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Welf Löweb,e

a Department of Computer Science, Katholieke Universiteit Leuven, Belgium
b Department of Computer Science and Media Technology, Faculty of Technology, Linnaeus University,
Sweden
c School of Innovation, Design and Engineering, Division of Product Realisation, Mälardalen University,
Eskilstuna, Sweden
d Department of Science and Technology, Linköping University, Sweden
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Abstract With the advancing digitisation of society and industry we observe a progressing blending of
computational, physical, and social processes. The trustworthiness and sustainability of these systems will
be vital for our society. However, engineering modern computing systems is complex as they have to: i)
operate in uncertain and continuously changing environments, ii) deal with huge amounts of data, and iii)
require seamless interaction with human operators. To that end, we argue that both systems and the way we
engineer them must become smarter. With smarter we mean that systems and engineering processes adapt
and evolve themselves through a perpetual process that continuously improves their capabilities and utility
to deal with the uncertainties and amounts of data they face. We highlight key engineering areas: cyber-
physical systems, self-adaptation, data-driven technologies, and visual analytics, and outline key challenges
in each of them. From this, we propose a research agenda for the years to come.
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1. Introduction

The advancing digitisation of society and industry leads to an increasing blend of computational and
physical processes (Baheti & Gill, 2019; Lee, 2008). This progressing integration of cyber and physical
elements combined with a seamless integration of social elements (Liu, Yang, Wen, Zhang, & Mao, 2011;
Zeng, Yang, Lin, Ning, & Ma, 2020) and the increasing amount of data that needs to be processed results
in computing systems with software in a predominant role. Consequently, virtually everything we do today
relies directly or indirectly on software. The future of our society depends on the trustworthiness of these
systems, i.e., the compliance of the systems with their business, technical, and legal requirements, and
their sustainability, i.e., the longevity of these systems and their infrastructure. Examples are reliable and
continual intelligent traffic control (Lin, Wang, & Ma, 2017), smart grids (Tuballa & Abundo, 2016), and
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manufacturing automation in Industry 4.0 (Zhou, Liu, & Zhou, 2015). Since these systems operate in
uncertain and continuously evolving environments, we argue that both the systems and the way we engineer
them must become smarter. We define “smarter” as follows:

Systems and engineering processes continuously adapt and evolve themselves from experience
and stakeholder input through a perpetual process that continuously improves their capabilities
and utility to deal with the uncertainties and new data they face throughout their lifetime.

As such, smarter is a relative concept that expresses an increase of capabilities and utility of a system
over its lifetime. These system enhancements are obtained by mitigating uncertainties and processing new
data that the system encounters over time. Increasing capabilities can be measured by enhancements in the
functional capacity and abilities of the system (i.e., the system can deal with tasks that it was not able to deal
with before). Increasing utility can be measured by enhancements in the qualitative concerns of the system
(i.e., the system can perform tasks more efficiently, reliably, etc.).

To tackle the challenges of systems that blend cyber, physical, and social elements, other researchers
have argued for the need of smartness. We discuss a selection of relevant work. Jazdi (2014) highlights
the need to equip Industry 4.0 systems with smart actuators, sensors, and telecommunication technologies,
providing these systems access to the higher-level processes and services. Bures et al. (2015) emphasise
that smartness of computing system enables them to deal with environment dynamics and uncertainty, cope
with external threats, and optimise their behaviour to achieve the best possible outcome. The authors high-
light that smartness is primarily implemented in software typically through cooperative behaviour, self-
awareness, self-adaptation, and self-optimisation. Yu and Xue (2016) refer to smartness of the electricity
grid as the integration of enabling information and communication technology with other advanced tech-
nologies that enable electric energy generation, transmission, distribution, and usage to be more efficient,
effective, economical, and environmentally sustainable. Koutsoukos et al. (2018) investigate smart trans-
portation systems using a modelling and simulation environment. Smartness in this context relates to the
ability of the system to deal with attacker–defender behaviour, including vulnerability analysis to traffic sig-
nal tampering, resilient sensor selection for forecasting traffic flow, and resilient traffic signal control in the
presence of denial-of-service attacks. Tavčar and Horváth (2019) survey smart cyber-physical computing,
distinguish four levels of smartness mapping to increasing challenging types of changes to be tackled by
the systems. The article outlines a set of techniques to equip computing system with smartness, relying on
reasoning, learning, adapting, and evolving capabilities. Finally, Zeng et al. (2020) emphasises the role of
smart spaces in cyber-physical-social systems with typical applications such as smart home, smart trans-
portation system, and smart medical service system. The authors highlight the importance of understanding
user intentions as a critical aspect regarding smartness.

The need for smart systems is also underpinned by recent discussions within the international research
community, see e.g., Bures et al. (2018); CPSWeek (2021), reflected in several surveys, see e.g., Gunes et
al. (2014); Stankovic (2016); Zhou et al. (2015), and recent funding programs, see e.g., EU (2021b); NSF
(2021). The required shift relates to how the next-generation computing systems should be developed and
what methods and techniques need to be brought together in order to achieve the required smartness while
dealing with the complexity arising from the scale, connectivity, and inherent uncertainty of these systems.
The inherent blend of cyber, physical and social components demands for novel engineering approaches as
these systems present a combination of characteristics that existing modelling and development methods
have difficulties addressing, including a widespread uncertainty and disruptions in a broad variety of chang-
ing contexts and continuous encounter with new situations, humans as integral elements, and the presence
of large volumes of data that needs to be processed.

Our work complements these existing perspectives on smartness of systems by taking a more holistic
perspective that integrates systems operation with the processes to engineer them. In particular, we intention-
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ally use the term “smarter” underpinning that adaptation and evolution is an enduring process that concerns
systems operation and the engineering processes, spanning from inception of systems to and throughout
their operation in the real world. Key characteristics of smarter systems and processes are adaptation that
refers to the ability of mitigating anticipated uncertainty in order to keep satisfying the goals (Esfahani &
Malek, 2013; Mahdavi-Hezavehi, Avgeriou, & Weyns, 2017), whereas evolution refers to the ability of ac-
commodating unanticipated uncertainty in order to handle goal changes and novelty (Calinescu, Mirandola,
Perez-Palacin, & Weyns, 2020; Weyns, Caporuscio, Vogel, & Kurti, 2015).

Our perspective on smartness relies on the observation that modern computing systems are often feedback-
driven characterised by a tight coupling between software and physical elements, the presence of large
volumes of data, and a seamless integration of humans in the loop (Selic, 2020; Sztipanovits et al., 2012;
Zeng et al., 2020). Since these systems face uncertainties that are difficult or even impossible to predict
before deployment, engineers may not be able to obtain sufficient knowledge to make all design decisions
before the system is deployed. Hence, some design decisions are postponed until after deployment, that
are then enacted through continuous adaptation and evolution (Weyns, 2020). In this view, system engi-
neering and system operation get blended (Baresi & Ghezzi, 2010). The ubiquity and scale of systems and
the rapid integration with of data-intensive resources such as smart cameras introduce the need for handling
previously unknown amounts of data. This requires novel advanced data driven technologies that enable
smarter systems to learn from experiences and examples by exploiting data (Gandomi & Haider, 2015).
Smarter systems and their engineering processes rely on knowledge obtained from stakeholders to drive
system adaptation and guide its evolution. This calls for advanced technologies for incorporating humans in
the loop. Visual analytics (Thomas & Cook, 2005) is the field that investigates ways to better comprehend
large and complex data by combining the strengths of human and computational data processing, provid-
ing the means for comprehensible interaction between systems and stakeholders. The seamless integration
of continuous adaptation and evolution supported by data driven technologies and visual analytics aims at
mitigating the effects of uncertainty and providing means for satisfying stakeholder requirements in a trust-
worthy and sustainable manner across the lifetime of the system. This seamless integration is the basis of
being smarter as posited in this paper.

The aim of this paper is to outline a research agenda for the engineering and operation of smarter
systems. Our particular focus is on computing systems that blend cyber, physical, and social elements.
Figure 1 gives an overview of the approach we follow to devise this research agenda. We leverage on the
state of the art in smart systems to define key objectives for smarter systems. Driven by these objectives
we identify challenges in four key areas of smarter systems: cyber-physical systems that provide a set of
basis challenges, and self-adaptation that targets uncertainties, data-driven technologies that target large
amounts of data, and visual analytics that targets humans in the loop. With this analysis in hand, we outline
a research agenda for smarter cyber-physical systems comprising three themes: assurances for unknowns,
self-explainability, and smarter ecosystems.

It is important to highlight that we selected three key emerging demands for smarter systems based on
the analysis of the state of the art (uncertainties, large amounts of data, and humans in the loop). For each of
these demands we defined concrete challenges in corresponding domains (cyber-physical systems as a basis,
self-adaptation, data-driven technologies, and visual analytics) resulting in three research themes (assurances
for unknowns, self-explainability, and smarter ecosystems). As such, the research agenda takes a particular
focus. Other complementary challenges exist, ranging from energy efficiency (Schmidt & Åhlund, 2018) up
to para-functionalities such as empathy and emotions that are extensively studied in socialised robotics or
embodied AI (Kephart et al., 2019).

This paper targets primarily researchers with an interest in smarter cyber-physical systems, although
all stakeholders with an interest in the development and operation of smarter computing systems may find
inspiration in the work presented in this paper. In Section 2, we start with outlining the key objectives of
smarter systems both for systems and engineering processes. Driven by these objectives, we then highlight
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Objectives

System Capabilities

 1. To establish confidence
 2. To assure compliance
 3. To maintain resilience

Engineering Processes

 1. Configurable engineering 
     processes
 2. Adaptive engineering 
     processes
 3. Coordinating offline and 
     online activities

Challenges

Cyber-Physical Systems
 

1. Integrated design environment 
 2. Livelong dependability

Self-Adaptation
 1. Exploit machine learning  
     & search-based techniques
 2. Deal with unanticipated  
     change

Data Driven Technologies
 
 1. Guarantees for qualities
 2. Understanding data driven 
     models

Visual Analytics 

 1. Deal with speficic 
     characteristics of data of CPS 
 2. Interpretable and explainable                  
     machine learning models

Smart Systems
Trustwortiness and Sustainability 

Research Agenda for Smarter Cyber-Physical Systems

Assurances for Unknowns
 
  1. Assurances for decentralized CPS
  2. Assurances for smarter CPS with unknowns

Smarter Ecosystems
 

  1. Unified modeling approach for smarter CPS
  2. Self-governing smarter CPS

Self-Explainability 
 
  1. Self-learning CPS 
  2. Self-Explainable CPS

Uncertainties Human in the loopLarge amouts of data

Fig. 1. From Objectives to Challenges to the Research Agenda

four core areas that underlie the engineering and operation of smarter systems and highlight key challenges
in each of them in Section 3. Section 4 then brings together the pieces, outlining a research agenda to tackle
the challenges. Finally, we wrap up and draw conclusions in Section 5.

2. Key Objectives for Smarter Systems

The key research objectives for smarter systems centre on two drivers that are broadly considered a as
key for future computing systems that operate under uncertainty: trustworthiness and sustainability, see for
instance EU (2021a). Trustworthiness refers to confidence of stakeholders in smarter systems and the com-
pliance of systems with business, technical, and technological requirements, as well as legal obligations.
Gol Mohammadi (2019) argues that trustworthiness is a key success factor in the acceptance and adoption
of cyber-physical systems. Establishing trust requires methods that cover all phases of development and op-
eration: requirements engineering, system design, reliable evaluation, run-time maintenance, and evidence-
based assurance. We share this point of view in this work. Sustainability generally refers to the endurance
of systems and processes. In particular, technical sustainability refers to “the longevity of information, sys-
tems, and infrastructure and their adequate evolution with changing surrounding conditions” (Becker et al.,
2015). We share that view in this work. To achieve the drivers trustworthiness and sustainability, we look at
smarter systems from two complementary angles: system capabilities and engineering processes.
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2.1. System capabilities objectives

To ensure trustworthiness and sustainability, we distinguish three core capabilities of smarter systems,
leveraging on the design principles proposed in (Gupta et al., 2011; Tavčar & Horváth, 2019): confidence,
i.e., stakeholders are confident that the systems can be relied upon and will remain doing so over time;
compliance, i.e., the systems behave according to specification throughout their lifetime; and resilience, i.e.,
the systems provide an acceptable quality of service also when facing instability and uncertainty inherent
to ever-changing settings. Hence, the first key objective is to establish and maintain confidence, compli-
ance, and resilience throughout the lifetime of smarter systems that operate under continuous change in
stakeholders’ goals, environments, and the systems themselves. In more detail:

(1). To establish confidence: establishing confidence among the system’ stakeholders requires the de-
signers of smarter system to formulate and translate their concerns to system requirements and con-
straints. This raises several open questions: Can we build smarter systems that are trustworthy and
sustainable by construction, and if not, how can we ensure trustworthiness and sustainability during
operation? How can we make the traditional black-box analysis methods transparent for the analysts
and other stakeholders? How can we trust and sustain a smarter system that is composed of a variety
of heterogeneous components (sub-systems and stakeholders)?

(2). To assure compliance: assuring that the behaviour of smarter systems stay within the business, tech-
nical, and legal constraints requires designers to formulate compliance requirements and techniques
to assure them throughout the lifetime of systems. This raises open questions, such as: How to assure
system compliance in an ever-changing and uncertain setting and how can we test and verify compli-
ance requirements? How to employ data science and analytics techniques to provide guidelines and
supporting strategies—well-justified in the collected data—to sustain the system in the long term?

(3). To maintain resilience: maintaining an acceptable level of service of a operating smarter system in
the face of changes and faults requires appropriate methods that span the full lifetime of a system. How
can we build smarter systems that adjust themselves in an ever-changing and uncertain environment
without losing trust, compliance and quality? How to integrate adaptation processes with evolution
processes of smarter systems to satisfy short- and long-term stakeholder concerns in a continuously
evolving operational context?

2.2. Engineering processes objectives

Ensuring trustworthiness and sustainability requires advanced engineering processes that span the life-
time of smarter systems, from development to operation and maintenance. Leveraging on insights proposed
in (Andersson et al., 2013; Tavčar & Horváth, 2019), we argue that smarter systems require engineering
processes that tightly integrate development time activities and runtime activities, uniting evolution and
adaptation. This implies that a deployed smarter system is equipped with mechanisms to identify the need
for change and coordinate with offline development support. Hence, the second key objective is to devise
new principled engineering processes for smarter systems that seamlessly integrate engineering activities
with system activities, spanning across the full system life-cycle. In more detail:

(1). Configurable engineering processes: smarter systems require configurable life-cycle processes with
the necessary variability to be adapted and evolved as systems and operating conditions change. This
raises open questions such as: What are the requirements of configurable engineering processes and
how can they be defined? How can such processes be verified for completeness and correctness
properties, and to what extent is this needed? What types of process models are suitable for smarter
systems?
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(2). Adaptive engineering processes: processes for engineering smart systems need to adapt and evolve
in support of trustworthy and sustainable system adaptations and evolution. This raises open questions
as: What type of offline and online mechanisms for engineering processes are required to perpetually
support trustworthiness and sustainability of smarter systems? What are the triggers for dynamic
reconfiguration of engineering processes? How to provide on the fly guarantees for completeness and
correctness properties of processes?

(3). Coordinating offline and online activities: seamless integration of evolution and adaptation re-
quires the coordination of online (machine-driven, human-supported) and offline (human-driven, tool-
supported) activities. This raises challenging questions such as: How may activities of running sys-
tems share data and knowledge with the offline activities? What role may simulation play in unifying
offline and online activities? What type of abstractions and coordination mechanisms connect cyber,
physical, and human elements, within and across development, adaptation, and evolution activities?

2.3. Illustrative industrial scenario

We illustrate how we may engineer new smarter systems using a scenario of a smart grid. Parts of
the scenario are intentionally speculative and discuss future capabilities where research contributes new
knowledge that drive the development of methods, techniques, and tools for engineering and operating
smarter systems.

Smart Grid. The power grid comprises power providers (the generation side) and consumers (the consump-
tion side) that are connected through transmission and distribution lines. The grid is operated by one or
more control centres. Trends are pushing control closer to the equipment and adding capabilities to react
autonomously to events, without human intervention. The power grid domain is going through a paradigm
shift due to multi-fold challenges.

Challenges. On the power generation side, the rapid uptake of solar panels and other forms of local en-
ergy generation systems, energy production is no longer owned by the traditional large players alone. At
the same time, there is an ecological (and political) drive to produce clean energy to curb the greenhouse
gas emissions coming from the fossil-based energy sources. The clean energy production from renewable
sources is intermittent and, hence, comes with uncertainty in both the amount of energy produced and the
stability of the produced power in terms of magnitude, phase, and frequency. On the consumption side, the
traditional bulk of industrial consumers are also shifting. A classic example is the energy consumed by the
data centres, which is for instance slated to be 20% of the total energy consumption in the US. Similarly,
millions of plug-in electric vehicles will emerge in the coming years that will disrupt the charging infras-
tructure demands. Rapid urbanisation in different parts of the world is generating a modified need for large
commercial establishments and bulk residential consumer base. Importantly, the nature of the load in the
setups mentioned above is mostly non-linear, stressing the regular operation of the grid. In order to meet
the challenges, operators and grid owners have to find new solutions that are trustworthy and sustainable,
i.e., ensure the compliance of the grid with its business, technical, and legal requirements, and its longevity
regardless of the changing conditions it will face throughout its lifetime.

A Smarter Grid. The multitude of challenges requires a holistic solution that considers the power system as
an entailed cyber-physical system. The resulting smarter grid offers interfaces for monitoring and operating
the grid by software. A typical configuration combines smart meters and smart appliances on the consump-
tion side and renewable energy resources and smart distribution equipment on the generation side. Evidently,
the smarter grid needs to be operational 24/7. Any change action in the grid, from a simple adaptation of
the running configuration up to an invasive upgrade of its functionality, needs to be applied life, without
any downtime. As the smart grid needs to provide its services without interruption over a long period of
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time, change management necessarily becomes a perpetual process. Uncertainty is impacting smart grid
design and operations. The complexity and decentralisation of the system make it difficult to comprehend.
Uncertainty is caused by events that are impossible to anticipate in time, for example:

(1). Blackouts caused by natural disasters or cascading human errors;

(2). Intentional cyber-warfare attacks by hackers;

(3). Unprecedented grid pollution due to unaccountable generation and load that fails to meet peak de-
mand, leading to brownouts, and short interruptions.

One trend for grid services is shorter response times and planning horizons. Another trend is to use streams
of real-time data in decision-making. Seamless operation of such services with minimal disruption and
downtime calls for interdisciplinary research on autonomous adaptation and evolution to mitigate uncer-
tainty. Health care, industries, charging stations, and many ancillary services rely on the electricity grid. Es-
tablishing confidence among these stakeholders and assuring compliance with their requirements is crucial
for the trustworthiness and sustainability of the smarter grid. Such complex systems are not only vulner-
able to potential faults, but also malicious attacks if the cyber-infrastructure is not maintained proactively.
This calls for self-protection against cyber-threats that monitors and analyses the system to detect malicious
behaviours, and plan and enact adaptations to protect the system and maintain its resilience at any time.

A smarter grid will not be completely autonomous and human operators and engineers will play an im-
portant role; i.e., the synergy between the operating system and its stakeholders will be crucial in making
the grid smarter. The grid domain is subject to continuous change, with new technologies emerging virtu-
ally every day; consider for instance new emerging methods for large-scale energy storage. This calls for
configurable engineering processes that seamlessly align their activities with the changing technologies and
operating conditions the grid faces throughout its lifetime. Adaptive engineering processes enable dynam-
ically adjustment of engineering activities to handle uncertainties caused by incidents as listed above and
evolve the grid with new emerging technologies. Ensuring resilient operation of the grid requires coordi-
nating the activities of engineers supported by tools with the activities of the operational grid. Support for
bi-directional comprehensive communication between the system and stakeholders will therefor be crucial.

3. Core Areas and Challenges

In this section, we summarise four core research areas that are central in the engineering of smarter sys-
tems: cyber-physical systems, self-adaptation, data driven technology, and visual analytics. Cyber-physical
systems provide a basis for smarter systems. The other three areas target key emerging demands for smarter
systems: self-adaptation targets uncertainties, data-driven technologies target large amounts of data, and vi-
sual analytics are key to humans in the loop. We highlight representative state of research in each of the four
areas and outline key research challenges for each area. Then we explain how the four areas complement
one another as a basis for a research agenda.

3.1. Cyber-physical systems

Cyber-Physical Systems (CPS) are engineered systems that are built from, and depend upon, the seam-
less integration of computational and physical components (Bures et al., 2015; Lee, Bagheri, & Kao, 2015).
Cyber-physical systems are becoming increasingly complex, critical, ubiquitous and pervasive. Research
shows that the complexity is a result of three main factors (Banerjee et al., 2012; Sztipanovits et al., 2012;
Tavčar & Horváth, 2019; Tokody, Papp, Iantovics, & Flammini, 2019): (i) size of the software and of the
whole system (system-of-systems) due to non-straightforward functional requirements to be fulfilled; (ii)
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hardware and software heterogeneity due to diverse embedded systems architectures, protocols, manufac-
turers and connection facilities, possibly including legacy devices; and (iii) distribution due to large networks
of connected devices, including the Internet of Things (IoT), Industry 4.0, and domains with strict goals such
as Intelligent Transportation Systems and e-health. These complexities raise challenges; we highlight two
of the key challenges that are driven by the objectives of smarter systems.

A first challenge is to devise integrated design environments for Model Driven Engineering (MDE) of
cyber-physical systems leveraging on standard high-level languages like the Unified Modelling Language
(UML) and the Systems Modelling Language (SysML) (D’Angelo, Napolitano, & Caporuscio, 2018). A
crucial advanced feature of an integrated design environment for smarter cyber-physical systems will be the
ability to handle the heterogeneity that arises from compositional arrangements of analogue and digital hard-
ware, control and application software and middleware, and coded and run-time obtained cyberware. Fur-
thermore, multi-paradigm modelling —including multiple levels of abstraction, multi-formalism modelling,
and meta-modelling (Ciccozzi, Tichy, Vangheluwe, & Weyns, 2019; Fitz, Theiler, & Smarsly, 2019)— with
domain specific languages and appropriate model-to-model transformations would enable a set of auto-
mated analysis supporting cyber-physical system assessment and certification against international security
and safety standards (Flammini, Marrone, Nardone, Caporuscio, & D’Angelo, 2020), e.g., ISO/IEC 15408,
IEC 61508. Tackling the first challenge will contribute to the trustworthiness and sustainability of smarter
cyber-physical systems by establishing confidence among stakeholders and ensuring compliance of cyber-
physical systems with their requirements, and support configurable and adaptive engineering processes.

A second challenge is providing the necessary levels of livelong dependability in the face of uncertainty,
including reliability, security and performance of CPS (Bennaceur et al., 2019; Pagliari, Mirandola, & Tru-
biani, 2020; Ratasich et al., 2019). Cyber-physical systems often operate for many years during which these
systems are exposed to vulnerabilities unknown at development time. Software upgrades are not straight-
forward in cyber-physical systems due to potential dependability implications, e.g., constraints of safety
certification. Hence, securing critical and non-critical functionality needs to be distinguished. Besides
cyber-security, dependability issues need to be addressed, such as protocol incompatibilities between het-
erogeneous devices manufactured by diverse vendors. Understanding and mitigating such causes is crucial
for cyber-physical systems (Caporuscio, Flammini, Khakpour, Singh, & Thornadtsson, 2020). Featuring
higher levels of autonomy and intelligent behaviour can fuel advanced prediction realising “proactive de-
pendability.” New paradigms like “digital twins” support real-time prediction of problems through run-time
“what if” simulations (Tao, Qi, Wang, & Nee, 2019). Tackling the second challenge will contribute to the
trustworthiness and sustainability of smarter cyber-physical systems through the resilience of the systems
in face of changes and the coordination of offline and online activities to achieve a seamless integration of
evolution and adaptation.

3.2. Self-adaptation

In 2003, IBM released a manifesto referring to “a looming software complexity crisis” that was caused
by the increasing complexity of installing, configuring, tuning, and maintaining computing systems (IBM,
2003; Kephart & Chess, 2003). This led to the notion of “self-adaptation,” i.e., systems that can adapt them-
selves autonomously or with minimal human intervention. The motivation for self-adaptation is dual; on the
one hand it offers a means to free system administrators from the details of managing computing systems
that run 24/7; on the other hand it enables systems to deal with uncertainties that were difficult to foresee
before deployment (Weyns, 2020). A common approach to realise self-adaptation is by means of an external
feedback loop that realises four basic functions: Monitor, Analyse, Plan, and Execute. These functions share
Knowledge, hence, the model is often referred to as MAPE-K. Researchers have argued for an architecture
perspective on engineering self-adaptive software systems (Garlan, Cheng, Huang, Schmerl, & Steenkiste,
2004; Kramer & Magee, 2007), providing generality of concepts and an appropriate level of abstraction to
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define self-adaptive systems and to reason about adaptation at runtime. Blair, Bencomo, and France (2009)
emphasise the role of software models at runtime as an extension of model driven engineering techniques
to the runtime context. Runtime models provide abstractions of the system and its goals serving as a driver
and enabler for automatic reasoning about system adaptations during operation. A recent analysis concludes
that the area is currently in the phases of internal and external enhancement and exploration (Weyns, 2019).
This implies that research is consolidating by showing initial evidence of its value, but industrial validation
is needed. We highlight two open challenges in this area that are driven by the objectives of smarter systems.

A first important challenge is exploiting machine learning and search-based techniques. that can play a
central role in virtually every stage of adaptation, from processing large amounts of data, performing smart
analysis and machine-man co-decision making, to coordinating adaptations in large-scale decentralised set-
tings (Gheibi, Weyns, & Quin, 2021). First results in this direction have been already been presented, see
for instance Cheng, Ramirez, and McKinley (2013); Van Der Donckt, Weyns, Quin, Van Der Donckt, and
Michiels (2020). Smarter systems inherently will require techniques that are efficient as they need to be
applied at runtime. Tackling the first challenge will primarily contribute to trustworthiness of smarter sys-
tems by assuring their compliance with stakeholder requirements and maintaining resilience of the operating
system during system adaptation.

A second challenge is dealing with unanticipated change, a challenging characteristic of smarter sys-
tems. An intriguing question is to what extent software can handle conditions that were not anticipated
when developed. One perspective on tackling this problem is to seamlessly integrate self-adaptation, i.e.,
machine-driven adaptation to deal with known unknowns, with evolution, i.e., the human-driven updates to
deal with unknown unknowns, which goes back to the vision proposed in the seminal work of Oreizy et
al. (1999). ActivFORMS is one approach in this direction (Weyns & Iftikhar, 2019). Another perspective
would be to conceive a system as a dynamic composition of learning processes, and enhance the system then
with self-learning capabilities. Calinescu et al. (2020) present an interesting survey on the perception of the
research community on handling unanticipated changes. Tackling the second challenge will be pivotal to a
seamless integration of online machine-driven activities with offline human-driven activities, contributing to
the trustworthiness and sustainability of smarter systems.

3.3. Data driven technologies

The ubiquity of environment interaction, computing, communication, and storage technologies provides
access to previously unknown amounts of data. The objective of data driven technologies is to learn from
experiences and examples by exploiting data. To that end, these technologies transform data into infor-
mation into actionable knowledge (value) while managing challenging quantities (volume, velocity) and
qualities (variety, veracity, validity) of data (Gandomi & Haider, 2015). Dealing with data quantity and
quality relies on technologies such as parallel and real-time computing and compiler technologies (includ-
ing meta-modelling, interpreting, and composition of heterogeneous data sources), while transforming data
into actionable knowledge relies on technologies such as data-mining, machine learning, simulations, and
context-awareness (Kessler & Löwe, 2012; Österlund & Löwe, 2018). We highlight two challenges on data
driven technologies connected to the objectives of smarter systems.

The first challenge is to ensure guarantees for properties of systems that rely on data driven models
throughout their lifetime. Data driven applications often outperform traditional ones in performance and
accuracy on average. While this is good enough for many scenarios, some others need stricter guarantees
even in the corner cases. For instance, a real-time control applications must guarantee a response before the
deadline that is set by physical timing constraints; the control output signals must guarantee the stability of
the controlled system for all observed input etc. This is difficult if the transfer function is complex, e.g.,
as a result of deep learning with several thousands of parameters. Verified AI (Seshia & Sadigh, 2016)
aims to validate and guarantee system capabilities for all input, even in the corner cases. Moreover, when a
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continuous learning loop adapts the application based on new data, it is difficult to maintain and guarantee
the capabilities of the application. Again, this applies to the functional correctness of the system and also
to non-functional properties such as response time, security, and safety. The ability to ensure guarantees for
functional and non-functional properties supports compliance of smarter systems with their requirements
and maintain their resilience during operation, contributing to trustworthiness. The ability to maintain the
guarantees over time makes smarter systems more sustainable.

The second challenge is to provide methods and techniques for understanding data driven models to
support data driven applications and to transfer knowledge to other settings. It is related to the former but
centred more around the human users and system engineers. Nowadays, it is textbook knowledge that the
power of data-driven approaches is inversely proportional to their interpretability, cf. James, Witten, Hastie,
and Tibshirani (2014). For instance, a linear regression model in one variable is less powerful and accurate,
but easier to understand and to interpret, than a deep learning model in hundreds of variables with dozens of
layers and thousands of parameters. Therefore, Explainable Artificial Intelligence (XAI) (Došilović, Brčić,
& Hlupić, 2018; Gunning & Aha, 2019; Turek, 2016) aims at making even the accurate data-driven mod-
els understandable, interpretable, and trustable. More specifically, it “produces more explainable models,
while maintaining a high level of learning performance (prediction accuracy), and enables human users to
understand, appropriately trust, and effectively manage the emerging generation of artificially intelligent
partners.” This would also allow to generate repeatable actionable engineering knowledge (human intelli-
gence) that can be transferred to new application cases and areas. Tackling this second challenge will be
pivotal in coordinating the runtime activities of system adaptation with the human engineering activities for
evolving smarter systems. This contributes to the sustainability of smarter systems.

3.4. Visual analytics

Visual analytics, which is defined as “the science of analytical reasoning facilitated by interactive visual
interfaces” (Thomas & Cook, 2005), investigates ways to better comprehend large and complex data by
combining the strengths of human and computational data processing. Visual analytics plays a crucial role
in achieving a seamless integration of continuous adaptation and evolution that is required to mitigate uncer-
tainty and ensuring stakeholder requirements in a trustworthy and sustainable manner across the lifetime of
the system. The field of visualisation can be subdivided into two main sub-fields. On the one hand, scientific
visualisation that focuses on visualising 3-dimensional data and temporal processes; here the spatial aspects
of the data are crucial to correctly reflect the positions of the visualised real-world objects. On the other
hand, information visualisation that focuses on abstract data (e.g., multidimensional or network data) and its
visualisation through a visual mapping process. The resulting interactive visual representation should repre-
sent the abstract input data and support sense-making of the data, regardless of the many different data types,
such as plain text, spatial, temporal and network data (Kerren & Schreiber, 2012). Besides visualisation,
human visual perception and cognition are key areas of visual analytics that are naturally human-centred.
They investigate the effects that user interfaces have on the analytics process’ results, that is, to what degree
the interface supports the user in successfully completing the analysis goal at hand. We highlight two key
challenges of visual analytics in the following.

A first challenge is to deal with specific characteristics of data of cyber-physical systems, such as uncer-
tainty in the data, the sheer size and complexity of real-world data in this context, and the open-endedness of
these systems. These issues in combination with temporal aspects (e.g., introduced by streaming data) put
high demands on visual analytics solutions but will be pivotal in the design and application of engineering
processes for perpetual adaptation and evolution as required in smarter systems. Visualisation systems for
analysing large-scale online social media text data are excellent showcases for addressing this specific chal-
lenge (Kucher, Paradis, Sahlgren, & Kerren, 2017). Tackling this first challenge contributes to configurable
and adaptive life-cycle processes for smarter systems, enhancing the sustainability of smarter systems.
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The second challenge is to ensure interpretable and explainable machine learning models with the help
of interactive visualisation (Liu, Wang, Liu, & Zhu, 2017; Sacha et al., 2017) (cf. explainable AI above).
Visual analytics tools for machine learning will contribute to increase the interpretability, explainability, and
trust into such methods (Chatzimparmpas et al., 2020). An example is the t-viSNE approach for interactive
assessment and interpretation of t-SNE projections (Chatzimparmpas, Martins, & Kerren, 2020). Tackling
the second challenge will support smarter systems to communicate experiences in an understandable manner
to engineers, users, and other stakeholders, where visual analytics can play a key role in achieving this
goal. Tackling this second challenge will be pivotal in the seamless integration of evolution and adaptation
activities, contributing both to the trustworthiness and sustainability of smarter systems.

3.5. Synergies between core areas

As explained, we have selected cyber-physical systems, self-adaptation, data driven technology, and vi-
sual analytics as core areas for future research on smarter systems. The choice for these areas is motivated by
their mapping to key characteristics and demands of smarter systems. Yet, we acknowledge that this choice
implies a particular viewpoint on the research challenges for smarter systems. Our aim is not to be exclu-
sive; other viewpoints can be defined starting from different angles that would provide complementary chal-
lenges. In this section, we outline principle connections between cyber-physical systems, self-adaptation,
data driven technology, and visual analytics that lead to synergies for creating smarter systems. Our aim is
not to be exhaustive, but rather to highlight examples that illustrate (some of) these synergies.

CPS and data driven technologies. Model-based simulations of cyber-physical systems can create huge
amounts of labelled data at low costs. Such data can be pivotal for employing more advanced learning tech-
nologies, such as deep learning. More precisely, simulations can be conducted under controlled conditions
(the ground truth labelling) to generate observations. Deep learning can then map these and similar real-
world observations to the similar root cause conditions. For example, in the Smart Grid scenario, faults can
be injected at different segments of the power lines and the corresponding simulated time series observations
at all sensors can be captured. This generates a massive amount of data sufficient for training a deep learning
model for the inverse mapping, i.e., mapping sensor observations to fault locations.1

Visual analytics for data driven technologies. A challenge with machine learning is that approaches
with higher predictive power, such as deep learning, provide less human-understandable explanations for the
underlying phenomena and vice versa. Also, finding the right setup of predictors and hyper-parameters needs
human insights. Visual analytics allows creating human insights in complex (technical) phenomena that are
connected with huge data sets. This is a way to improve the understandability of and, hence, establishing
trust for stakeholders in (deep) learning models and reducing the engineering effort for developing and
training data driven models.

Self-adaptation for data driven technologies. Hyper-parameter optimisation and feature engineering in
machine learning are mainly human efforts today. They are partially supported by automated approaches,
such as systematic optimisation (and even a self-application of machine learning). There exists, however,
also an opportunity to generally understand these processes as self-adaptation, where machine learning is
the managed system for which hyper-parameters and features need to be selected and self-adapted, based on
observations such as amount and kinds of data available, current loss, etc.

1For an example, see the Linnaeus University Centre for Data Intensive Sciences and Applications: https://lnu.se/forskning/sok-
forskning/linnaeus-university-centre-for-data-intensive-sciences-and-applications/saddprojekt/ground-fault-location/.
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Data driven technology for self-adaptation. Self-adaptation maps monitored observations to change ac-
tions that, in turn, can later be observed being successful to some degree. Central to this perpetual loop is
the creation of knowledge that is used by the self-adaptation feedback loop to reason. The natural way of au-
tomatically creating knowledge from observations is machine learning, i.e., presumably successful actions
as a reaction on yet unseen observations can be trained using supervised and feedback learning. Delegat-
ing knowledge acquisition and pre-processing of large amounts of data for self-adaptation to data-driven
technologies will be key in data-intensive domains as we envision in smarter systems.

Data driven discovery for CPS. The integration of cyber and physical components complicates the design
of systems that demand high utility – i.e., performance, safety, security, sustainability (i.e., near-zero power
consumption), scalability, usability. Data driven technology can play a key role in inferring cyber-physical
system models from data. Models (usually expressed in terms of laws and equations) facilitate the under-
standing of complex phenomena and allow for systems analysis and predictions. However, explicit mod-
elling of cyber-physical systems may suffer from their intrinsic complexity arising from the combination and
interaction of cyber and physical components. Data-driven technologies can facilitate the data-to-discovery
process of implicit cyber-physical system Models. Specifically, employing Data-driven technologies allow
for learning and inferring implicit models from the observation of raw data. These technologies have the ad-
vantage of (i) testing correlations between different variables and observations, and (ii) learning unforeseen
patterns in system behaviours.

Data driven analysis for CPS. Data driven technologies also provide the means for inferring quality prop-
erties from cyber-physical system models and runtime data. Analysing, assessing, and preserving quality
goals is a key concern of cyber-physical systems. To that end, cyber-physical system models (implicit or
explicit) can be fed with data monitored from the cyber-physical system constituents and then used for as-
sessing the level of actual quality, as well as for forecasting the future one. When deviations to the expected
behaviour are detected/forecasted, the system may be adapted in order to preserve the quality goals – e.g.,
performance, safety, security, sustainability. Hence, analysis must be performed on-line to continuously
assess the current behaviour in a timely and efficient manner. It is well known that the computational com-
plexity of model-based analysis techniques is one of the key challenges in system verification. To that end,
data driven technologies, such as for instance search-based techniques, reinforcement learning, and neural
networks, enable online model-based prediction and estimation.

Process mining for CPS with data driven technologies and Self-adaptation. Process Mining couples
data science with process science, offering a valuable alternative to detect and predict faults or anomalies in
cyber-physical systems. Starting from event data, process mining has three intended uses: (1) process dis-
covery, where new process models can be discovered; (2) conformance check, where one or more existing
process models can be replayed to verify the conformance of the behaviour of the application with the con-
sidered process models; (3) enhancement, where data can be replayed on the models to perform performance
and dependability analyses. When mining (discovering) a process model, different perspectives may be cap-
tured. One is the control-flow perspective, where the ordering of activities is found and recurrent patterns
are captured by a model. Applied to cyber-physical system resilience, process mining can support anomaly
detection from event data coming from the edge, based on process discovery from available data. After a
model is retrieved, additional data is collected and each trace of related activities in the data is replayed
on the model. If differences are detected a fitness parameter is determined to compare it with a specified
threshold. Based on an assessment the cyber physical system may then be classified as misbehaving.
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Combining the core areas for auto-evolving CPS. Maintaining and evolving cyber-physical systems
is a challenging task. While tool support is increasing at high speed to manage complexity and reducing
turn-around time, in essence maintenance and evolution remain a human-dependent activity. Combining
self-adaptation with data driven technologies and visual analytics has the potential to realise a breakthrough
in the way maintenance and evolution are realised today. This will require lifting self-adaptation up to the
level of self-learning (in particular evolutionary learning) where on the one hand data driven technologies
are exploited to manage huge amounts of data, and visual analytics on the other hand enable taking the
human in the loop. Key aspects will be the provision and management of computing resources and service
data that need to be integrated automatically over time as well as the management of historical data.

4. Research Agenda

We bring now together the key research objectives for capabilities of smarter systems and their engi-
neering processes with the challenges of key areas to achieve these objectives. This allows us to devise a
multi-year research agenda for trustworthy and sustainable smarter systems. Realising this research agenda
will require a concerted effort of multiple research teams active in one or more of the four core areas. This
section provides an outline of this research agenda for the next decade that we centre around three themes:
assurances for unknowns, self-explainability, and smarter ecosystems, see also Figure 1.

It is important to note that the proposed research agenda does not aim to propose a blue-sky vision based
on radically novel ideas. Instead, the research agenda targets complex challenges grounded in scientific
insights and emerging principles obtained from the state-of-the-art.

Planning research over a period of a decade is obviously a difficult and risky task. After all, research
objectives only provide the drivers for research endeavours and intermediate results will inevitably further
shape the research scope and its direction. We split up each theme in two parts: the first part covering more
concrete lines of research for the first five years, while the second covers more speculative research for the
next five years. Figure 2 provides a schematic overview of the research agenda.

4.1. Theme 1: Assurances for unknowns

The first theme is centred on a line of integrated research that focuses on the first key objective of
assuring system capabilities in uncertain conditions. Theme 1 concerns the enhancements of smarter systems
in their functional capacity and utility in the face of a non-fully deterministic future of smarter systems.

Part 1: Assurances for Decentralised Cyber-Physical-Systems. The first part proposes the study of assur-
ances for the behaviour of decentralised cyber-physical systems that operate under uncertainty. Decentrali-
sation refers to the integration of multiple decision-making entities. Decentralisation is getting increasingly
important; it may be required for quality purposes (e.g., to achieve a scalable solution or avoid a single
point of failure), or it may be implied by the nature of the problem domain (e.g., systems that cross owner-
ship domains). The aim is to investigate stakeholder concerns, goal models, assurance structures (assurance
cases (Calinescu et al., 2018)), and supporting data analytic techniques. Central to the study are mechanisms
for coordinating online and offline reasoning and decision-making across multiple entities with trade-offs
for conflicting goals, the required verification with consensus, and coordinated enactment of system adap-
tation and evolution. An important aspect will be the management of emergent behaviour. This may call
for mechanisms to detect deviations of regular system behaviour, such as anomaly detection (Bhuyan, Bhat-
tacharyya, & Kalita, 2014). There is a need to investigate the role of visual analytics in verification activities
and the communication of verification results to stakeholders in a proper way, for instance in the context of
a dynamic certification process. A key deliverable will be an approach for dynamic assurance cases.

Part 2: Assurances for Smarter Cyber-Physical-Systems with Unknowns. Followup research proposes to
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Fig. 2. Planning of Research. Gray Boxes Represent a First Iteration of Research with Examples of
Concrete Milestones; White Boxes Represent Follow up Research.

investigate how to establish assurances for smarter cyber-physical systems that are subject of unknowns,
i.e., conditions the system faces during operation that were not completely anticipated. Manually reacting to
such novel situations would require tremendous efforts and may be too slow in critical situations. Dealing
with these intrinsic challenges requires a cyber-physical system to preserve knowledge from the past and
utilise this knowledge efficiently when performing tasks in the future. This calls for the investigation of
unsupervised learning techniques that enable automated, or where needed human-supported, discovery of
novelty. Interesting approaches in this direction could be deep learning (Goodfellow, Bengio, & Courville,
2016) and so called subspace clustering (Chen, Lv, & Yi, 2021; Vidal, 2011). The second part studies differ-
ent online learning techniques with a particular focus on the boundaries of guarantees that such techniques
can offer. A key deliverable will be learning techniques with guarantees to deal with unknowns.

4.2. Theme 2: Self-explainability

The second theme is centred on a line of integrated research that focuses on both key objectives: as-
suring system capabilities in uncertain conditions, and engineering processes for perpetual adaptation and
evolution. Theme 1 concerns the ability of smarter systems to communicate and interact with humans.

Part 1: Self-Learning Cyber-Physical Systems. The types of uncertainties that next generation cyber-
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physical systems will face, as well as the amount of data they will need to process, requires such systems to
learn over time. Leveraging on recent progress in the field of machine learning, this part proposes the study
of continuous lifelong learning (Chen & Liu, 2020)—referring to the cyber-physical systems’ lifetime—for
next generation cyber-physical systems. In particular, this part studies lifelong meta-learning that allows
cyber-physical systems to learn a learning approach from many related tasks. To this end, relevant cyber-
physical systems or their constituents need to be enhanced with a meta-learning system that offers: a)
facilities to store and manage knowledge, b) a scheme to represent relevant knowledge, c) a meta-learner
that initiates and evolves a learner from experiences of executed tasks, and d) a learner that exploits the
learned knowledge to deal with new learning tasks and emerging situations that the component or system
encounters. A key deliverable will be a lifelong learning approach for smarter cyber-physical systems.

Part 2: Self-Explainable Cyber-Physical-Systems. The complexity of future cyber-physical systems, in-
duced by the need for integrated adaptation and evolution, with human involvement makes it practically
impossible for stakeholders to understand the system structure and behaviour at all times. Followup re-
search of this theme proposes to investigate techniques and tools that add a self-explainable capability to a
cyber-physical system. The capability provides for external queries regarding, among other, system struc-
ture and behaviour, decisions and rationale, and system and environment state. A future cyber-physical
system makes decisions based on data-analysis and AI techniques. A self-explainable system can commu-
nicate such a process, a rationale for decisions and their outcome to external parties, which is a prerequisite
to establishing trust. Concrete challenges include: comprehensibility of explanations, the presentation of
explanations, human-machine interactivity and conversations, and a-posterior explanations (Blumreiter et
al., 2019). A key deliverable will be an approach that equips smarter cyber-physical systems with self-
explainability capabilities.

4.3. Theme 3: Smarter ecosystems

This theme is centred around a line of integrated research that focuses on the key objective of engineering
processes for perpetual adaptation and evolution.

Part 1: Unified Modelling Approach for Smarter Cyber-Physical Systems. The first part proposes to inves-
tigate models, techniques, and tools for smarter engineering processes. Models and model transformations
will drive a smarter system and its smarter engineering process. The projects investigates design and runtime
models that are involved in the specification, adaptation, and evolution of smarter cyber-physical systems.
Smarter cyber-physical systems will typically be built by multi-disciplinary teams that use heterogeneous
models that vary in formalism’s, concepts, and levels of abstraction. This calls for a fluid modelling approach
that combines different specification and verification approaches (Ruchkin, De Niz, Chaki, & Garlan, 2014).
Adopting a single, all-encompassing homogeneous modelling language denies the fact that domain-specific
formalism’s are better at verifying properties for their domain, and that there is usually a well-established
body of knowledge and expertise built up around these formalism’s. Hence, domain specific languages and
developer tools will be essential for creating, integrating and maintaining models. Central will be proper
definition of modelling abstractions with first-class support for multi-model integration, properties to ex-
press relationships between the abstractions of models, and means to execute domain-specific analyses on
models across the lifetime of the system. A key deliverable will be an integrated model-based framework
for adaptation and evolution.

Part 2: Self-Governing Smarter Cyber-Physical Systems. Future cyber-physical systems will form ecosys-
tems, where system owners and third-parties share responsibilities. The long term objective of this part is
to support the seamless integration of the engineering and operation of smarter ecosystems leveraging on
a model-driven approach. This effort proposes the study of novel languages, models, and transformations,
but also supporting infrastructure and tools that allow two-way interaction between the ecosystem and its
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stakeholders, including developers, operators, and users. An ecosystem requires intentional, not ad-hoc,
management of ecosystem partners (Bosch, 2016). Smarter cyber-physical ecosystems will expose a high
level of autonomy requiring reflective capabilities where the system collects data about its utility and ad-
justs according to its goals. Because data will be produced by different parts of the system semantically
underpinned data-fusion techniques will be required. A key deliverable will be a smarter ecosystem that
continuously aligns its architecture and governance to the concerns of a variety of stakeholders.

5. Conclusions

Ensuring the required trustworthiness and sustainability of systems that blend cyber, physical, and social
elements will be vital for our society. Yet, engineering such systems is complex. Primary reasons for this
complexity are the uncertainty and continuously change systems face, the presence of large volumes of
data that needs to be processed, and the role of humans as inherent parts of the systems. To tackle this
complexity, we argued that both systems and the way we engineer them must become smarter, meaning that
both systems and the processes to engineer them adapt and evolve through a perpetual and enduring process
that continuously improves their capabilities to deal with the uncertainties and change they face across their
lifetime. We proposed key objectives for engineering smarter systems and highlighted core areas that are
expected to be pivotal in achieving these goals together with their respective challenges. From this, we
proposed an ambitious research agenda for smarter systems for the next decade. Key research targets that
are centred around three themes: assurances for unknowns, self-explainability, and smarter ecosystems are:

◦ An approach for dynamic assurance cases to provide assurances for cyber-physical-systems in decen-
tralised settings.

◦ Online learning techniques with guarantees to provide assurances for smarter cyber-physical systems
that have to deal with unknowns.

◦ A lifelong learning approach that enables smarter cyber-physical systems to deal with new tasks and
novel emerging situations.

◦ Self-explainability capabilities for smarter cyber-physical systems enacting seamless integration of
human operators.

◦ An integrated multi-model based framework for adaptation an evolution that spans the full life-cycle
of smarter systems.

◦ The foundations for a smarter ecosystem that continuously aligns its architecture and governance to
the concerns of a variety of stakeholders.

Realising this research agenda will require a multi-year concerted effort of research teams active in the
different core areas of smarter systems. We hope that this paper will offer a source of inspiration for those
who want to study and develop novel solutions for trustworthy and sustainable computing systems to the
good of our society.
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