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Abstract. This paper presents a model of interactive activity recognition and prompting for use in an assistive system for persons
with cognitive disabilities. The system can determine the user’s state by interpreting sensor data and/or by explicitly querying
the user, and can prompt the user to begin, resume, or end tasks. The objective of the system is to help the user maintain a
daily schedule of activities while minimizing interruptions from questions or prompts. The model is built upon an option-based
hierarchical POMDP. Options can be programmed and customized to specify complex routines for prompting or questioning.

The paper proposes a heuristic approach to solving the POMDP based on a dual control algorithm using selective-inquiry
that can appeal for help from the user explicitly when the sensor data is ambiguous. The dual control algorithm is working
effectively in the unified control model which features the adaptive option and robust state estimation. Simulation results show
that the unified dual control model achieves the best performance and efficiency comparing with various alternatives. To further
demonstrate the system’s performance, lab experiments have been carried out with volunteer actors performing a series of
carefully designed scenarios with different kinds of interruption cases. The results show that the system is able to successfully
guide the agent through the sample schedule by delivering correct prompts while efficiently dealing with ambiguous situations.
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1. Introduction

The fast growing population of the ageing society
will result in a dramatic increase in the number of
people diagnosed with cognitive disabilities (such as
Alzheimer’s disease or other forms of dementia). Peo-
ple with cognitive disabilities suffer from memory loss
and executive function impairment [19,27,43] that pre-
vent them from organizing, managing or carrying out
everyday tasks independently. Commonly, they are ex-
periencing failures such as failing to initiate, sustain,
or terminate an action, forgetting an unfinished task af-
ter interruptions, performing the tasks incorrectly and
so on. To compensate for deficits in cognitive function,
human assistance is needed to provide regular prompts
that help the patient through the activities of daily liv-
ing. The constant dependence and pressure on the care-
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givers have a negative impact on both the patient and
caregiver that could lead to diminished quality of life,
increased level of anxiety, poor self-esteem, and social
isolation [2].

To support independent living and reduce the cost
of heath care, researchers have developed various tech-
nologies and computing systems that can automate the
prompting behavior and alleviate the burden on care-
givers. This could be electronic devices that provide
timely prompts and reminders to support schedule ad-
herence and time management [3,20,33]. While to-
day’s commercially-available prompting tools are es-
sentially enhanced calendars, researchers have recog-
nized the need for context-aware systems that infer the
user’s state and provide the right kind of help at the
right time [23,25,27,31,34]. For instance, prompting to
start a task that the person has already started could
be confusing. Similarly, a prompt for taking medi-
cation is not effective if the person is on the phone
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but works if he is engaging in the leisure activity,
e.g., watching TV. A context-aware prompting system
can sense aspects of the user context and adapt its
prompting behavior accordingly. Further, studies show
that frequent interventions can overwhelm an individ-
ual’s cognitive resource capacity, thus reducing task
effort and producing negative effects on performance
[17,18]. A context-aware prompting system can avoid
unnecessary and incorrect prompts in order to mini-
mize the cost of interruptions.

While prompting systems are a valuable tool for as-
sistive technology, prompt strategies need to consider
the independence aspect of the goal. As pointed out in
[9,10], the independence of older adults may be com-
promised by well meaning nursing facility staff giv-
ing excessive prompts. They present a restorative care
approach to help foster independence by giving the
mininum assistance possible through a strategy called
the system of least prompts (SLP) [9]. SLP is a sys-
tematic method of fading prompts that is widely used
in the setting of special education to help individuals
with metal retartation and other developmental disbili-
ties [8,22,42]. Across literature, the importance of fad-
ing prompts is universally recognized to help promote
prompt-free or independent performance [7,8,16]. The
adverse effects of the uncautionary use of prompts may
include prompt dependency, contrary control (i.e., the
user deliberating ignoring prompts in order to establish
control), and consequence confusion [16,28]. While in
these studies human assistance is typically playing the
primary role of controlling the prompt procedure, it is
equally important for a computer system to learn to re-
strict the use of prompts when it is designed to entirely
or partially replace the human effort. As with the train-
ing of human staff, a context-aware prompting system
can also be trained to be less intrusive so that it delivers
proper prompts only when needed through learning the
user’s ability in initiating a correct behavior and their
responsiveness to prompts.

To perform well an intelligent prompting system
must be able to infer the state of the world, rea-
son about the costs of varying system actions, han-
dle uncertainties about the environment and the user,
and to adapt to the user behavior pattern. This de-
pends on the coordinated function of various compo-
nents working together. This paper introduces a unified
framework that integrates sensing, scheduling, plan-
ning, prompting and the user in a complete cycle. In
[27], Modayil talks about the benefits of integrating
sensing into an existing planning and cueing device
PEAT [20] and proposes a high-level architecture for

context-aware prompting that is compatible with our
model. To address the challenges involved in devel-
oping such an integrated system, a model of interac-
tive activity recognition and prompting is built which
is based on partially observable Markov decision pro-
cesses (POMDPs). POMDPs use a decision-theoretic
approach to optimizing the course of system actions
over a user-specified utility function that is compat-
ible with the system’s objectives despite incomplete
state information. The goals of the system are to en-
sure that the user adheres to a daily schedule by pro-
viding prompts to begin, resume, or end activities, to
create logs of the user’s activities, and to minimize in-
terruptions to the user. It differs from previous work in
that it includes both prompts and information-seeking
actions (inquiries to the user) in its action space, and
is able to arbitrate between these two kinds of actions.
User responses are used to help identify states and im-
prove the activity recognition model.

To get a quick overview of how the system works,
consider the scenario based on the simple schedule
shown in Table 2. Suppose the day starts with the task
breakfast (BF). From the collected data of behavior
patterns, the system learns that the user usually has
no trouble remembering having breakfast on his own.
So the system spent some time waiting for the user
to initiate the task before generating a prompt. After
detecting that the user has started preparing breakfast,
the system terminates the prompting routines pertain-
ing to starting BF. Meanwhile, the user’s activity is in-
terrupted by an incoming phone call after he just puts
bread on the toaster. After the call, the user forgets
about the toaster or bread and goes to watch TV. The
system identifies the suspension of BF and generates a
prompt for continuing the activity with breakfast. The
user goes back to preparing breakfast, eats it, and fin-
ishes cleaning up. However, when the scheduled end
time of BF has passed, the system still couldn’t decide
on the current status of the task. To resolve ambigu-
ity, the system asks the user of his situation. On receiv-
ing the user reply, the system terminates the prompt-
ing routine for stopping BF to avoid confusion. Then
it waits for a while and at a proper time reminds the
user of taking his medicine (TM). The user quickly re-
sponds to the prompt and the schedule is completed.

In the rest of the paper, we first introduce the chal-
lenges and contributions in developing the model. This
is followed by a detailed description of the model, fo-
cusing on the central controller. Then evaluation re-
sults are presented that are based on both simulation
data and lab experiments to demonstrate the model’s
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efficiency and robustness. Finally the paper talks about
the related work and makes a conclusion.

2. Our contributions

The model builds upon a hierarchical POMDP
(partially-observed Markov decision process) that runs
on an underlying MDP [37]. The hierarchy exploits
the problem structure and speeds up learning by re-
ducing the action space at each level. One challenge
in the prompting domain is the wide variety of possi-
ble prompting methods and the need for temporally-
extended prompts. For example, it may be desirable
to repeat a prompt every five minutes until the user
responds, and/or to increase the level of detail in the
prompting instructions. To address this challenge tem-
porally extended actions are used that are called op-
tions [38]. The system is able to specify complex
prompting behavior by directly programming different
options, while maintaining a small action space. Fur-
thermore, adaptive options are introduced, which can
rapidly adapt their behavior to different users based
on user modeling. The adaptive option implements a
light-weight learning process without subjecting the
user to long period of policy exploration as in a stan-
dard reinforcement learning.

Our second contribution is to propose an effec-
tive heuristic solution for the POMDP. Solving the
full POMDP would require extensive computation
over an enormous state-space (for a model-based
approach) and/or extensive training instances (for a
reinforcement-learning approach). Our model employs
a selective-inquiry based “dual control” approach to
dealing with uncertainty. The algorithm assesses the
uncertainty in the current estimation of the state, and
goes into different control modes based on the uncer-
tainty level. The paper argued that this approach is
well suited to our problem and can be used effectively
on-line.

Our third contribution is to combine on-line filter-
ing and most-likely sequence (MLS) inference in or-
der to accurately and efficiently retrieve the time point
of backward events. The state estimator sends the con-
troller the marginal probability of each activity and
the most likely time the activity would have begun or
ended if it were the true activity. This information al-
lows the controller to decide task status and determine
when to prompt. One of the common problems that
the people with cognitive disabilities have is forgetting
about resuming a suspended task. Our model is able

to determine the time point when a task is interrupted,
distinguish it from completed status, and send out a
prompt for resuming the task at an appropriate time.

The model is evaluated with both simulation based
results and human subject experiments. The adaptive
option and three fixed options are run on three types
of simulated users with different behavior patterns,
and show that the adaptive option not only adapts to
particular user behaviors quickly, but also maintains
the best performance across all scenarios. The paper
compares the unified selective-inquiry dual control ap-
proach with alternative models in a simulated environ-
ment. The results show that the unified dual control
approach consistently achieves the most robust perfor-
mance. Finally, experiments are carried out with hu-
man subjects performing a series of carefully designed
scenarios involving different cases of interruptions and
demonstrate the system’s ability to generate proper
prompts.

3. The model

The system starts the day with an initial schedule of
tasks that the user needs to perform. Following [31,34],
the schedule is constructed and revised as necessary
by an interactive constraint-based interval [35] plan-
ning system. Each task has an associated time window
over which it can be performed, a minimum and max-
imum duration, and a target starting time time. The
state estimator inputs data from devices such as IR
motion sensors, RFID object touch sensors [36], and
appliance operation sensors, and outputs a probability
distribution over the possible states of the world. The
controller incorporates information from both the state
estimator and schedule, decides per task status, and
selects appropriate system behaviors (Fig. 1(a)). User
feedback is also fed into the controller and used to help
identify the state and improve the activity classification
model. If the world is fully observable (i.e., the state
estimate is a point estimate), the control architecture
can be modeled as a Markov decision process (MDP);
more generally, it is a partially-observed Markov deci-
sion process (POMDP), or equivalently, an MDP over
belief states.

Because the set of belief states is infinite, an exact
solution to a POMDP is in general intractable. Simple
greedy heuristics for POMDPs include assuming the
most likely state is the true state, or assuming that the
value of a belief state is the weighted sum of the un-
derlying MDP states (the Q-MDP heuristic [4]). Such
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Fig. 1. Illustration of the model structure.

heuristics reduce to arbitrary strategy selection when
uncertainty is high. An important feature of our appli-
cation domain, however, is that the system is able to
reduce uncertainty by asking the user what he or she
is doing. This suggests the use of a dual control rule
[4], which queries the user in the face of uncertainty.
However, in order to avoid interrupting the user un-
necessarily, a novel selective-inquiry rule is proposed,
which only attempts to reduce uncertainty when do-
ing so would cause the controller to select different ac-
tions.

3.1. Temporal planning

The planner is built on the constraint-based inter-
val (CBI) [35] formalism which works by solving a
set of temporal constraints over the time windows of
a set of tasks. These temporal constraints are typically
entered by a caregiver using a simple graphical inter-
face at the start of the day. Such constraints are defined
over variables denoting the start (S) and end point (E)
of each task. These constraints represent the temporal
relations between different event points, e.g., the con-
straint for “task A starts after task B” is represented as
BS − AE > 0, and “task A lasts less than 30 min-
utes” as AE − As < 30 ∗ 60, where each time unit
is one second. With an absolute reference time point,
the absolute temporal constraints regarding the execu-
tion of a task is formalized in the same way. If a task
has preconditions, the planner will try to resolve the
open preconditions and add in new tasks if necessary.
The idea of using planning over temporal constraints
to support a cognitive aid was first introduced by the
PEAT [20] and Autominder [31]. Our system is more

general, however, in that it can handle user preferences
as well as hard constraints.

The planning algorithm returns a consistent set of
constraints determining the partial ordering between
different tasks. After solving the constraints using
Bellman-Ford algorithm, each event point is bounded
by an earliest time and a latest time, e.g., a start point is
bounded within [ES, LS], where ES is the earliest pos-
sible start time and LS is the latest possible start time.
To obtain an exact schedule that reflects user prefer-
ences (indicated by the caregiver or the resident), slack
variables are introduced to represent preference con-
straints. Suppose the user indicates the preferred time
for starting a task T as PS, then this time preference
is encoded with two constraints: TS + ζ1 � PS and
TS − ζ2 � PS, where ζ1, ζ2 � 0. The preferred
duration (PD) is programmed in a very much simi-
lar way with the other two slack variables η1 and η2.
These constraints are added into the original set of
constraints. By solving a linear optimization problem
over all the constraints with the objective of minimiz-
ing ζ1 + ζ2 + η1 + η2, the exact time schedule is ob-
tained for executing the task T that best reflects the
user’s preferences.

3.2. Decision making in hierarchical MDPs

Our domain is highly structured because actions
(e.g., prompts to begin or end activities) are restricted
to particular situations. Hierarchical representations
can exploit this problem structure and accelerate learn-
ing by partially hardcoding the policy space. Hierar-
chy in our model is represented through temporally-
extended actions called options [38], where each op-
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Fig. 2. The simplified view of the status transitions for a task. The
cause of transition is displayed beside the transition arrow. Error
status (framed with dashed line) is currently not fully implemented
in the model.

tion decides a sequence of primitive actions to be fol-
lowed until it is terminated.

3.2.1. Options and tasks
An option is defined with its own internal policy, a

set of possible initial states (determined by its initia-
tion conditions), and termination conditions. Each task
is associated with a set of options, and each option runs
over the state space of its associated task. The task sta-
tus determines which of its options are enabled, that is,
which are available to be chosen by the controller for
execution. (Note that enabled options might be chosen
for execution, but do not necessarily execute.)

Task status is determined according to the schedule
and the current state. For example, a task T is ready
when the current time step is within the start window
of T and T has not started yet. From ready, a task may
transit to underway or failed, and from underway to
completed or failed. A task is said to be active when
it is ready or underway. The completed transitions of
task status are illustrated in Fig. 2. The termination of
an option or the initiation of a new option always oc-
curs with the change in task status and the execution
of schedule, which is declared explicitly as termina-
tion or initiation conditions of the option. For instance,
the initiation conditions of a stop option dictate that
the option is only enabled when the task is underway
and the current moment is greater than the scheduled
end time. And a start option can only be initiated when
the task becomes ready. Our implemented system also
handles task interruptions by identifying a suspended
task status and enabling the resume option.

An option is executed based on its internal policy,
which implements the option in terms of primitive ac-
tions that are at the lowest level of the calling hierar-
chy; in this domain, its prompting strategy. A prompt-
ing strategy defines all aspects regarding the gener-
ation of a prompt action, such as timing, modality,

specificity and so on. With a detailed prompting strat-
egy, the model is able to specify very complex prompt-
ing behavior in a compact and highly customized way.
Because options are defined only over the task space,
the hierarchical learning problem is decomposed into
a collection of independent learning problems, where
each task runs its own MDP. Q-learning over options
[38] is done over each MDP individually. Options with
different prompting strategies are considered as dis-
tinct ones, so the utility of an option reflects the effec-
tiveness of its associated strategy.

At each time step, the controller updates schedule
and the status of all the scheduled tasks, checking the
termination conditions of the currently executing op-
tion if there is any, and selects one (if no other option
is running) with highest utility for execution from the
set of available options of the active tasks. It is pos-
sible that there might be more than one active tasks
going on, and the task with higher priority is chosen
over the lower priority one. Noted that an executing
option can be forcibly terminated by initiating a new
option of a higher priority task. Once an option is se-
lected for execution, it decides a primitive action to
be generated based on its prompting strategy. This hi-
erarchical decision making structure is illustrated in
Fig. 1(b).

3.2.2. Adaptive options
A key aspect of a prompting strategy is its timing.

An optimal strategy should avoid prompting the user
too soon (that is, before the user has a chance to self-
initiate the task) as well as too late (that is, risking task
failure). However, learning to choose among a large set
of different fixed options with different timings could
require a lengthy training process. Furthermore, bad
prompts that result from exploring the policy space can
frustrate the user.

To overcome this limitation, adaptive options are in-
troduced that rapidly adapt prompting behavior based
on a lightweight user model. Two kinds of user vari-
ables are considered that can affect the timing of a
prompt, initiative and responsiveness. Initiative indi-
cates how soon the agent will initiate a task without
any prompt, and responsiveness reflects how long the
user will take to respond to a prompt. Thus, if initiative
and responsiveness are both short, the system should
spend more time waiting for the desired task being
self-initiated before issuing a prompt, and vice versa.
In this way, the model is trading off between two ob-
jectives: trying to avoid unnecessary prompts and en-
suring the task occurs in time.
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Suppose a task T is scheduled to start within the
time interval [ES, LS]. Let F1(t) represent the cumu-
lative probability of the user initiating a task within
t steps since ES. Let F2(t) represent the cumulative
probability of the user starting the task within t steps
since a prompt. If a prompt is scheduled at time t3 ∈
[ES, LS], the probability that the agent initiating T is
denoted as P1 = F1(t3 − ES). Similarly, the proba-
bility of the agent responding to a prompt in time (be-
fore LS) is P2 = F2(LS − t3). The expected reward
obtained if prompt is generated at t3 is therefore

E(R|t3) = P1R1+(1−P1)(P2R1+(1−P2)R2−c)

(1)

where R1 and R2 are the expected cumulative rewards
obtained when T has started and failed respectively,
and c is the cost of the prompt. Recall that R1 and
R2 are available, because they are exactly the result
of Q-learning, i.e., R1 = V (status = started) and
R2 = V (status = failed). The time point that max-
imizes Eq. (1) is the estimated optimal prompt time
tp. Note that different kinds of variations can be added
into this computation of E(R|t3) to reflect specific
needs or preferences. For example, delay cost can be
included if the model needs to emphasize the user’s
adherence to schedule.

However, a problem arises in learning F1(t) from
user behavior. While F1(t) is the time until the user
self-initiates, in many trials the user will be prompted,
and thus not have a chance to self-initiate. These trials
are not to be ignored in estimating F1(t); they tell us
that if the prompt had not been issued at t, the self-
initiation time would have exceeded t. Techniques for
estimating cumulative probability distributions from
this kind of “right-censored” data has been developed
in work on reliability [5]. When data is subject to right
censoring, F (t) is not learned directly, but instead is
modeled by the survivor function S(t) = 1 − F1(t).
The Kaplan-Meier is employed estimate, which works
by identifying k distinct time points when the observed
event occurs: t1, t2, . . . , tk. Let nj be the number of
trials when the event is observed to occur at time tj ,
and mj the number of trials that are alive at tj . Then
the Kaplan-Meier estimate of S(t) is given by

Ŝ(t) =
∏
j

(
1− nj

mj

)
(2)

where tj < t. The empirical estimate of S(t) does not
depend on any specific probability model, but it sug-

gests the form of a likely model for the data, namely,
a Weibull distribution. With an appropriate choice of
parameters, a Weibull can take on the characteristics
of many other types of distributions. The simulation
results show that an estimated Weibull model helps to
learn the pattern of the user behavior even when the
actual distribution is Gaussian.

3.3. Uncertainty handling

So far the paper has talked about the decision-
making process on a MDP basis, but the problem the
system is dealing with is fraught with uncertainties and
incomplete information. In the model, the user’s Cur-
rentActivity is determined (in the absence of explicit
inquiries) by a Hidden Markov Model (HMM). The
states of the HMM are the possible activities associ-
ated with tasks, and an “other activity” state. The ob-
servations in the HMM are the sensor streams, includ-
ing object touches as determined by a wearable RFID
reader [30,36] and location as determined by motion
sensors. On-line filtering computes a probability dis-
tribution over the set of activities. Activity recogni-
tion using an HMM and this kind of sensor data can
be quite reliable and accurate [30,36]. In most but not
all cases, the output of the HMM is close to a point-
estimate. The fact that uncertainty is significant but
limited in scope motivates the use of a control mech-
anism that is computationally simpler than solving a
full POMDP.

3.3.1. Dual control
The basic idea of dual control mechanism is straight-

forward: when the state uncertainty is small, the state
with the most probability mass is the true state; if
the state uncertainty is large, the system can choose
an action to reduce the uncertainty – in our domain,
it can query the user. The normalized entropy [4] of
a probability distribution b is computed as H(b) =
H(b)/H(u), where H(b) is the entropy of the prob-
ability distribution b and H(u) is the uniform distri-
bution. Normalized entropy is in the range of 0 �
H(b) � 1 because the maximized entropy is achieved
for H(u). A small threshold δ is chosen. If H(b) � δ,
the current world state is updated to be the most likely
state. Otherwise, the state is considered to be ambigu-
ous.

It is not, however, always appropriate to query the
user when the state becomes ambiguous. Such inter-
ruptions have an inherent cost to the user. It might
be better, for example, to simply wait and see if fur-
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Input:
2: b: the current belief of the world

δ: thresh-hold on H(b)
4: T_list: the list of tasks

Return:
6: action: the system action based on b

8: At each time step t:
if Get confirmed state s after an inquiry then

10: setHMM (s)
H(b) ← 0

12: end if
if H(b) < δ then

14: s ← argmaxs b(s)
status(T_list) ←UpdateTaskStatus(s)

16: action ← πMDP (s ∪ status(T_list))
else

18: {Decide whether to issue an inquiry or wait}
Sn ← the set of n most likely states based on b

20: A ← {Init the set of permissible actions based
on b}
for s ∈ Sn do

22: status(T_list) ←UpdateTaskStatus(s)
a ← πMDP (s ∪ status(T_list))

24: if a �= wait then
A ← A ∪ a

26: end if
end for

28: if A contains different actions then
action ← inquiry

30: else
action ← any a ∈ A

32: end if
end if

Fig. 3. Selective-inquiry based Dual Control algorithm (DC-SI).

ther observations eliminate the ambiguity. Intuitively,
an inquiry action is not needed when no other ac-
tion than wait is available considering all possible
states. In the algorithm shown in Fig. 3, a heuris-
tic mechanism is employed to decide whether to is-
sue an inquiry: an inquiry is needed when different
possible states result in the selection of different ac-
tions. It is possible to integrate more quantitative ap-
proaches to further weigh the value of asking a ques-
tion against the values of other available actions (by
locally modifying the line 28 in the DC-SI algorithm
(Fig. 3). Further analysis on the value of asking a ques-
tion is given in the next section to examine how this
works.

3.3.2. Value of inquiry
Suppose H1 and H2 are two hypotheses about the

state of world at the current moment t based on the
state belief b. H1 is true with probability b(s1) when
the world is in the state s1, and similarly H2 is true
with probability b(s2). a1 and a2 are two best ac-
tions to address each state. Suppose a1 is non-trivial
(other than ‘wait’), the expected value of a1 can be
represented as the weighted sum of the underlying
states:

V (b, a1, t) = b(s1) ∗ V (H1, a1, t)

+ b(s2) ∗ V (H2, a1, t)

≈ b(s1) ∗Q(s1, a1, t)

+ b(s2) ∗ (E +Q(s2, ‘wait’, t)) (3)

where E is the constant denoting the penalty for er-
roneous action, i.e., delivering an incorrect prompt.
Here two heuristics are employed: first, a myopic strat-
egy is used to approximate V (H1, a1, t) based on the
Q functions of the underlying MDP model; secondly,
V (H2, a1, t) is approximated by the sum of two parts:
the cost of error action a1 in state s2 and the value
of being idle (waiting instead of taking action a2)
in s2.

The value of an inquiry action is comprised of three
parts: the cost of inquiry action (C), which might be a
little more expensive than a normal prompt, the value
of taking the correct action based on user response
V (correct), and the value of waiting V (wait) when
no reply is obtained. Note that the user responsive-
ness to an inquiry can be learned the same way as
to a prompt (in Section 3.2.2). Suppose the user re-
sponds to a query within t time steps with proba-
bility F (t), and the expected delay is DD based on
F (t). Let TT be the time-out condition of an in-
quiry, the expected value of inquiry is thus estimated
as,

V (b, inquiry , t) = F (TT ) ∗ V (correct)

+ (1− F (TT )) ∗ V (wait)

+ C, (4)

V (correct) ≈ b(s1) ∗Q(s1, a1, t+DD)

+ b(s2) ∗Q(s2, a2, t+DD), (5)

V (wait) ≈ b(s1) ∗Q(s1, ‘wait’, t)

+ b(s2) ∗Q(s2, ‘wait’, t). (6)

The dynamics of online reasoning about belief and ac-
tion under time-pressured context depends on the un-
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certainty level, the task urgency (time to deadline),
and task importance (task reward). With the same be-
lief state, the advantage of asking a question over
the other actions (reflected by the difference between
Eqs. (3) and (4)) diminishes as the task is increas-
ing in urgency or importance, making the decision on
the best action less likely to be inquiry. Based on the
values of different actions, the choice of action (line
28 in the DC-SI algorithm) is determined by the for-
mula

action ← argmax
a

V (b, a, t), a ∈ A∪wait∪inquiry .

3.3.3. State estimation: Retrieval of event points
The key to the successful implementation of the dual

control algorithm is to determine the critical time point
when an inquiry is needed. Adaptive options estimate
the approximately optimal time point for generating a
prompt, which can be considered as a decision point
for an inquiry. However, to make the adaptive option
work effectively, it is necessary to record the exact
time point when an event occurs, (e.g., the task starts),
which is needed for both learning the correct user
model and computing the prompt time. In addition, the
controller needs to identify the start, end, suspension
or resumption times of a task in order to update its sta-
tus and decide options. However, in a selective-inquiry
based model, state ambiguities are not necessarily re-
solved immediately. It is therefore possible that a criti-
cal state transition has already passed when the current
state is finally disambiguated. In such cases, the algo-
rithm needs to retrieve the time points of the missed
events.

The activity model is built based on a HMM model
where the state space is the set of all the possible ac-
tivities. When the state is fully observed, knowledge of
CurrentActivity, obtained from on-line filtering, is suf-
ficient for determining timing information. However,
as argued, some activities are not disambiguated im-
mediately. One solution to this issue would be to track
the cross product of activities and starting time of the
activity (or equivalently, the cross product of activities
and durations), but this would be computationally ex-
pensive. A practical alternative is to determine the time
point at which an activity begins by reasoning back-
ward from the time at which the activity is strongly
believed to hold: that is, when the entropy of the state
estimate is below the threshold δ. When a state be-
comes unambiguous in this manner, the most likely
start time (MLST), most likely end time (MLET), and

most likely duration (MLD) of prior activities are cal-
culated given the CurrentActivity M . They are defined
as

– MLST(A,M ) as the latest time step t where
at−1 �= A and at = A in the most likely sequence
ending at M .

– MLET(A,M ) as the latest time step t where at =
A and at+1 �= A in the most likely sequence end-
ing at M .

– MLD(A,M ) as the time difference t between
MLET(A,M ) and MLST(A,M ).

The most likely sequence MLS(M ) ending at activity
M is given by,

MLS(M) = argmax
a1,...,aT−1

P (a1, . . . , aT−1, o1, . . . , oT

|aT = M). (7)

This can be efficiently computed using the Viterbi al-
gorithm. A method is introduced to feed back infor-
mation gathered from the inquiry to the state estima-
tor. When a particular state is confirmed by the user,
the system “fixes” that state (setHMM() in the DC-SI
algorithm (Fig. 3) to hold with probability 1.

Thus, by examining the most likely state sequence,
the system successfully recovers the time points when
task status changes. This information is then used to
further update the user model, which in turn is used to
estimate the optimal timing of a prompt action in an
adaptive option.

3.3.4. Interruption model
When a task is executed without interruptions or not

interleaved with the other activities, its completion is
clearly identified as the most likely end time. How-
ever, in the real world, when the user performs a task,
he may suspend the task before finishing and go on to
another task. The presence of interruptions and inter-
leaving activities poses challenge for recognizing the
completion of a task. The same difficulty holds for the
differentiation between the start and resumption of a
task.

In order to correctly trace the progress of the sched-
uled tasks in the case of interruptions, the per activ-
ity state is divided into sub states for each activity, in-
cluding an ending state that signifies the completion
of an activity. In the extended interruption model, the
state space of HMM comprises the sub-states of all the
activities. Initially, the transition probabilities in the
model favor a non-interruption model, where the sub-
activities occur in sequence, and the transition to the
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next activity is highly likely only when the current ac-
tivity is at its final state. However, if the MLS deter-
mines an activity has been interrupted, the model takes
note of the interrupted sub-state and assign a higher
transition probability to resuming at that sub-state. The
transition probabilities of our interruption model can
be described as having so-called logical transitions
[29], where the transitions to the successor states (re-
suming to the start or a certain sub-state of an activity)
depends on the current activity status (inactive, active,
or suspended).

The model records information that keeps track of
the interruption and resumption time point of each
task: the most recent suspend time (MRST), the most
recent suspend state (MRSS), the most recent resume
time (MRRT), and the most likely init time (MLIT).
MRSS is the very last state just before a task switches
out of its internal sub-states. If MRSS equals the end-
ing state, the task is identified as completed, otherwise
suspended. MRST and MRRT are determined in the
same way as MLET and MLST in a model without in-
terruptions, as described in the previous section. MLIT
is the point when the activity is first initiated. If the ac-
tivity is executed uninterruptedly to its end, MLIT =
MRRT = MRST. Otherwise, MRRT gives the time
point when the task is resumed after its most recent
suspension.

4. Simulation results

Two sets of experiments are conducted with a sim-
ulated user and environment. The purpose of the first
set of experiments is to demonstrate the effectiveness
of the adaptive option by comparing its learning pro-
cess with different fixed options. In the second set of
experiments, the results of five models with variations
are compared to illustrate how the unified dual control
approach outperforms other models.

4.1. Experiment I: Adaptive option

In this experiment, different kinds of user behaviors
are simulated with different levels of initiative and re-
sponsiveness. Focusing on the start option, the simu-
lated user can initiate a task at any time point within
[ES, LS] by sampling from a distribution modeling ini-
tiative. After a prompt, the user behavior changes, and
a start point is sampled instead from the distribution
of responsiveness. The type I user has high initiative
and responsiveness. The Weibull modeling the initia-

tive falls almost entirely into the earlier part of the win-
dow. The Responsiveness is also modeled with Weibull
and set to a high value: the user responds within 5
steps of a prompt 90% of the time. The type II user is
as highly responsive as type I, yet with a much lower
initiative. The user is more erratic in terms of select-
ing the timing for executing a task and can probabilis-
tically forget about doing the task entirely. Initiative
is modeled as a normal distribution with the mean as
the midpoint of the start window and a relatively large
variance. Compared with type II, the type III user has
the same initiative model but a lower responsiveness.
The user responds to a prompt within 5 steps only 70%
of the time.

Four kinds of strategies are compared: no prompt at
all, prompt at the earliest time (ES), prompt at the latest
time (LS-5) and the adaptive strategy. In the learning
process, the system penalizes each prompt with a small
cost (−2), the failure of a task with a large cost (−10),
and rewarded the successful completion of a task with
a reward (+10). To make a relatively consistent set-
ting for all of the experiments, it is assumed that once
a task is started, it is always completed successfully.
Experiments are run on all three types of users for 10
times. In each experiment, Q-learning is updated for
60 iterations. The results show how the averaged utility
of each kind of option changes when the user exhibits
different patterns of behavior. Note that the utility of
different options reflect the effectiveness of different
strategies.

Obviously, the best strategy for type I user is to
prompt as late as possible or not to prompt at all. The
average results from 10 runs show that the adaptive op-
tion adapts to the type I user as well as the other two
best fixed options (no prompt and latest prompt strate-
gies). The results for type II & III users are displayed
in Fig. 4. In both scenarios, the adaptive option stands
out as the best strategy.

A task has a scheduled or preferred execution time,
tp, and the system is designed to improve the user com-
pliance with the schedule. To reflect this preference,
the system is penalized every time a task is started at a
point later than tp. The adaptive option explicitly takes
the delay cost into the computation of the expected re-
ward. The results in Fig. 4(c) and 4(d) show that the
adaptive option not only adapts to particular user be-
havior, but also to the user preferences. It should be
noted although the paper is only talking about start op-
tions here, the same approach applies to other options
(e.g., option for resuming a task) or the second prompt
in the same option.
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Fig. 4. The utility of options for the type II and type III user.

4.2. Experiment II: Unified control model

In this experiment, partially observable environment
is simulated in order to test dual control. Consider-
ing a HMM with three states: breakfast (BF), take-
medicine (TM), and no activity (NO). The set of ob-
servations (RFID object touches) for BF is {cupboard,
cup, spoon, cereal-box}, and for TM is {cupboard,
cup, spoon, medicine}. A situation is created where
only objects common to both BF and TM are ob-
served. This can occur in the real world in situations
where the tags for ‘cereal-box’ or ‘medicine’ fails, or
when the RFID reader misses readings. In addition,
a special state is introduced called NO, representing
a state when the user randomly touches objects with
certain probability (10%) without initiating a partic-

ular task. A simple scenario is simulated where the
user starts a task and then ends it. As mentioned ear-
lier, the task has a start window as well as the sched-
uled start (tp) and end time (te). Two kinds of prompts
are available: start prompt (prompt the user to start
a task) and a stop prompt (prompt the user to end a
task if it is under way and t > te). For this experi-
ment, five different models are compared: Model I is
our unified control model; the other alternative models
are:

– Model II (never inquiry): When H > δ, the sys-
tem system just waits instead of issuing an in-
quiry.

– Model III (always inquiry): The system always is-
sues an inquiry immediately when H > δ.
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Table 1
Performance of different models in the face of uncertainty after 100
iterations. Gray cells indicate lowest performance (smaller numbers,
better performance)

Model I II III IV V

System Action

# of Inquires per run 1.2 0 4 1.3 1.7
# of prompts per run 0.8 0.7 0.81 0.9 0.7
Prompt error rate (%) 0 15 1 2 5
Prompt miss rate (%) 2 27 2 0 14

Execution of Schedule

Failure rate (%) 0 3 1 0 3
Ave. start delay (step) 2.9 6.4 2.7 4.4 6.5
Ave. finish delay (step) 3.0 6.3 2.4 3.0 3.9

Inference

Start infer. failure (%) 0 51 0 2 4
End infer. failure (%) 0 51 0 2 4
Ave. discrepancy (start time) (step) 0.2 1.5 0.72 5.0 1
Ave. discrepancy (end time) (step) 0.2 1 0.18 1.1 1.3

– Model IV (no filtering combined with MLS): The
system did not use MLS to retrieve the time point
of backward events.

– Model V (no adaptive option): Instead of adap-
tive option, the system learns over a set of fixed
options with various prompt times.

Table 1 lists the summarized results after 100 iterations
for each model in terms of the system actions, user be-
havior (execution of schedule), and inference. These
three classes of measures correspond to the system’s
objectives. In the experiments, the uncertainty rate is
measured by the percent of the time steps when the
state is ambiguous (H(b) > 0.4). When the system
makes no explicit actions (inquiry) to resolve uncer-
tainty (model II), the uncertainty rate is around 61%.
The cells in gray indicate the performance of the cor-
responding model is poor enough compared with other
models. It is clear from this table that Model I per-
forms consistently robust across all measures. Model
II failed in all three measurements. Model III achieved
sound performance but at the cost of too many in-
teractive questions. Model IV did poorly in the ex-
act inference. Model V (where different fixed options
are used instead of the adaptive option) misses many
prompts and failed more often with its randomness
in exploration. In terms of learning, experiments also
show that even after 100 iterations, Q learning with
fixed options (15 different strategies) is still not con-
verging, despite the fact that the adaptive option is
well trained in less than 20 iterations. For other mod-

Table 2
A simple test schedule

Task Start window Scheduled start Scheduled end

BF [0, 30] 15 115
TM [120, 150] 135 175

els with the adaptive option, Model II is not learn-
ing the correct strategy. Model IV takes longer to con-
verge and learns a strategy with earlier than optimal
timing.

5. Experiments with human subjects

To demonstrate how the system works in terms of
generating prompts and asking questions, two volun-
teer actors (students), who have no prior knowledge
of how the system works, are asked to walk through
a series of scenarios in our lab. Each volunteer wore
RFID bracelets on both hands and performed two tasks
according to a simple schedule (Table 2). The partici-
pants were asked to respond to all reminding prompts,
i.e., to do exactly as the system instructed. The test sce-
narios are designed to include interruption cases where
a task is suspended before completion and then re-
sumed later. In the first scenario, the participants fol-
lowed the scheduled tasks sequentially without any in-
terruptions, i.e., they start with the task of breakfast,
finish it and then take medicine. In the second and
third scenarios, the participants stopped the breakfast
halfway to initiate other tasks, either taking medicine
or watching TV, and then went back to finish breakfast
(after the system prompt). The general criteria for test-
ing the success of the system was that the system could
behave properly, i.e., generate appropriate prompts in
the right situation and ask questions when needed. In
general, the system was able to successfully guide the
agent through the schedule by instructing them to start,
finish or resume a task. The detailed results are de-
scribed in the tables.

Tables 3–8 summarize the transcript of three test
scenarios by two participants. This includes the user
behavior, inferred state, system action and its ap-
propriateness. To track the progress of breakfast and
medicine, each activity is divided into sub stages:
BF_B (preparing breakfast), BF_M (eating), BF_E
(cleaning up), TM_B (getting medicine), TM_M (tak-
ing medicine), TM_E (putting away medicine). In the
first scenario, the system delivered prompts to start
the task and stop the task when it was not finished
as scheduled. One incorrect prompt occurred when
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Table 3
Transcript of Scenario I (Participant A): no interruption

Step Real situation Inferred state System action Notes

15 BF: ready; TM: not ready NO prompt to start BF
√

30 Start preparing BF NO
86 Finish cleaning up breakfast BF_B Sensor error; no readings while eating using a

spoon
95 BF: completed; TM: not ready NO prompt to resume BF × State estimate error (see above): BF was falsely

estimated to be suspended at state BF_B
135 BF: completed; TM: ready NO prompt to start TM

√

143 Start getting medicine NO
170 Finish putting away medicine TM_E
173 BF: completed; TM: completed NO, BF_B issue inquiry

√
Disambiguate: if BF_B is true, prompt to stop BF

175 (same as above) NO Get reply

Participant A: Number of ambiguous steps: 21 (12%)

Table 4
Transcript of Scenario I (Participant B): no interruption

Step Real situation Inferred state System action Notes

15 BF: ready, TM: not ready NO prompt to start BF
√

19 Start preparing BF NO
114 Finish cleaning up BF MD_B State estimated incorrectly, but recovered later
135 BF: completed, TM: ready NO prompt to start TM

√

138 Start getting medicine NO
169 BF: completed, TM: started TM_E, BF_B issue inquiry

√
Disambiguate: if BF_B is true, prompt to stop BF

173 (same as above) TM_E Get the reply
176 (same as above) TM_E prompt to stop TM

√

181 Finish putting away medicine TM_E

Participant B: Number of ambiguous steps: 27 (15%)

Table 5
Transcript of Scenario II (Participant A): interruptions by higher-priority task

Step Real situation Inferred state System action Notes

15 BF: ready, TM: not ready NO prompt to start BF
√

18 Start preparing BF NO
51 Suspend eating BF BF_B, BF_M No inquiry was needed
56 Start getting medicine NO
81 Finish putting away medicine TM_E
83 BF: suspended, TM: completed NO, TM_E issue inquiry

√
Disambiguate: if NO is true, prompt BF to resume

87 (same as above) NO Get reply
88 (same as above) NO prompt to resume BF

√

90 Resume eating BF NO
116 BF: resumed, TM: completed BF_E prompt to stop BF

√

135 Finish cleaning up BF BF_E
137 BF: completed, TM: completed BF_E, NO issue inquiry

√
Disambiguate: if BF_E is true, prompt to stop BF

140 (same as above) NO Get reply

Participant A: Number of ambiguous steps: 31 (22%)
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Table 6
Transcript of Scenario II (participant B): interruptions by higher-priority task

Step Real situation Inferred state System action Notes

15 BF: ready, TM: not ready NO prompt to start BF
√

18 Start preparing BF NO
66 Suspend eating BF BF_E

103 Finish putting away medicine
106 BF: suspended, TM: completed TM_E, NO issue inquiry

√
Disambiguate: if NO is true, prompt to resume BF

110 (same as above) NO prompt to resume BF
√

Get reply
112 Resume eating BF NO
131 BF: resumed, TM: completed BF_M prompt to stop BF

√

159 Finish clearing up BF MD_E, MD_B No inquiry is needed (ambiguation resolved itself
quickly)

Participant B: Number of ambiguous steps: 38 (24%)

Table 7
Transcript of Scenario III (Participant A): interruptions by lower priority task

Step Real situation Inferred state System action Notes

15 BF: ready, TM: not ready NO prompt to start BF
√

19 Start preparing BF NO
49 Suspend eating BF BF_B, BF_E No inquiry needed
56 Start watching TV NO
63 (same as above) NO, TV prompt to resume BF

√

70 Resume eating BF NO
85 Suspend eating BF again BF_M
93 (same as above) NO prompt to resume BF

√

97 Resume eating BF NO
112 Finish cleaning up BF BF_B
116 (same as above) NO, BF_B issue inquiry

√
Disambiguate: if BF_B is true, prompt to stop

119 (same as above) NO Get reply
135 BF: completed, TM: ready NO prompt to start TM

√

139 Start getting medicine NO
164 Finish putting away medicine TM_B
167 BF: completed, TM: completed NO, TM_M No inquiry needed (ambiguation resolved itself

quickly)

Participant A: Number of ambiguous steps: 21 (13%)

the system didn’t recognize the ending state of break-
fast due to a period of consecutive missing readings
from the sensors. At the beginning, the system waited
for a while and then prompted to start breakfast in
the middle (step=15) of the start window based on
the schedule. When the system detected that the user
had started breakfast, it updated task status and termi-
nated the start option so that no more prompts would
be generated for starting breakfast. Noted that during
the very first runs, when no knowledge of the user’s
behavior pattern is learned, the system usually sends
out a prompt in the middle of the given time window
within which the system can afford to wait for the user

to initiate the task on his own. In the case of a re-
sume prompt, the system estimated the approximate
time left for the suspended task to be completed based
on the elapsed period of time spent over it so far and
the prior knowledge of task duration. This informa-
tion, combined with the schedule, is used to decide the
time window for a resume prompt. Alternatively, a stop
prompt is usually generated at the scheduled ending
time of the task if it is not finished by then, The con-
tents of prompts were written that reflect the intents of
the different kinds of prompt. During the run time, the
correct prompt content is decided by the system and
sent out using the text-to-speech APIs supported by
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Table 8
Transcript of Scenario III (participant B): interruptions by lower-priority task

Step Real situation Inferred state System action Notes

10 Start preparing BF NO
57 Suspend eating BF BF_M
59 Start watching TV BF_M
73 Watching TV; BF: suspended, TM: not

ready
TV prompt to resume BF

√

80 Resume eating BF NO
116 BF: resumed, TM: not ready BF_E prompt to stop BF

√

137 BF: completed, TM: ready NO prompt to start TM
√

142 Start getting medicine; BF: completed,
TM: started

NO

162 BF: completed, TM:started NO, BF_B issue inquiry
√

If NO is true, TM ended; if BF_B is true,
prompt to start TM

176 (same as above) TM_M prompt to stop TM
√

Didn’t get the reply; state is self-resolved
184 Finish putting away medicine; BF: com-

pleted, TM: completed
TM_E

Participant B: Number of ambiguous steps: 24 (13%)

the Mac OS X Lion Speech engine. Questions regard-
ing the user activity is sent out similarly. And the user
can input responses by selecting from a list of choices
through the GUI on the computer.

In the second scenario, the agent stopped eating
breakfast and went to take medicine. Since having
medicine is considered a higher priority task, the sys-
tem waited until the agent finished the medicine and
then prompted him to resume the breakfast task. In
the third scenario, the agent went to watching TV in
the middle of breakfast. The system dutifully prompted
him to stop TV and return to breakfast after some time.
Throughout all the experiments, the system issued 20
prompts in total, one of which is erroneous (sensor er-
ror). There are in all 7 inquiries in the presence of a
total of 172 ambiguous time steps, and all the inquiries
are reasonably justified based on the real situation. The
result demonstrated the system’s ability in recognizing
activities, generating proper prompts and handling in-
terruptions and resumptions. It also demonstrated the
model’s effectiveness and efficiency in dealing with
ambiguous situations.

6. Related work

Our work is inspired by the growing interest in
the development of intelligent prompting systems, and
in particular by the systems PEAT [20], Automin-
der [31], and COACH [1]. PEAT was the first sys-
tem to combine prompting with automated planning

and rescheduling. However, PEAT is primarily devel-
oped as a scheduling aid and its ability of tracking the
progress of schedule relies on the user’s self-reports.
Autominder introduced the vision of a unified, context-
aware prompting agent. However, both PEAT and Au-
tominder have not demonstrated how automatic sens-
ing can be integrated into the system to provide more
effective prompts, and neither do they develop mecha-
nisms to handle uncertainties in state estimation.

Vurgun [41] showed that a context-aware medica-
tion prompting system that used a rule-based deter-
ministic control strategy could improve medication ad-
herence. However, the system is sending out prompts
based on a set of pre-defined rules, and makes no ef-
fort in exploring the most fruitful prompting strategy.
There has been research on studying how to learn ef-
fective, adaptive prompting strategies that do the most
good. Rudary [34] learned the timing of prompt us-
ing reinforcement learning where the set of available
actions is controlled by the user’s daily schedule. The
learned prompting strategy adapts to different users
and is thus a primary inspiration for our model. How-
ever, its reinforcement learning algorithm takes long
time to converge, and during this period the user would
suffer from inconsistent and erroneous system behav-
ior. Mihailidis and his colleagues [14,25] are studying
how to effectively automate the generation of prompt-
ing actions using a decision-theoretic approach. The
system is tailoring the prompting behavior, in terms of
both the timing and level of specificity, to specific indi-
viduals. Das [6] is trying to learn the timing of prompts
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by directly mining from a large set of sensor data, but
they are not differentiating the prompting strategies for
different users. Neither do they consider the cost of
prompts.

A successful prompting system should be able to
recognize the user state with high accuracy, develop
effective interaction strategies that can vary and adapt
to different user behaviors and contexts, and make rea-
sonable decisions in the face of all kinds of certainties
inherent in such a problem. So far, the most sophisti-
cated kind of this system is COACH [1], which intro-
duced the use of a POMDP model for prompting an in-
dividual through a task, i.e., hand-washing, by giving
step by step instructions. POMDPs provide a powerful
framework for dealing with uncertainties and utilities
in a theorectically well-justified manner, which have
been applied successfully to a set of prompting sys-
tems that focus on one particular aspect of daily sup-
port, e.g., art therapy (ePAD [13]), stroke rehabilita-
tion (iSTRETCH [15]), or a specific kitchen task such
as making tea (SNAP [12]). However, solving a full
POMDP is computationally intensive. Various approx-
imations for POMDPs have been developed that can
be solved off-line [32,40]. However, these algorithms
scale poorly when the state space becomes very large,
making it difficult or even intractable to be deployed in
the real setting. Our heuristic approach may efficiently
handle problems with a large group of activities with
each activity divided into very fine-grained sub-states
or sub-steps. Fern [11] applied the Q-MDP approxi-
mation to solving a novel POMDP model of an intelli-
gent assistant, but did not consider inquiry actions for
resolving uncertainty.

Our work is also related to monitoring systems that
achieve tracking and activity recognition with a per-
vasive sensor infrastructure. One of the essential ser-
vices required for a context-aware prompting system
is an accurate tracking and activity recognition sys-
tem that reveals critical information about the user’s
context. There have been an impressive amount of
work in using various sensors including GPS, cameras,
RFID, and infrared or ultrasound badges to track peo-
ple’s activities. For example, Liao [21] has shown how
to extract a person’s activities and significant places
from traces of GPS data. Recently, the high accuracy
of HMMs for activity recognition from object touch
RFID data was demonstrated by Patterson and other
researchers [30,36]. Researchers at MIT [39] studies
the potential of using a large number of simple, low
cost sensors for accurate activity recognition in the
home. Furthermore, they are exploring the simulta-

neous tracking and activity recognition (STAR) [44]
problem for automatic health monitoring in the home
environment. In [26], Mileo is proposing a logic-based
context model for monitoring the user’s quality of life,
level of acitivity and health state through the aggre-
gation and the interpretation of different kinds of in-
formation from heterogeneous sources (such as light,
position, movement, localization, load cells, etc.) The
system is also designed to identify risky situations,
i.e., fall detection, and provide prompts for prevention
through declarative policies. In [24], Moran is trying
to understand and predict the undesirable effects, such
as increases in stress, of ubiquitous monitoring tech-
nology on the user by developing a preliminary model
consisting of a series of factors believed to influence
user behavior.

7. Conclusions and future work

This paper presents a hierarchical POMDP model
of interactive activity recognition and prompting. The
model is expressive enough to support the design of a
prompting system that handles uncertainty, queries to
the user, and multiple prompting options. To keep the
size of the problem at a contained and practical level,
the dual control is used to handle uncertainty, adaptive
options to reduce training time and the combined fil-
tering/most likely sequence estimation to infer the tim-
ing of past events. Simulation results are presented that
showed that the unified model combining all of these
features outperforms alternatives. A common problem
in task performance by persons with cognitive disabili-
ties is failing to resume a task that has been interrupted.
Our model distinguishes activities that have completed
from activities that are suspended, and supports op-
tions that prompt to resume an activity. The paper also
presents a series of lab experiments with human sub-
jects to demonstrate the system’s ability to generate
correct prompts, ask questions for identifying ambigu-
ous situations, and handle interruptions.

There are several possible extensions for this work.
One would be to see how the model can be personal-
ized to meet the individual user’s preferences. It would
be nice if the user can have choices over the gener-
ation of system’s actions bases on their likes or dis-
likes, e.g., disabling all the prompts or inquiries, or us-
ing visual prompts instead of audio ones. This can be
easily achieved by giving the user authority to change
the parameters or alter the routine of the option policy
directly though the user interface. As have been men-
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tioned in Section 3.2.1, an option policy can be used
to specify various aspects of a prompt, including its
timing, modality, specificity and so on. Although the
focus of this work is not on experimenting with vari-
ous prompting methods, we believe this is an impor-
tant function that could be readily integrated into the
existing model and improve the system’s usability and
acceptability. Another extension is to extend the activ-
ity model with a set of execution constraints, includ-
ing preconditions, invariant conditions, and termina-
tion conditions so that the model can detect the incor-
rect execution of a task and help the user recover from
error status. Finally, the knowledge from the user’s
schedule could be used to improve the activity classi-
fication. One possible approach is to reset the possibil-
ity distribution over the plausible activities at the next
time step based on the information given by the sched-
ule which tells us what activities are likely to occur.

The model has been implemented in an Android
phone application, and are in the process of design-
ing and carrying out an evaluation of the system with
approximately 10 patients at the Palo Alto Veterans
Administration outpatient clinic who have brain in-
jury, PTSD, pre-dementia, or other cognitive impair-
ment. The implementation is based on a modified ver-
sion of the commercial prompting system PEAT [20],
and employs sensor data from motion sensors, contact
sensors, and wearable RFID readers. The initial set of
tasks to be supported include waking up and going to
bed, meals, taking medicine, and performing therapy
homework. Prompts and queries to the user are deliv-
ered by audio and graphics on the phone. Surveys de-
livered on the cell phone and observational studies will
be used to evaluate the accuracy and effectiveness of
the system. These real-world results will be compared
with the results of our simulation studies, and use them
to create better models for use in building future pro-
totypes.
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