n > 20, and Bq,...,B; be an OBDD refutation of EPHP,,. Similar
to the proof of Theorem 4 we show that for an arbitrary total order on variables < there is
an ¢ < [such that

size(B;) > on(1-1VB)/4,

We apply Lemma 1 to the matrix representing PC} | and then one of the following holds.

(1) There is a set of [n(2 — 1/5)] rows (we denote this set by R) and there is a set of
2|n(2 — 1/5)] entries (we denote this set by S¥) such that the following holds:

— For each r € R there are P,q, Py, € ST such that P,, € S- and Py € Ss.

53

O. TVERETINA ET AL.

— For distinct Py, Py € S, b #d.

(2) There is a set of [n(2 — 1/5)] columns (we denote this set by @) and there is a set
containing 2|n(2 — 11/5)| entries (we denote this set by S¥) such that the following

holds:

— For each g € Q there are Pyy, Py € S9 such that P,y € S and Py, € S».
— For distinct Py, Pog € S9, a # c.

For each i < [we denote by B the OBDD representing Cls(B;) N Cls(PHP,,) with the same
order on variables <. We conclude by Lemmas 5 and 8 in case (1) that there is an ¢ < [
such that

size(B;) > size(B}) > 2/fil/4 = on(1-1V5)/4,

and by Lemmas 6 and 8 in case (2) that there is an ¢ < [such that
size(B;) > size(B}) > 2lQl/4 _ gn(3-3V5)/4.

Hence, for an arbitrary OBDD refutation of EPHP,, there is an intermediate OBDD with
size exponential in n. O

6. Unrestricted OBDDs do not simulate resolution polynomially

The above observations establish that unrestricted OBDD proof system without existen-
tial quantification cannot simulate unrestricted resolution proofs polynomially. In particu-
lar, there are contradictory CNF's for which there is a resolution refutation exponentially
stronger than any OBDD refutation containing only two rules, Axiom and Join.

Theorem 6. There is a sequence of contradictory CNFs ¢;, © > 0, of size O(N3/4) for

which there is a resolution refutation of size O(N) and an arbitrary OBDD refutation has
size 20V

Proof. Let @; be EPHP; and N = n*/3. Then the size of ©; 18 O(N3/4) and by Theorems 3
and 4 there is a resolution refutation of size O(N) and an arbitrary OBDD refutation has
size 20N, 0

7. Experiments

To give additional, empirical evidence for our theoretical results, we made experiments with
a SAT solver and a BDD package. We used MiniSAT 2.0 and the BDD package buddy 2.4
for our tests'.

MiniSAT implements a CDCL (conflict driven clause learning) algorithm, which is a
modification of the well-known DPLL method. The runs of CDCL solvers directly cor-
respond to resolution proofs. Buddy is a BDD package that provides the usual Boolean
operations on BDDs.

1. MiniSAT is available at http://minisat.se, buddy can be downloaded from
http://buddy.sourceforge.net.

54

http://minisat.se
http://buddy.sourceforge.net

DiAGRAMS, PIGEONHOLE FORMULAS AND BEYOND

ORDERED BINARY DECISION

10000 . < -
1000 | i
100 % .
10 - .
kS 5 OBDD - PHP —+— |
OBDD - EPHP ---x---
tro SAT - PHP ---%--]
/ . i . . SAT - EPHP 8-
4 6 8 10 12 14 16
Figure 5. Run-time comparison of a DPLL-based SAT solver (MiniSAT 2.0) and an OBDD

package (buddy 2.4) on PHP,, and EPHP,, formulas.

We ran both MiniSAT and buddy on the PHP,, and EPHP,, formulas, using a machine
equipped with an Intel Xeon CPU running at 2.66 GHz and 4 GB RAM under Ubuntu
Linux. We measured run-times for values of n ranging between 4 and 16, using a run-time

limit of ten hours.
The results are shown in Fig. 5, where the run-times (in seconds, on a logarithmic scale)
are plotted against parameter n. Regarding BDDs, it turned out that adding the extension

clauses (thus switching from PHP to EPHP) lead to dramatically decreased performance®.
This is in accordance with Lemma 8, which claims that adding extension clauses to a subset
of the pigeon hole clauses increases the size of the BDD. Regarding MiniSAT, adding the
extension clauses did not increase performance, although a short (polynomial) resolution
proof for EPHP,, exists. In principle, a CDCL SAT solver, such as MiniSAT, can polyno-
mially simulate any (general) resolution proof—given the right heuristics for restarts and
branching [10]. However, our experiments indicate that the standard heuristic of MiniSAT

is not able to find the existing short proof.

2. We have chosen a fixed variable ordering with P; ; < Py ;- iff (i < ')V (i =i A j < j'). Clauses have
been added in the following order: first negative clauses, then extension clauses, then positive clauses

(as this has shown best performance).
55

O. TVERETINA ET AL.

8. Conclusions and future research

One of the results of the paper is a class of CNFs that for infinitely many values of N
has a resolution refutation of size O(NN), and an arbitrary OBDD Apply refutation of these
formulas has size at least 22(V**) This extends earlier work on comparison of OBDD-based
proof systems and resolution-based systems in the following ways.

(1) An exponential separation between a particular OBDD proof system and resolution
is presented in [6]. The problem whether there are CNFs of size O(N) that have
resolution refutation of size polynomial in N and an arbitrary refutation for a more
efficient OBDD Apply proof system, like for example the one in [20], has size at least
exponential in N was open in [6]. In comparison with [6], we considered a stronger
OBDD proof system that allows clauses to be proceed in an arbitrary order. In this
paper we solved the above open problem by presenting a class of formulas that are
easy for resolution and hard for an arbitrary OBDD Apply method.

(2) We have improved from 1.025%(to 1.14%(") lower bound on OBDD refutations of
PHP,, presented in [16] .

(2) The main open question in [12] is to improve lower bound on arbitrary OBDD refu-

tations by increasing the constant in the Q() of the 2 VN/IN) - This constant is
extremely small and it is below 2799, We considered a family of CNFs that have a
higher lower bound on OBDD refutations. But the OBDD proof system we considered
is weaker than the one in [12].

(3) A lot of research has been done on exponential lower bounds on the sizes of OBDDs
for Boolean functions. But most of the methods to obtain such lower bounds are
based on one-way communication complexity and the results from monotone circuits
complexity. Clearly, solving structured combinatorial problems in style of Ramsey
Theory may lead to new approaches for proving lower bounds.

Still some interesting questions related to comparison of OBDD-based and resolution-
based proof systems remain unsolved. It is shown in [6] that biconditional formulas have
short OBDD proofs and after transforming them into CNF's they require exponentially long
resolution proofs. But OBDD proofs of the transformed formulas need exponential size
OBDD proofs too.

For OBDD methods that allow existential quantification we know that there are for-
mulas that have polynomial size OBDD refutations [3], but resolution refutations of only
exponential size, i.e. the OBDD proof system with existential quantification is stronger
than resolution. An open question is whether the OBDD Apply method can be simulated
by resolution polynomially for formulas in CNF.

Another open problem is to give a proof of the tight constant in Lemma 1. The constant
¢ can be improved, and we conjecture that the lemma also holds for ¢ =1 — %\/ﬁ ~ 0.293.
Although, it is very easy to give an intuitive explanation why it holds, a precise proof is still
needed. Such a proof would result in a better lower bound on OBDD refutations presented
in this paper.

56

ORDERED BINARY DECISION DIAGRAMS, PIGEONHOLE FORMULAS AND BEYOND

References

1]

2]

[3]

A. Atserias, P. Kolaitis, and M. Vardi. Constraint propagation as a proof system. In
Principles and Practice of Constraint Programming (CP 2004), 3258 of LNCS, pages
77-91, 2004.

R. Bryant. Graph-based algorithms for boolean function manipulation. IEEE Trans-
actions on Computers, 8(C-35):677-691, 1986.

W. Chén and W. Zhang. A direct construction of polynomial-size OBDD proof of
pigeon hole problem. Information Processing Letters, 109(10):472-477, 2009.

S. Cook. A short proof of the pigeon hole principle using extended resolution. ACM
SIGACT News, 8(4):28-32, 1976.

S. Cook and R. Reckhow. The relative efficiency of propositional proof systems. Journal
of Symbolic Logic, 44(1):36-50, 1979.

J. F. Groote and H. Zantema. Resolution and binary decision diagrams cannot simulate
each other polynomially. Discrete Applied Mathematics, 130:157-171, 2003.

A. Haken. The intractability of resolution. Theoretical Computer Science, 39:297-308,
1985.

J. Krajicek. An exponential lower bound for a constraint propagation proof system
based on ordered binary decision diagrams. The Journal of Symbolic Logic, 73(1):227—
237, 2008.

N. Peltier. Extended resolution simulates binary decision diagrams. Discrete Applied
Mathematics, 156(6):825-837, 2008.

K. Pipatsrisawat and A. Darwiche. On the power of clause-learning SAT solvers with
restarts. In Principles and Practice of Constraint Programming, 2009.

J. A. Robinson. A machine-oriented logic based on the resolution principle. Journal
of the ACM (JACM), 12(1):23-41, 1965.

N. Segerlind. Nearly-exponential size lower bounds for symbolic quantifier elimina-
tion algorithms and OBDD-based proofs of unsatisfiability. Electronic Colloquium on
Computational Complezity (ECCC), 14(009), 2007.

N. Segerlind. On the relative efficiency of resolution-like proofs and ordered binary
decision diagram proofs. Electronic Colloquium on Computational Complexity (ECCC),
14(126), 2007.

D. Sieling and I. Wegener. NC-algorithms for operations on binary decision diagrams.
Parallel Processing Letters, 3:3-12, 1993.

C. Sinz and A. Biere. Extended resolution proofs for conjoining BDDs. In Computer
Science - Theory and Applications, First International Computer Science Symposium
in Russia, 3967 of LNCS. Springer, 2006.

57

[16]

[17]

18]

[19]

[20]

58

O. TVERETINA ET AL.

O. Tveretina, C. Sinz, and H. Zantema. An exponential lower bound on OBDD refu-
tations for pigeonhole formulas. In Athens Colloguium on Algorithms and Complexity,
Electronic Proceedings in Theoretical Computer Science, pages 13-21, 2009.

T. E. Uribe and M. E. Stickel. Ordered binary decision diagrams and the davis-putnam
procedure. In First International Conference on Constraints in Computational Logics,
845, pages 34-49. Lecture Notes in Computer Science, 1994.

A. Urquhart. The complexity of propositional proofs. Bulletin of Symbolic Logic, pages
425-467, 1995.

I. Wegener. Branching programs and binary decision diagrams: theory and applications.
Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2000.

H. Zantema and J. C. van de Pol. A rewriting approach to binary decision diagrams.
Journal of Logic and Algebraic Programming, 49(1-2):61-86, 2001.

	Introduction
	Propositional proof systems
	Resolution
	OBDDs as a proof system

	Pigeonhole formulas and beyond
	Pigeonhole formulas
	Extended pigeonhole formulas

	Technical background
	Notations
	Technical lemmas

	Exponential lower bound on OBDD refutations of PHPn and EPHPn
	Lower bound on OBDD refutations of PHPn
	Lower bound on OBDD refutations of EPHPn

	Unrestricted OBDDs do not simulate resolution polynomially
	Experiments
	Conclusions and future research

