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Abstract.
Background: The hallmark of Parkinson’s disease is depletion of dopamine in the basal ganglia. Models of Parkinson’s
disease include dopamine as a contributor to disease progression. However, intraneuronal levels of dopamine have not been
reported.
Objective: Meta-analytic methods were utilized to determine intracellular dopamine levels in Parkinson’s disease.
Methods: A systematic review of the literature and frequentist meta-analyses were performed. Dopamine levels were scaled
for cell and axon numbers as well as VMAT2 protein levels.
Results: Reduced tissue dopamine, dopaminergic cell bodies and VMAT2 protein were confirmed. The ratio of Parkinson’s
to normal brain intracellular dopamine scaled for either cell or axon number, each with VMAT2 level in the caudate ranged
from 1.49 to 1.87 (p = 0.51 and p = 0.12, respectively) and in the putamen from 0.75 to 4.61 (p = 0.40 and 0.001, respectively).
Conclusion: Free, intracellular dopamine levels are not reduced in Parkinson’s disease compared to normals to a similar
degree as are total tissue concentrations, supporting the relevance of modulating VMAT2, neuromelanin and/or dopamine
synthesis as rational neuroprotective strategies.

Keywords: Parkinson’s disease, dopamine, dopaminergic neurons, cytosolic dopamine, intracellular dopamine, dopamine
toxicity, dopamine oxidation

INTRODUCTION

The hallmark biochemical abnormality in Parkin-
son’s disease is depletion of dopamine in the basal
ganglia [1]. In that context, the clinical trial by Cotzias
et al. established the utility of dopaminergic stimula-
tion on the motor symptoms of Parkinson’s disease
[2]. Dopaminergic therapies are standard of care for
Parkinson’s disease [1, 3, 4].

In parallel to dopamine’s critical role in motor con-
trol, its neurotoxic metabolites are tightly controlled
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in normal neurons, primarily through vesicular seq-
uestration intracellularly [5, 6]. In Parkinson’s dis-
ease, dopamine metabolism is altered and the
cellular mechanisms to sequester toxic metabolites
are impaired [7, 8], leading to a central role in
models of disease [9–12]. While the likelihood of
dopamine contributing to disease progression would
appear more likely in the presence of significant cel-
lular levels, absent from the literature are reports
of intraneuronal and/or intracytoplasmic dopamine
levels in Parkinson’s disease. This analysis lever-
ages published pathology studies of patients with
advanced Parkinson’s disease to determine intracellu-
lar dopamine levels utilizing meta-analytic methods.
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Fig. 1. PRISMA diagram of the systematic review.

MATERIALS AND METHODS

The PRISMA flow diagram summarizes the sys-
tematic review (Fig. 1). Search strategies on PubMed
were: 1) Parkinson’s AND dopamine AND autopsy,
2) Parkinson’s AND substantia nigra AND autopsy,
3) Parkinson’s AND autopsy AND (caudate OR puta-
men), 4) Parkinson’s AND autopsy AND vmat2, and
5) Parkinson’s AND autopsy AND axon∗. When it
became evident that these search strategies failed
to include relevant publications from the 1960s, the
literature searches were supplemented by review-
ing citations in the identified publications as well as

PubMed’s feature to identify later citations of iden-
tified studies. Studies were included when reporting
data from brains harvested within 24 hours of death
from patients with Parkinson’s compared with normal
brains focused on: 1) tissue dopamine concentra-
tion, 2) enumeration of dopaminergic cell bodies, 3)
VMAT2 protein levels, 4) dopamine vesicular uptake
function, and/or 5) quantification of axonal projec-
tions from the substantia nigra. In cases where raw
data was represented graphically, images were dig-
itized and values determined via use of GraphClick
(Arizona Software, v.2.9b2) running on Mac OS X
v.10.11.6 at 200% magnification [13]. Data were
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Table 1
Studies included in the analysis with indication of what data were available for this analysis

Study Year Normal PD Caudate Putamen SN Cell Caudate Putamen Vesicular Axon
(n) (n) Dopamine Dopamine Bodies VMAT2 VMAT2 Uptake Number

Ehringer [19] 1960∗ 12 2 x x
Bernheimer [20] 1963 3 6 x x
Bernheimer [20] 1965 6 7 x x
Kish [33] 1988 10 8 x x
Rajput [22] 2008 5 8 x x
Pakkenberg [23] 1965 10 10 x†
McGeer [14] 1977 5 4 x‡
Hirsch [24] 1988 3 4 x‡
German [25] 1989 3 4 x†
Rinne [15] 1989 18 12 x†
Pakkenberg [26] 1991 2 5 x†
Fearnley [27] 1991 35 20 x†
Ma [28] 1997 12 12 x†
Damier [29] 1999 5 5 x‡
Dickson [30] 2008 17 16 x‡
Kordower [16] 2013 9 28 x†‡ x
Iacono [34] 2015 6 6 x‡
Wilson [31] 1996 10 12 x x x
Miller [32] 1999 2 4 x x
Pifl [7] 2014 4 6 x x x x
Goldstein [8] 2013 14 17 x x x

∗This paper was republished in 1998 in English, †assessed by number of melanin positive cells, ‡assessed by number of tyrosine hydroxylase
positive cells, PD, Parkinson’s disease; SN, substantia nigra; VMAT2, vesicular monoamine transporter 2.

obtained via digitization for cell counts from two
studies [14, 15] and from one for axon density [16].
Where variances were not reported for relevant data, it
was imputed by using the maximum ratio of standard
deviation relative to the mean value in the correspond-
ing studies where standard deviations were reported.

Frequentist meta-analyses were performed using
random effects model using R and the metaphor pack-
age. (RStudio v.1.2.5033, R v.3.6.3, metafor v.2.4-0)
First, dopamine tissue levels were analyzed, doing so
separately for the caudate and putamen. Next, cell
body counts in the substantia nigra were analyzed,
as were VMAT2 protein levels for the caudate and
putamen. Insufficient studies of vesicle function and
axonal projection quantities were available for meta-
analysis. The meta-analyses were performed on the
ln-transformed mean differences and mean ratios of
Parkinson’s disease to normal values and reported on
a linear scale.

For analysis of dopamine levels on per cell, per
axon or per VMAT2, and the combinations of per
cell with per VMAT2 and per axon with per VMAT2,
the dopamine value from Parkinson’s disease brains
were scaled accordingly with that value used to
determine the ratios of Parkinson’s disease to nor-
mal. The point estimates for the ratios of cell and
axon numbers as well as VMAT2 levels from ran-
dom effects meta-analysis of those data were used

as scaling factors. As an example, the equation for
the ratio of Parkinson’s disease to normal dopamine
level, scaled for VMAT2 level and cell number
is Scaled DopamineperVMAT2-cell# = (DopaminePD /
VMAT2 ratio / Cell ratio) / DopamineNormal; where
VMAT2 and cell ratios are the point estimates calcu-
lated in this meta-analysis.

The single published report of fiber density from
the substantia nigra reported total density to the stria-
tum. This fiber density was apportioned according to
the point estimate of the relative content of dopamine
within the caudate and putamen calculated in this
analysis. The justification for not assuming equal
innervation between caudate and putamen is based on
imaging studies in Parkinson’s disease patients, both
for treatment naı̈ve [17] and L-dopa treated patients
[18], which show more marked reduction in puta-
men innervation. To test this assumption, the analyses
were repeated with innervation divided equally.

Ideally, meta-regression models would be built
with dopamine as independent variable with cell/
axon number and VMAT2 levels (caudate/putamen)
as covariates. Because measurements of tissue
dopamine and each of these other parameters were
from different sets of brains (except as noted in
Table 1), introducing these covariates is not possi-
ble. Development of these models using presynaptic
axon terminals in the caudate and putamen would be
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expected to provide more precision in the estimates
of intracellular and cytoplasmic levels in each region.
However, due to the lack of such published data,
the surrogate of cell bodies counted in the substantia
nigra was used.

Therefore, ratios were calculated for Parkinson’s
disease relative to normal for dopamine, number
of cells, level of VMAT2 protein and axonal pro-
jection amount. Dopamine levels were adjusted for
the ratios between Parkinson’s disease and normal
brains for these parameters, enabling calculation
of dopamine/cell, dopamine/axon, dopamine/cell/
VMAT2 and dopamine/axon/VMAT2. In each analy-
sis of the ratio of Parkinson’s relative to normal, ratio
of means was method used, and results reported here
as linear transformed results, yielding description of
Parkinson’s disease to normal ratios in dopamine on
cellular, axonal and cytoplasmic basis.

Additional analysis was performed to test the role
of dopaminergic therapy. Because studies did not uni-
formly report whether the medical regimen of patients
included dopaminergic therapy, studies were selected
from the pre-dopaminergic therapy era from those
reporting tissue dopamine content [19–21].

RESULTS

Studies included in the analysis are listed in Table 1
[7, 8, 14–16, 19–34], along with the parameters
included in each. Table 1 provides listings of data
extracted from these studies. [Excel file supplemen-
tary material]. As shown, one study was identified
that reported axonal projection quantity [16]. Two
studies reported differences in vesicular function
using different measures, uptake and binding stud-
ies in one [7] and indirect assessment in the other,
based on dopamine to DOPA ratio [8], which was

insufficient to perform a meta-analysis, thus, VMAT2
protein was used as a surrogate.

The meta-analysis confirmed tissue dopamine lev-
els in the caudate were reduced to 18% of normal
(95% CI: 10, 30%, p < 0.0001) and in the putamen
to 4% of normal (95% CI: 2, 8%, p < 0.0001). Cell
bodies in the substantia nigra were reduced to 29%
of normal (95% CI: 22, 37%, p < 0.0001). VMAT2
levels in the caudate were reduced to 48% of normal
(95% CI: 34, 69%, p < 0.0001) and in the putamen
to 22% of normal (95% CI: 17, 29%, p < 0.0001)
(Table 2). From digitizing graphs, axon density was
calculated at 28% [16].

The proportion of axons to the each of the caudate
and putamen was determined from the calculations
of dopamine content of each region, apportioning the
reported axon density at the same ratio (Table 2). As
the reduction in putamen dopamine was 4.5x that of
the reduction in the caudate (0.18 vs. 0.04), this ratio
was used to allocate 82% of the axon fiber density
to the caudate and 18% to the putamen, or a ratio of
0.23 and 0.05, respectively.

Analyses of dopamine levels scaled to cells, axons
and VMAT2 are shown in Table 3. Accounting for the
decrease in cell or axon numbers in Parkinson’s dis-
ease along with the decrease in VMAT2 levels shows

Table 2
Dopamine related biochemical parameters expressed as Parkin-

son’s to normal ratios as derived via meta-analyses

Parameter Mean Ratio 95% CI p

Dopamine: Caudate 0.18 0.10, 0.30 < 0.0001
Dopamine: Putamen 0.04 0.02, 0.08 < 0.0001
SN Cells 0.29 0.22, 0.37 < 0.0001
VMAT2: Caudate 0.48 0.34, 0.69 < 0.0001
VMAT2: Putamen 0.22 0.17, 0.29 < 0.0001
∗p-value derived by random effects model of log transformed mean
differences expressed on linear scale.

Table 3
Dopamine ratio of Parkinson’s to normal in the caudate and putamen, scaled to the factor(s)

shown as derived via meta-analyses

Scaling Factor(s) Caudate Putamen

Mean Ratio 95% CI p Mean Ratio 95% CI p

Cell 0.71 0.43, 1.18 0.19 0.16 0.08, 0.30 < 0.0001
Axon 0.82 0.50, 1.33 0.42 1.01 0.45, 2.24 0.99
Cell & VMAT2 1.49 0.45, 5.00 0.51 0.75 0.39, 1.45 0.40
Axon & VMAT2 1.87 0.85, 4.11 0.12 4.61 1.95, 10.91 0.001
Pre-Rx Era Subset

Cell 0.64 0.26, 1.61 0.34 0.26 0.06, 1.14 0.073
Axon 0.62 0.21, 1.87 0.40 1.99 0.47, 8.49 0.35
Cell & VMAT2 1.38 0.20, 9.47 0.74 1.29 0.30, 5.58 0.73
Axon & VMAT2 1.72 0.46, 6.43 0.42 9.07 1.92, 42.88 0.005

∗p-value derived by random effects model of log transformed mean differences expressed on linear scale.
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Fig. 2. Dopamine ratio (Parkinson’s to normal) of caudate and putamen (a) - (b) scaled to cell number and VMAT2 levels and (c) - (d)
dopamine scaled to axon number and VMAT2 protein levels.

that on a cellular level, the ratio of Parkinson’s disease
to normal brain free, intracellular dopamine levels in
the caudate appear unlikely to be reduced (adjusted
for cell count and VMAT2 level: 1.49, 95% CI: 0.45,
5.00, p = 0.51 and for axon count and VMAT2 level:
1.87, 95% CI: 0.85, 4.11, p = 0.12). Those in the puta-
men adjusted for cell count and VMAT2 level were
0.75, 95% CI: 0.39, 1.45, p = 0.40 and for axon count
and VMAT2 level were 4.61, 95% CI: 1.95, 10.91,
p = 0.001. Forest plots are shown in Fig. 2.

The assumption was tested that axonal fiber densi-
ties were equally distributed between the two regions.
For the caudate, dopamine level in Parkinson’s dis-
ease relative to normal—adjusted for axon number
and VMAT2 levels was 1.53 (95% CI: 0.72, 3.25,

p = 0.26) and for the putamen was 0.73 (95% CI: 0.38,
1.83, p = 0.33).

The analyses were repeated using dopamine levels
measured in human brains prior to the dopaminer-
gic therapy era, allowing 3 studies published by 1965
[19–21] to be used as sources of dopamine levels.
Dopamine levels in Parkinson’s disease relative to
normal were calculated for the caudate as 0.13 (95%
CI: 0.04, 0.42), p = 0.001 and for the putamen as 0.06
(95% CI: 0.01, 0.29), p < 0.001). Scaled to cell num-
ber and VMAT2 level, dopamine level in Parkinson’s
disease relative to normal calculated for the caudate
was 1.38 (95% CI: 0.20, 9.47), p = 0.74 and for the
putamen was 1.29 (95% CI: 0.30, 5.58), p = 0.73).
Scaled to axon number and VMAT2 level, dopamine
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level in Parkinson’s disease relative to normal calcu-
lated for the caudate was 1.72 (95% CI: 0.46, 6.43),
p = 0.42 and for the putamen was 9.07 (95% CI: 1.92,
42.88), p = 0.005).

DISCUSSION

While irrefutable that the biochemical hallmarks of
Parkinson’s disease is loss of dopamine in the basal
ganglia [1, 3, 4] in parallel to loss of dopaminer-
gic neurons [14–16, 23–30], this analysis provides
the first evidence that intracellular and intracytoplas-
mic dopamine levels in dopaminergic neuron are not
markedly reduced as they are for tissue levels, sup-
porting a role for dopamine and its toxicity as a
contributor to disease progression, as advocated by
several proposed models of disease [9–12]. This anal-
ysis confirms that unadjusted levels of dopamine are
markedly and significantly reduced in the caudate and
even more so in the putamen. When dopamine levels
are evaluated on a per cell or per axon basis, dopamine
levels in the caudate trend lower and putamen levels
are significantly lower than normal per cell, but not
per axon. The magnitude of each reduction appears
less than the tissue level reductions. When dopamine
levels are evaluated based on the combination of
cell number and VMAT2 protein level, the latter
an indicator of the neuronal capability to sequester
dopamine and minimize oxidative damage, dopamine
cytosolic levels are not significantly reduced in the
caudate or putamen of Parkinson’s disease relative to
normal brains. When levels are evaluated based on
the combination of axon number and VMAT2 level,
caudate dopamine trends higher in Parkinson’s dis-
ease and putamen dopamine is significantly elevated
relative to normal brains.

The identification of preserved free, intracellu-
lar dopamine levels means that the risk of cellular
dysfunction and death due to dopamine-mediated
toxicity may represent a novel therapeutic target,
supporting its central role in postulated disease
models and the therapeutic potential of increasing
VMAT2 expression, improving cytoplasmic vesi-
cle function [5, 6], modulating dopamine synthesis
and/or modulating neuromelanin function [5, 35],
as neuromelanin serves to sequester dopamine and
reduce risk of neuronal toxicity. The results using
dopamine tissue level data from patients not treated
with dopaminergic therapies provide reassurance that
the conclusions of preserved and/or elevated cytoso-
lic dopamine levels are not merely a function of

levodopa or other dopaminergic therapies and part
of disease progression. Analyses performed assum-
ing equal distribution of axons between caudate and
putamen indicate a lack of intracellular or cytoso-
lic dopamine depletion and represent an extreme
assumption and thereby add credibility to the findings
herein.

Dopamine causes neuronal cytotoxicity via: oxida-
tive stress, adverse interaction with �-synuclein,
mitochondrial dysfunction and vesicular dysfunction
[10, 36, 37]. Several preclinical models emphasize
the potential relevance of the dopaminergic tox-
icity, wherein the reversible, competitive tyrosine
hydroxylase inhibitor metyrosine was introduced in
order to decrease dopamine synthesis. In a rodent
MPTP model, dopaminergic neuron survival was
enhanced by tyrosine hydroxylase inhibition [38]. In
a rodent 6-OHDA model, tyrosine hydroxylase inhi-
bition preserved dopamine synthetic capacity when
assessed 2 weeks after toxin exposure [39]. And in
iPS dopaminergic neurons from DJ-1 homozygous
patients, tyrosine hydroxylase inhibition reduced
oxidative stress and �-synuclein deposition (whereas
L-DOPA increased both and reduced neuron survival)
[10]. Overexpression of VMAT2 blocked neuro-
toxic effects of MPTP [38]. Similarly, overexpression
of VMAT2 in the mouse MPTP model reduced
dopaminergic neuron toxicity and improved animal
behavior [5, 6]. Together, these data show potential
utility of modulating intracellular dopamine levels in
Parkinson’s disease.

This analysis must be interpreted in the context of
several limitations. First, these meta-analyses include
a small number of studies for each parameter, with
many including only a few data points. Second, cel-
lular dopamine calculations were based on calculated
ratios of cell counts, axon numbers and VMAT2 pro-
tein levels. The ratios were calculated from means
and standard deviations for the values in Parkin-
son’s disease and normals, which required calculation
of variance for the ratios, as the studies did not
report variances for the ratios of Parkinson’s diseaseto
normal brains. Calculating the standard deviation
introduces greater uncertainty. Third, for the parame-
ter of cell body numbers, identification could be based
on melanin staining or presence of the rate-limiting
step in dopamine synthesis – tyrosine hydroxylase.
The data herein were based on the combination of
measures of cell numbers via counting of melanin-
or tyrosine hydroxylase-staining cells. Fourth, all the
data in this analysis are derived from patients with
advanced Parkinson’s disease, limiting the ability



J. Sackner-Bernstein / Intracellular Dopamine in Parkinson’s Disease 1017

to infer that the findings are relevant in early dis-
ease. Fifth, differences in axon number were based
on a single study, rather than meta-analysis of sev-
eral. Nonetheless, the internal consistency of the
findings suggests that the results are reliable, par-
ticularly when considering findings from imaging
studies in clinical Parkinson’s disease [17, 18, 40,
41]. Sixth, because these different parameters were
measured in distinct studies, it is not possible to per-
form meta-regression analysis with these parameters
as covariates, thus the analyses use dopamine levels
scaled to cell/axon numbers and VMAT2 levels. Sev-
enth, the assay for measuring VMAT2 levels detect
levels from both dopaminergic and serotonergic neu-
rons. Pifl addressed this concern by showing the
functional rate of uptake was similar when corrected
for 5-HT nerve-derived VMAT2 protein [7].

Because vesicular uptake rates were not included
in this analysis, the results should be interpreted in the
context of basal dopamine levels, rather than dynamic
changes. However, with any impairment of vesic-
ular function, it is likely that additional elevation
in cytoplasmic levels is likely. Pifl and colleagues
report that vesicular uptake rate is estimated to be
reduced by 56% in the caudate and 90% in the puta-
men [7]. Goldstein et al report putamen vesicular
uptake rate is 88.5% lower in the putamen [8]. Thus,
the data presented in this manuscript may underes-
timate peak levels of intracytoplasmic dopamine in
the basal ganglia in advanced Parkinson’s disease.
An additional implication relates to the observation
that more extreme reduction in tissue dopamine con-
tent of the putamen is accompanied by significant
elevations in calculated cytosolic dopamine, which
supports role of dopamine in disease progression,
though does not provide clarity on whether this is
due to toxic effects on the mitochondria, cytosolic
interactions with �-synuclein or other mechanism.

In summary, advanced Parkinson’s disease is asso-
ciated with relatively preserved intracellular and
intracytoplasmic dopamine in both the caudate and
putamen when accounting for cell numbers, axon
numbers and VMAT2 levels. These meta-analyses
support the view that in advanced Parkinson’s dis-
ease, the putamen is more dramatically affected than
the caudate in its dopamine content and VMAT2
levels. While critical for these observations to be
confirmed in future studies, the findings support
the relevance of modulating presynaptic cytoplasmic
dopamine levels in Parkinson’s disease and support a
central role of dopamine toxicity in models of disease
progression.
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