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Abstract. The role of antioxidants in human nutrition has gained increased interest, especially due to their associated health-
beneficial effects for a number of chronic diseases, including certain types of cancer and cardiovascular disease. There is a
particular interest in tomato as it is a major component in the so-called “Mediterranean diet” which has been associated with
a healthier lifestyle. Tomatoes are rich sources of key antioxidant components such as carotenoids and polyphenols. They are
consumed both as fresh produce and after having been processed in a wide variety of ways. Many researches have been carried
out on the biochemical composition of tomato and its processed forms. However, in order to measure the real impact of tomato
processing, bioavailability (the proportion of an ingested nutrient that is available for its intended mode of action) is more relevant
than the total amount of antioxidants present in the original tomato or tomato product. Processing of tomatoes into different end
products includes mechanical treatments, several thermal treatment steps, and the addition of ingredients such as oil or salt, which
may result in changes in bioavailability of tomato antioxidants. In this review, we critically discussed the findings on the effects
of different food processing techniques on in vivo and in vitro bioavailability of tomato antioxidants.
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1. Introduction

Tomato (Solanum lycopersicum) is one of the most popular and extensively consumed vegetable crops worldwide
and a component of Mediterranean diet [1–4]. This fruit has been associated with the reduced risk of chronic
degenerative diseases, such as cardiovascular diseases and certain types of cancer, especially prostate cancer [5, 6].
Moreover, consumption of tomato leads to decreased serum lipid levels and low-density lipoprotein oxidation [7, 8].
In a study that examined the relationship between the consumption of tomatoes and morbidity and mortality among
28,753 children aged 6–60 months, it was found that an intake of tomatoes for 2-3 days (compared with 0 days) was
associated with a significant reduction in mortality (48%) and with a reduced risk of death associated with diarrhea
[9]. Intake of tomatoes was also inversely associated with respiratory infections [10].

Epidemiological studies confirm that the observed health effects are due to the presence of different antioxidant
molecules such as carotenoids, ascorbic acid, vitamin E and phenolic compounds [1, 11]. Table 1 contains the
concentrations of the antioxidants present in tomato [12–15]. Among the carotenoids, mainly lycopene and �-
carotene are of interest. Lycopene is the most abundant carotenoid present in tomatoes, accounting for more than
80% of the total tomato carotenoids in fully red-ripe tomatoes [16–18], and is responsible for the characteristic color
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Table 1

Antioxidants present in fresh red tomato fruit [12–15]

Compounds Concentration (mg/kg)

Ascorbic acid 127

Carotenoids

�-carotene 4

�-carotene 1

Lycopene 26

Lutein + zeaxanthin 1

Phytoene 19

Phytofluene 8

Flavonoids

Quercetin glycosides 3–7

Kaempferol glycosides 2–8

Naringenin 8–42

Rutin 10–15

Phenolic acids

Chlorogenic acid 13–38

Caffeic acid 29–56

p-Coumaric acid 16

Ferulic acid 7

Sinapic acid 2

Vanillic acid 1

Salicylic acid 1

Vitamin E 7

of tomatoes [19–21]. Moreover, lycopene is also the most efficient singlet oxygen quencher with a capacity found to
be more than twice of �-carotene [22]. On the other hand, �-carotene is important due to its provitamin A activity
[23]. Apart from carotenoids, tomato is also a source of ascorbic acid, which is an effective scavenger of superoxide,
hydrogen peroxide, singlet oxygen and other free radicals [24]. The tocopherol content of tomato is also moderately
high. Among the tocopherols, �-tocopherol is the most abundant form and exhibits the highest biological activity
[25, 26].

Phenolic compounds are plant secondary metabolites, which are important determinants in sensory and nutritional
quality of fruits and vegetables [27]. Many phenolic compounds exhibit antioxidative, anticarcinogenic, antimicrobial,
antiallergic, antimutagenic, and anti-inflammatory activities [21]. The high content of phenolic compounds such as
flavonoids and hydroxycinnamic acids in tomato has gained interest due to their apparent multiple biological effects,
including free-radical scavenging, metal chelation, inhibition of cellular proliferation, and modulation of enzymatic
activity and signal transduction pathways [3, 28]. However, the antioxidant contents of tomatoes depend on genetic
(i.e., variety) and environmental factors (i.e., temperature, light, water and nutrient availability, etc.), the agricultural
techniques used (i.e., use of plant growth regulators, date of harvest, etc.) and on the post-harvest processing and
storage conditions [29–31].

Although tomatoes are commonly consumed as fresh, over 80% of the tomato consumption comes from processed
products such as tomato juice, paste, puree, ketchup, and sauce [32–36]. Even though most of the nutritional compo-
nents in tomato are stabilized by acidic pH of the fruit tissue and many of nutrients are conserved during relatively
short and mild processing steps of tomato products, the antioxidant capacity of the products may change depending
on processing type and conditions [2].

The effect of processing on the antioxidant level of tomatoes has previously been reviewed [2, 37]. Besides inves-
tigating the antioxidant capacity, it is also important to evaluate the bioavailability of health associated compounds
present in tomato products, which will provide valuable data for elucidating the true biological relevance of these
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compounds in the context of nutrition and human health. In this perspective, this review examines the findings
reported on the effect of food processing on bioavailability of tomato antioxidants including carotenoids, especially
lycopene and �-carotene and phenolic compounds.

2. Methods used to assess the bioavailability of antioxidants

Methods for determining bioavailability and/or bioaccessibility of antioxidants involve human (in vivo) or simulated
experiments performed in a laboratory (in vitro). In vivo methods provide direct data of bioavailability and have been
used for a great variety of nutrients [38]. Generally a response is measured after consumption of a pure nutrient
either by humans or animals, and compared to an equivalent nutrient dose found in a food source [39]. Therefore,
definitive conclusions on the bioavailability of a single phenolic compound are difficult to obtain, because of the
synergistic effects of the mixture of polyphenols contained in each food matrix [40]. Mostly, in vivo bioavailability
studies refer to the consumption of certain dose of a nutrient and following changes of its concentration in the blood
plasma followed and compared with time. The main drawbacks of in vivo data are the variability in physiological
state of individuals and the possible interaction of the nutrient with other components in the diet [41]. Moreover,
such studies carried out in humans and/or animals are complicated, costly and raise ethical issues [42, 43].

In vitro methods for simulating the human digestive tract are being extensively used at present since they are rapid,
safe, and do not have the same ethical restrictions as in vivo methods [44–46]. In vitro methods either simulate the
digestion and absorption processes (bioavailability) or only the digestion process (bioaccessibility) and the response
measured is the concentration of a nutrient in the final extract [47, 48]. The digestion process is simulated under
controlled conditions using commercial digestive enzymes such as pepsin and pancreatin, while the final absorption
process is commonly assessed using Caco-2 cell cultures [41, 49].

The methods that mimic the gastrointestinal (GI) digestion process under laboratory conditions are known as
GI models. GI models reproduce the physiological conditions in the mouth, stomach, and small intestine during
mastication, digestion, and absorption [38, 41]. These in vitro digestion methods have already been tested for foods
such as orange juice [50], pomegranate juice [51], broccoli [52], raspberry [42], wine [43], chockberry [53], red
cabbage [54], sweet cherry [55], grape [56], apple [57] and mulberry [46]. It has been proven that the measurement
of bioavailability by in vitro GI models can be well correlated with conclusions from human studies and animal
models [57]. Mahler et al. [58] reported that the estimation of iron bioavailability from the in vitro digestion/Caco-2
cell culture model has been well correlated, qualitatively, with human data.

Generally, GI models are divided into two broad categories: Static models, where the products of digestion stay
generally immobile and physical processes such as shear, mixing and hydration are not simulated, and dynamic
models which try to integrate physical and mechanical processes and temporal changes in luminal conditions to
mimic parameters in vivo [38, 41]. In static in vitro digestion models, the stomach and the upper part of the small
intestine are simulated by addition of salts and enzymes, adjustment of pH and incubation at 37◦C. During the initial
gastric phase, samples are incubated at gastric pH in the presence of gastric enzymes such as pepsin. The upper part
of the small intestine, the duodenum, is then simulated by increasing the pH and addition of pancreatic enzymes and
bile salts. Some models also contain an initial oral digestion phase, which mimics mastication in the presence of
an enzyme amylase [59]. Moreover, there are also some models that include colon fermentation [60]. The dynamic
in vitro digestion models, such as the TNO GI model (TIM) have the same basic principles, however they simulate
better the conditions in the GI tract [61]. The TIM model contains four serial sections simulating the stomach,
duodenum, jejunum and ileum [62–64]. Dynamic models have advantages over static models including continuous
removal of nutrients, simulation of peristalsis and more controlled, gradual changes in pH and enzyme levels [65].

“Caco-2 cells” which are used in assessing the final absorption process, is the short name of polarized human
colon carcinoma cells line [41, 66]. This model was originally performed to measure the bioavailability and toxicity
of drugs; however, it is also used to study the uptake and transport of various antioxidants such as phenolic acids
[67], flavanols [68, 69] anthocyanins [70, 71] and carotenoids [72–75]. The Caco-2 cells grow to form a monolayer,
which then spontaneously differentiates to create many structural and functional components of intestinal cells. These
components contain microvilli, tight junctions between the cells and “brush border enzymes”, which means that the
Caco-2 cell line can be used to study active and passive uptake and transport of nutrients. The major problem with the
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Caco-2 cell line is that cellular uptake of nutrients varies between experiments depending on the general condition
and passage number of the cells. Therefore, results can only be compared within the same experiments [65].

3. The effect of tomato processing on bioavailability/bioaccessibility of tomato antioxidants

Bioavailability is an important aspect when studying the role of antioxidants in human health. The interest in this
aspect is increasing as food companies continuously involve in developing new products, defined as “functional” by
the presence of specific antioxidants or phytochemicals [76].

The term “bioavailability” was originally used in pharmacology to define the “rate and extent to which a drug
reaches its site of action” [77–80]. Although several other definitions of bioavailability have been stated, the most
suitable one appears to be the fraction of an ingested nutrient or compound that reaches the systemic circulation and
the specific sites where it can exert its biological action [76]. In other words, it shows how much of the ingested
quantity of the nutrient is able to exert its beneficial effects in target tissues [40]. Another term that is commonly
used is “bioaccessibility”, which is defined as the amount of an ingested nutrient that is available for absorption in
the gut after digestion [81–84]. When the amount of recovered nutrient after digestion is of concern then the term
“bioaccessibility” is used. Bioavailability is generally measured using in vivo assays (e.g. blood plasma of humans),
so factors such as the individual variability, physiological state, dose, and presence of other meal components play
important roles [41, 85].

Bioavailability of antioxidants depends on many factors. In a critical appraisal [76], the main factors recognized
as affecting antioxidant bioavailability in humans were discussed and gathered under four main categories: factors
related to the antioxidant (chemical structure, molecular linkage, etc.), factors related to the food/preparation (matrix
characteristics, processing, etc.), factors related to the host (enzyme activity, genetics, etc.) and external factors (food
availability, different environmental factors such as sun, rain, etc.). The most important determinants of bioavailability
are the chemical structure of the aglycone and the type of glycoside. The bioavailability of different glycosidic forms
of the same aglycone varies [86].

Some specific classes of antioxidants including carotenoids and polyphenols, worth special consideration in case
of tomatoes since they are well represented in this fruit and they can exert different functions having significant
impact on human health. In this section, the effects of tomato processing on bioavailability/bioaccessibility of these
compounds were examined.

3.1. Lycopene

Lycopene is a symmetrical, acyclic carotenoid with thirteen double bonds, eleven of which are conjugated. Because
of its characteristic structure, lycopene is a powerful antioxidant [87, 88]. Each double bond of the lycopene polyene
chain can exist in two configurations, giving rise to over a thousand possible isomers. However, only a limited number
of cis-isomers occur in nature. These cis-isomers are interesting because they show higher antioxidant activity than
all-trans-lycopene [89, 90]. Lycopene has to be absorbed into the blood stream and reach its site of action to perform
its health effects. Therefore, lycopene content alone is not a complete indicator of nutritional value. As it is known,
the nutritional value can be obtained by measuring the nutrient bioavailability [91]. Since lycopene is not synthesized
in the human body, sufficient uptake from the diet is essential to benefit from its health promoting effects. The main
sources of lycopene in the diet are tomatoes and tomato-based products [90]. Lycopene is present in the tomato
chromoplasts where it occurs as carotenoid-protein complexes or as solid microcrystals [37]. Therefore, the release
and subsequent absorption of lycopene from raw tomato is low [92]. The food matrix in which lycopene is coupled
can be altered by food processing greatly affects the lycopene bioaccessibility [93, 94].

The effect of tomato processing on lycopene content is widely examined both in in vivo (Table 2) [95–99] and
in vitro (Table 3) [90–93, 100–107] studies. Many studies demonstrated that processing operations, such as those
involving heat treatment rupture the cell walls, favoring the release of lycopene from tomato chromoplasts and hence
enhancing lycopene bioavailability/bioaccessibility [90, 92, 95–98, 100–104, 107]. However, controversial results
regarding the impact of heat on lycopene bioavailability/bioaccessibility can also be found in literature. For instance,
cooking of cherry tomatoes for 15 min at 100◦C did not change the lycopene concentration in plasma [99]. Similarly,
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Table 2

Processed tomato products subjected to in vivo bioavailability studies

Nutrient Processing Result Reference

Chlorogenic acid Cooking (15 min, 100◦C) Significant increase after 2 h (p < 0.05) [99]

Lutein Tomato vs. tomato puree Decrease (∼65%) [96]

Tomato vs. tomato juice NSD (p < 0.05) [97]

Lycopene Tomato vs. tomato paste Significant increase (∼2.5 fold) (p < 0.05) [95]

Tomato vs. tomato puree Increase (∼18%) [96]

Tomato vs. tomato juice Significant increase (∼23%) (p < 0.05) [97]

Severe homogenization (blending for

2.5 min + HPH at 200 bar)

Significant increase (p < 0.05) [98]

Cooking (15 min, 100◦C) NSD (p < 0.05) [99]

Naringenin Cooking (15 min, 100◦C) Significant increase after 2 h (p < 0.05) [99]

TAC Tomato vs. tomato juice NSD (p < 0.05) [97]

Severe homogenization (blending for

2.5 min + HPH at 200 bar)

Significant increase (p < 0.05) [98]

Zeaxanthin Tomato vs. tomato puree Decrease (∼33%) [96]

Tomato vs. tomato juice NSD (p < 0.05) [97]

�-carotene Tomato vs. tomato paste NSD (p < 0.05) [95]

Tomato vs. tomato puree Decrease (∼50%) [96]

�-carotene Tomato vs. tomato paste NSD (p < 0.05) [95]

Tomato vs. tomato puree Decrease (∼55%) [96]

Tomato vs. tomato juice NSD (p < 0.05) [97]

Severe homogenization (blending for

2.5 min + HPH at 200 bar)

Significant increase (p < 0.05) [98]

Cooking (15 min, 100◦C) NSD (p < 0.05) [99]

�-cryptoxanthin Tomato vs. tomato puree Decrease (∼44%) [96]

Tomato vs. tomato juice NSD (p < 0.05) [97]

TAC: Total antioxidant activity; HPH: High pressure homogenization; NSD: Not significantly different.

no effect of boiling, grilling, microwave-cooking, or steaming of quartered tomatoes was found on the lycopene
bioaccessibility [102]. On the other hand, non-thermal processing seems to have an adverse effect on bioaccessibility
of lycopene. For example, the loss of cell integrity observed with increasing ultrasonication time was accompanied by
a decrease in lycopene bioaccessibility [91]. Colle et al. [94] subjected tomato pulp to high pressure homogenization
(HPH) at pressures ranging from 0 to 1327 bar. Although HPH clearly disrupted the cellular structure of the tomato
pulp, a decreasing trend of lycopene bioaccessibility with increasing pressure was observed. In the study of Svelander
et al. [105], a heated 5% olive oil/tomato emulsion was homogenized at 100 and 1000 bar. No change in lycopene
bioaccessibility was noticed after HPH. The presence of oil in high pressure homogenized tomato puree also did not
further improve the in vitro lycopene bioaccessibility during subsequent thermal or high pressure processing [106].

3.2. β-Carotene

�-Carotene is present in lower quantities than lycopene in tomato, but possesses some health benefits not gained
by lycopene, such as provitamin A activity. In addition, studies indicate a higher relative bioavailability of �-carotene
compared with lycopene in the tomato matrix [92]. In general, in vivo human studies regarding the effect of tomato
processing (Table 2) showed that thermal treatment either not significantly changed [95, 97, 99] or reduced [96] the
�-carotene bioavailability. About one third of the tomato cell wall is comprised of pectin. Pectin has a large impact
on textural properties of tomato products, but has been shown to reduce the bioavailability of several carotenoids,
including lycopene and �-carotene [108–110]. Suggested mechanisms behind the reduced bioavailability include
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Table 3

Processed tomato products subjected to in vitro bioaccessibility studies

Nutrient Processing Result Reference

Lutein Tomato vs. tomato sauce Increase (∼10%) [100]

Boiling (10 min, 100◦C) NSD (p < 0.01) [102]

Grilling (10 min, 800 W) NSD (p < 0.01)

Microwave-cooking (50 s, 800 W) Significant decrease (p < 0.01)

Steaming (10 min) Significant decrease (p < 0.01)

Lycopene Tomato vs. tomato sauce Increase (∼16 fold) [100]

Canning (85◦C −90◦C, 5–20 min) NSD (p < 0.05) [101]

Sun-drying (4–7 days, 27–28◦C) Significant increase (p < 0.05)

Boiling (10 min, 100◦C) NSD (p < 0.01) [102]

Grilling (10 min, 800 W) NSD (p < 0.01)

Microwave-cooking (50 s, 800 W) NSD (p < 0.01)

Steaming (10 min) NSD (p < 0.01)

Crushing (15, 30, 120 s) NSD (p < 0.05) [103]

Crushing (15, 30 sn) + Heating (8 min, 95◦C) NSD (p < 0.05)

Crushing (15, 30 sn) + Boiling (20 min, 100◦C) NSD (p < 0.05)

Crushing (120 sn) + Heating (8 min, 95◦C) Significant increase (p < 0.05)

Crushing (120 sn) + Boiling (20 min, 100◦C) Significant increase (p < 0.05)

HPH (0–1327 bar) Significant decrease at 0–479 bar [94]

NSD at 479–1327 bar

HPH + Thermal processing Significant decrease at 0–479 bar

NSD at 479–1327 bar

Thermal processing (60–140◦C) NSD at 60–120◦C (p < 0.05) [90]

Significant increase at 130◦C and 140◦C (∼2-fold)

(p < 0.05)

Crushing (120 s) + Boiling (10 min, 100◦C) NSD (p < 0.05) [92]

Crushing (120 s) + LTLT (40 min, 60◦C) + Boiling

(10 min, 100◦C)

Significant increase (p < 0.05)

Cutting + LTLT (40 min, 60◦C) + Crushing

(120 s) + Boiling (10 min, 100◦C)

NSD (p < 0.05)

Crushing with 0.5% CaCl2 (120 s) + LTLT (40 min,

60◦C) + Boiling (10 min, 100◦C)

NSD (p < 0.05)

Cutting + LTLT (40 min, 60◦C) + Crushing with

0.5% CaCl2 (120 s) + Boiling (10 min, 100◦C)

NSD (p < 0.05)

Crushing (120 s) + HTST (4 min, 90◦C) + Boiling

(10 min, 100◦C)

NSD (p < 0.05)

Cutting + HTST (4 min, 90◦C) + Crushing with 0.5%

CaCl2 (120 s) + Boiling (10 min, 100◦C)

NSD (p < 0.05)

Crushing (180 s) + Boiling (20 min, 100◦C) NSD (p < 0.05)

Crushing (180 s) + LTLT (40 min, 60◦C) Significant increase (p < 0.05)

Crushing (180 s) + LTLT (40 min, 60◦C) + Boiling

(20 min, 100◦C)

Significant increase (p < 0.05)

Crushing (180 s) + HTST (10 min, 90◦C) Significant increase (p < 0.05)

Crushing (180 s) + HTST (10 min, 90◦C) + Boiling

(20 min, 100◦C)

Significant increase (p < 0.05)

HPP (700 MPa, 30◦C, 5 min) NSD (p < 0.05) [104]

Preheating (0.1 MPa, 65◦C, 5 min) Significant decrease (∼10%) (p < 0.05)
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Table 3

(Continued)

Nutrient Processing Result Reference

Lycopene PATP (700 MPa, 100◦C, 5 min) NSD (p < 0.05) [104]

Thermal processing (0.1 MPa, 100◦C, 5 min) NSD (p < 0.05)

Hot break (93◦C, 60 s) + HPP (700 MPa, 30◦C,

5 min)

Significant increase (∼14%) (p < 0.05)

Hot break (93◦C, 60 s) + Preheating (0.1 MPa, 65◦C,

5 min)

Significant increase (∼16%) (p < 0.05)

Hot break (93◦C, 60 s) + PATP (700 MPa, 100◦C,

5 min)

Significant increase (∼11%) (p < 0.05)

Hot break (93◦C, 60 s) + Thermal processing

(0.1 MPa, 100◦C, 5 min)

Significant increase (∼22%) (p < 0.05)

Heating with 5% olive oil + HPH NSD (p < 0.05) [105]

Mild pasteurization (15 min, 450 MPa, 20◦C) NSD (p < 0.05) [106]

Intense pasteurization (20 min, 600 MPa, 45◦C) NSD (p < 0.05)

Sterilization (117◦C, 1.5 min, 3 min) Significant decrese (p < 0.05)

Ultrasonication (60 min, 24 kHz, 100 �m) Significant decrease (∼50%) (p < 0.05) [91]

HPH (100 bar) NSD at 100 bar (p < 0.05) [107]

Microwave heating (20 min, 70◦C, 90◦C, 120◦C) NSD at 70◦C and 90◦C (p < 0.05)

Significant increase at 120◦C (p < 0.05)

HPH + Microwave heating NSD at 70◦C and 90◦C (p < 0.05) [107]

Significant increase at 120◦C (p < 0.05)

TAC Canning (85◦C −90◦C, 5–20 min) Significant decrease (∼40%) (p < 0.05) [101]

Sun-drying (4–7 days, 27–28◦C) Significant decrease (∼23%) (p < 0.05)

�-carotene Tomato vs. tomato sauce Increase (∼60 fold) [100]

Boiling (10 min, 100◦C) Significant increase (p < 0.01) [102]

Grilling (10 min, 800 W) Significant increase (p < 0.01)

Microwave-cooking (50 s, 800 W) Significant increase (p < 0.05)

Steaming (10 min) NSD (p < 0.01)

Crushing (120 s) + Boiling (10 min, 100◦C) NSD (p < 0.05) [92]

Crushing (120 s) + LTLT (40 min, 60◦C) + Boiling

(10 min, 100◦C)

Significant increase (p < 0.05)

Cutting + LTLT (40 min, 60◦C) + Crushing

(120 s) + Boiling (10 min, 100◦C)

NSD (p < 0.05)

Crushing with 0.5% CaCl2 (120 s) + LTLT (40 min,

60◦C) + Boiling (10 min, 100◦C)

NSD (p < 0.05)

Cutting + LTLT (40 min, 60◦C) + Crushing with

0.5% CaCl2 (120 s) + Boiling (10 min, 100◦C)

NSD (p < 0.05)

Crushing (120 s) + HTST (4 min, 90◦C) + Boiling

(10 min, 100◦C)

NSD (p < 0.05)

Cutting + HTST (4 min, 90◦C) + Crushing with 0.5%

CaCl2 (120 s) + Boiling (10 min, 100◦C)

NSD (p < 0.05)

Crushing (180 s) + Boiling (20 min, 100◦C) Significant increase (p < 0.05)

Crushing (180 s) + LTLT (40 min, 60◦C) NSD (p < 0.05)

Crushing (180 s) + LTLT (40 min, 60◦C) + Boiling

(20 min, 100◦C)

Significant increase (p < 0.05)

Crushing (180 s) + HTST (10 min, 90◦C) Significant increase (p < 0.05)

Crushing (180 s) + HTST (10 min, 90◦C) + Boiling

(20 min, 100◦C)

Significant increase (p < 0.05)
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Table 3

(Continued)

Nutrient Processing Result Reference

�-carotene HPP (700 MPa, 30◦C, 5 min) Significant increase (∼19%) (p < 0.05) [104]

Preheating (0.1 MPa, 65◦C, 5 min) NSD (p < 0.05)

PATP (700 MPa, 100◦C, 5 min) Significant increase (∼23%) (p < 0.05)

Thermal processing (0.1 MPa, 100◦C, 5 min) Significant increase (∼35%) (p < 0.05)

Hot break (93◦C, 60 s) + HPP (700 MPa, 30◦C,

5 min)

Significant increase (∼4%) (p < 0.05)

Hot break (93◦C, 60 s) + Preheating (0.1 MPa, 65◦C,

5 min)

Significant decrease (∼6%) (p < 0.05)

Hot break (93◦C, 60 s) + PATP (700 MPa, 100◦C,

5 min)

NSD (p < 0.05)

Hot break (93◦C, 60 s) + Thermal processing

(0.1 MPa, 100◦C, 5 min)

Significant increase (∼6%) (p < 0.05)

�-cryptoxanthin Boiling (10 min, 100◦C) NSD (p < 0.01) [102]

Grilling (10 min, 800 W) Significant decrease (p < 0.01)

Microwave-cooking (50 s, 800 W) Significant decrease (p < 0.01)

Steaming (10 min) NSD (p < 0.01)

TAC: Total antioxidant activity; HPH: High pressure homogenization; LTLT: Low temperature long time; HTST: High temperature short time;

HPP: High pressure processing; PATP: Pressure assisted thermal processing; NSD: Not significantly different.

an increased viscosity in the GI tract, leading to decreased carotene migration, inhibiting the micelle formation by
binding of bile acids and phospholipids, as well as impaired activity of pancreatic enzymes [92].

The data in the literature concerning the absorption of �-carotene from processed tomato products is highly variable.
In contrast with in vivo studies (Table 2), in vitro research on processed tomatoes (Table 3) showed that absorption
of lycopene is enhanced as a result of thermal processing [92, 100, 102]. Moreover, non-thermal treatments such as
high pressure processing also improved absorption of �-carotene [104]. More literature data on the effect of thermal
processing on �-carotene in vitro bioaccessibility in carrots are available [111–114] and these studies support that
thermal processing can enhance carotenoid in vitro bioaccessibility [90].

3.3. Other carotenoids

Besides lycopene and �-carotene, tomato and tomato products are also rich in other carotenoids including lutein,
zeaxanthin, �-carotene and �-cryptoxanthin. Studies regarding the absorption of these carotenoids from tomatoes
mainly focused on the effect of heat treatment (Table 2, 3). In fact, there are no studies examining the impact of
non-thermal processing on bioavailability of these compounds. The findings on the influence of thermal processing
on bioavailability/bioaccessibility are often contrasting, e.g. thermal processing increased [100], decreased [96, 102]
or did not affect [97, 102] the lutein bioavailability. Similarly, thermal treatment of tomato and tomato products either
decreased or did not modify the zeaxanthin, �-carotene and �-cryptoxanthin absoption [95–97, 102].

3.4. Phenolic compounds and antioxidant activity

There is limited information on the changes in bioavailability of polyphenols during processing of tomatoes
(Tables 2, 3). In the study of Bugianesi et al. [99], cooking of cherry tomatoes at 100◦C for 15 min significantly
increased the plasma concentrations of naringenin and chlorogenic acid. Although there are some studies investigating
the bioavailability of tomato and tomato products, studies on the effect of tomato processing on antioxidant activity
are also scarce. Wooton-Beard et al. [115] evaluated the stability of commercial tomato juice antioxidants following
in vitro digestion. The tested juices were either stable or enhanced in terms of total antioxidant capacity following
in vitro digestion. In another study that investigated the tomato juice containing rutin, 86% of the ingested flavonol
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disaccharide was recovered in ileal fluid collected over a 24-h period after ingestion [116]. Antioxidant capacity of
human plasma was not altered significantly when fresh and cooked tomatoes were compared [97]. Homogenization
significantly improved the antioxidant activity in plasma, whereas the effect of additional heat treatment was not
significant [98]. Moreover, antioxidant activity of dialyzed fraction in the small intestine was significantly lower in
canned and sun-dried tomatoes compared to fresh tomatoes [101].

4. Conclusion

This review investigated the findings reported on the effect of food processing on bioavailability of tomato antiox-
idants. The present findings are often conflicting, which might be due to differences in the type or variety of the
tomatoes used, fruit ripeness, agricultural treatments, conditions such as temperature, time, presence of oxygen or
light, and methods of processing, or it might simply be a matter of sub-optimal extraction of the compounds to be
analyzed. Another reason associated to the employment of laboratory-scale or pilot-scale experiments. Simulation
of tomato processing under laboratory conditions appears to produce significant deviations compared to the final
products obtained from industrial scale process. In some studies, fresh and processed tomato samples were obtained
from the local markets and information on their history (age, source, treatment, variety etc.) is unknown. However, it
is well known that such factors are also important while determining the antioxidant content. In addition, variations
in analytical techniques complicate the comparisons between different studies. There is limited or no information on
the changes in bioavailability of polyphenols, ascorbic acid and vitamin E during processing of tomatoes. Therefore,
future studies are recommended to be performed accordingly.
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