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Abstract. Worldwide there are over 46 million people living with dementia, and this number is expected to double
every 20 years reaching about 131 million by 2050. The cost to the community and government health systems, as well as
the stress on families and carers is incalculable. Over three decades of research into this disease have been undertaken by
several research groups in Australia, including work by our original research group in Western Australia which was involved
in the discovery and sequencing of the amyloid-( peptide (also known as A3 or A4 peptide) extracted from cerebral amyloid
plaques. This review discusses the journey from the discovery of the A3 peptide in Alzheimer’s disease (AD) brain to the
establishment of pre-clinical AD using PET amyloid tracers, a method now serving as the gold standard for developing
peripheral diagnostic approaches in the blood and the eye. The latter developments for early diagnosis have been largely
achieved through the establishment of the Australian Imaging Biomarker and Lifestyle research group that has followed
1,100 Australians for 11 years. AIBL has also been instrumental in providing insight into the role of the major genetic risk
factor apolipoprotein E &4, as well as better understanding the role of lifestyle factors particularly diet, physical activity and
sleep to cognitive decline and the accumulation of cerebral Af3.
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INTRODUCTION

Alzheimer’s disease (AD) is a devastating neu-
rodegenerative disorder and is the most common
cause of dementia in the elderly population. AD
is characterized clinically by a progressive loss of
function of various cognitive domains, usually start-
ing with short term memory dysfunction, impaired
judgement and reasoning, disorientation, anxiety, and
minor personality changes, but eventually leading to
a total loss of memory and personality. A patient
in late stages will take to bed, cease to communi-
cate, and will need 24-hour help with eating and
self-care.

The characteristic neuropathological hallmarks of
the disease are intracellular neurofibrillary tangles
(NFT) and extracellular aggregated amyloid fibrils
and plaques. NFT are mostly composed of hyper-
phosphorylated forms of the microtubule-associated
protein tau [1-3], while amyloid plaques are mainly
built up of aggregated and fibrillized amyloid-f3 (AB)
peptides. The prevalence of this AD brain pathology
increases dramatically with aging [4].

Some of our group’s earliest studies, carried out in
collaboration with the Konrad Beyreuther laboratory
in Heidelberg, Germany, involved the characteriza-
tion of A3 peptides, the major component of amyloid

plaque cores. AP peptides are hydrophobic 39-43
amino acid long products generated by the sequen-
tial proteolytic processing of the amyloid-3 protein
precursor (ABPP) [5, 6].

Since the sequencing of the gene for ABPP, many
major discoveries have been made. It is known that
APBPP is a transmembrane protein found in almost
all tissues, and is cleaved by one of two pathways,
either a non-amyloidogenic pathway or amyloido-
genic pathway, with the latter producing AR via
trans-membrane proteolysis, to produce A3 peptides,
of which the most common are Af49 and AB42. Muta-
tions in ABPP, or in components of the y-secretase
enzyme that carries out the final step of Ap produc-
tion (presenilin-1 or presenilin-2), have been detected
inrare families (<1% of all AD) that develop AD well
below the age of 65 [7]. These mutations have helped
underscore the key role of abnormally high levels
of A, particularly the longer more amyloidogenic
A4 form, in AD pathogenesis.

The AP peptide is a normal proteolytic product
produced in most body tissues, but it is thought that
the AD pathology that develops in the brain is due to
an overproduction or lack of clearance of the pep-
tide (or both). This build-up of AP is thought to
be initiated by various factors including oxidative
stress and chronic inflammation [8, 9]. This results in
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abnormally high A levels, which then aggregate into
toxic oligomers (particularly the longer AB4, forms),
and as these two factors themselves increase A3 pro-
duction, and as AP peptides exacerbate oxidative
stress, a toxic cycle develops [10, 11]. The pathology
develops slowly, and it may take over two decades
before clinical symptoms appear [12, 13]. By the
time a clinical diagnosis is made, there is widespread
synaptic loss and neuronal death, microglial infiltra-
tion, and brain shrinkage.

Early studies looking for other proteins associated
with amyloid plaques soon found that apolipopro-
tein E (apoE, protein; APOE, gene) was also present
in plaques and NFTs [14]. Subsequently, work led
by Professor Allen Roses and his colleagues from
Duke University identified the €4 allele of the APOE
gene as an important genetic risk factor for AD. This
seminal finding was confirmed in cohorts from US,
Europe, and Australia [15-19] and APOE &4 is now
recognized as the major genetic risk factor for AD
in all populations. Geneticists believe that APOE &4
is the most common and most potent AD risk factor
that will ever be discovered. Our understanding of
how APOE &4 predisposes to AD is limited, though
several studies have shown that apoE is involved in
A clearance and others have indicated it modulates
AR aggregation, with the &4 isotype being linked
to worse clearance and greater aggregation [16—18,
20-22]. The link to apoE also led to the finding that
differences in lipid metabolism occur in AD, and
most likely predispose to AD, as well as other condi-
tions that themselves increase the risk of AD. These
conditions include obesity, cardiovascular disease,
hypertension, insulin resistance, and type 2 diabetes
(T2D) [23-26]. APOE €4 and T2D also appear to act
together to drive cognitive dysfunction and increase
the risk of both AD and vascular dementia. For exam-
ple, glucose hypometabolism is a key feature of both
mild cognitive impairment (MCI) and AD, and apoE
€4 has also been linked to lower levels of glucose
metabolism. The brains of patients with MCI and
AD are functionally insulin resistant [27], and amy-
loid clearance rate, neuroinflammation, and synaptic
dysfunction, which have all been linked to APOE &4
alleles, are also influenced by increased brain insulin
levels [28].

EARLY STEPS

Early studies on AD concentrated on the immuno-
histochemical findings in the brain, the distribution of

amyloid in plaques, the filamentous NFT detectable
in neurons, and the loss of neurons and brain shrink-
age. In the mid-1980s, our group concentrated on the
neuropathological changes that could be seen in AD
brains. Postmortem pathology and studies of other
neurodegenerative diseases in the 1980s had led peo-
ple to suggest a variety of causes for AD, including
aluminum toxicity, viruses, accelerated aging, defects
in the immune system, and even a late-onset form of
Down syndrome [29].

Oxidative stress: First signs

It was already well-known that head trauma could
lead to AD many years later, and that brain injury
involved oxygen radical generation, lipid peroxida-
tion, and cell death [30]. It had also been shown in
1976 that levels of choline acetyltransferase (nec-
essary for the synthesis of the neurotransmitter
acetylcholine) were lower in AD, particularly in
regions most affected such as the cortex and hip-
pocampus [31], thus it was logical to suggest perhaps
the pathology in AD involved oxidative stress, lead-
ing to lower neuron numbers, lower cholinergic
neurotransmission, and thus reduced brain function.
Researchers had also recently found that Parkin-
son’s disease patients had lower levels of glutathione
peroxidase, again suggesting oxidative stress might
be contributing to neurodegeneration—although in
a different condition [32]. In our own studies, we
applied specific assays for certain enzymes of the
hexose monophosphate pathway to try to determine
whether oxidative stress was increased in postmortem
AD compared to age-matched control brain tis-
sue. We found that, compared to controls, levels
of the enzymes glucose-6-phosphate dehydrogenase
(G6PD) and 6-phosphogluconate dehydrogenase
were both nearly doubled in the AD brains [33].
One major role for G6PD is to reduce NADP+ to
NADPH, thus providing a source of reducing power
for glutathione, a potent protective reducing agent
in the body. Many studies have since shown that
levels of reduced glutathione (as well as the ratio
of reduced:oxidized glutathione and levels of the
enzyme glutathione-S-transferase) are lower in AD
as well as in MCI [34-36], and in fact a plethora
of pathological changes have been linked to oxida-
tive damage, from the earliest stages of detectable
AD neuropathology [9, 37, 38]. Other early stud-
ies which used fibroblasts from familial AD subjects
showed evidence of oxidative stress in AD, includ-
ing abnormalities in calcium signaling, mitochondrial
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oxidation and ion channel function [39]. Recent stud-
ies have reignited interest in the particular pathway
that involves GoPD—the pentose phosphate pathway
(PPP)—as it was demonstrated that due to the rapid
degradation of phosphofructokinase B3 (a rate lim-
iting enzyme in glycolysis), neurons preferentially
metabolize glucose via the PPP, as opposed to gly-
colysis, which contrasts with most other cell types
[40]. Furthermore, in investigations using APOE &3
and APOE &4 mice fed high fat diets to induce
insulin resistance: it was found that the combination
of genome-wide measures of DNA hydroxymethyla-
tion with comprehensive untargeted metabolomics,
novel alterations in purine metabolism, glutamate
metabolism, and the pentose phosphate pathway were
identified [41]. Worse effects were detected in the 4
mice, yet these could be reduced by switching to a
low-fat diet, demonstrating both the greater suscep-
tibility of 4 carriers to metabolic impairments, and
the value of healthy diets in preventing AD-associated
pathology.

Our laboratory’s strong interest in lifestyle factors,
diet and physical activity in particular, are discussed
later in the section concentrating on studies carried
out through the Australian Imaging, Biomarker and
Lifestyle study (AIBL) of aging. Directly below, we
describe our (and some others’) subsequent studies
aimed at understanding APOE allele effects on AD
pathogenesis.

Apolipoprotein E

After the discovery that APOE allelic differences
were linked to AD risk and the aggregation of A3 in
the early 1990s, we investigated APOE genotypes in
AD in the Australian population, and as in other pop-
ulations we found the &4 allele frequency was higher
in Australians with both early-onset sporadic AD
(p<0.002) and late-onset sporadic AD (p <0.0001),
and APOE g2 allele frequency was found to be lower
in the late-onset sporadic AD group (p <0.01) [19].
There was also some evidence that APOE &4 alle-
les can negatively influence age of onset in Down
syndrome subjects, as in AD. In later studies we
investigated whether plasma apoE levels were altered
in AD, and found significantly higher plasma apoE
levels in both late-onset and early-onset AD patients
who had not fasted [42]. This is quite different to
pre-clinical findings, with the most recent prospec-
tive study agreeing with other studies, and showing
that genetic and hence lifelong low apoE is associated
with a high risk of dementia in the population [43],

although this does not necessarily reflect a causal
relationship.

We investigated several other aspects of apoE func-
tion and its influence on AR metabolism. Cell culture
studies had shown that apoE &4 was associated with
poorer clearance of A3 compared to the other iso-
forms, yet the relevance of apoE in A3 clearance had
not been investigated in vivo. In early mouse studies
we showed that the clearance of peripheral AR was
dependent on the presence of apoE. Additionally, we
found that apoE-deficient mice did not transfer the
AP efficiently to the liver or kidneys compared with
normal C57B1/6] mice [20]. With the availability of
APOE KO mice bred to carry human APOE alleles,
we then found that brain A levels rose in KO mice
and in mice carrying only the APOE &4 allele. In
contrast, this age-related AR increase was prevented
in mice carrying the &3 allele [44]. As part of that
study we also measured brain levels of the oxidized
lipid F2 isoprostane (F2IP) and found that levels rose
with age in the KO mice and the KO mice carrying
the APOE &4 allele, but not those with the APOE €3
allele. This reflected the changes in brain AR levels,
and thus supported the theory that oxidized lipids are
associated with AD pathogenesis. In cell culture, we
demonstrated that the AP could influence the bind-
ing of apoE isoforms to cultured fibroblasts, such
that A improved the normally poor binding of apoE
€2, yet reduced the binding of apoE €3 and &4 [45].
Although the dynamics of apoE binding to A3 and the
LDL receptor family was not well understood at this
stage, this and other similar studies were adding to
the evidence of apoE isoform-specific effects on A3
and lipid metabolism. We carried out further stud-
ies on the APOE KO mice carrying human APOE
g2, €3, or &4, as well as APOE KO mice treated
with lipidated recombinant apoE isoforms. When
the APOE KO animals were treated with lipidated
recombinant apoE &4, injected A4 was retained in
the plasma significantly longer, similar to the APOE
&4 knock-in mice, when compared to the equivalent
APOE €3 or €2 mice [21]. In other studies of the
same knock-in mice, we used electrospray ionization
mass spectrometry to measure levels of lipids includ-
ing glycerophospholipids, sphingolipids, cholesterol,
and triacylglycerols in the mouse brains. The findings
were that variations in apoE isoforms did not signifi-
cantly affect bulk lipid homeostasis in the brain [46].
However, when the same knock-in mice were sub-
jected to a high-fat, high-cholesterol diet, our findings
demonstrated changes in lipid metabolism especially
in APOE &4 mice [47]. Overall, these studies support
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the current concept that the pathogenicity of the
APOE ¢4 allele is at least in part due to lower AB4;
clearance efficiency by apoE &4 at the blood-brain
barrier [48], and lower cellular uptake and lysosomal
trafficking in brain cells [49], properties that would
reduce brain clearance of Af3.

APOE allele status was first shown to influence
brain glucose metabolism in people at risk of AD
over 20 years ago [50, 51]. Many studies have since
improved methodology and provided supportive evi-
dence that reduced glucose usage occurs in brain
areas susceptible to AD pathology well before symp-
tom onset [52, 53]. These were all conducted on
cohorts in the USA. We wished to determine if these
reported findings could be replicated in an Australian
population. Fluoro-2-deoxy glucose-PET was carried
out in cognitively healthy (Australian) individuals
as well as subjective memory complainers, all aged
50-80. We found that APOE &4 carriers again demon-
strate mild glucose hypometabolism in brain areas
associated with AD when compared to the normative
NeuroStat database; furthermore, subjective memory
complainers (but not non-complainers) also showed
a pattern of glucose hypometabolism [54]. Further-
more, it has been suggested that plasma apoE levels
are age- and sex-dependent, and that brain regional
glucose usage and grey matter volume correlate with
peripheral apoE levels, as well as cognitive perfor-
mance [55]. This is further evidence of AD being a
systemic condition, and that a pre-clinical peripheral
biomarker panel is an achievable objective.

In other studies of community-dwelling vol-
unteers, we found that neurological soft signs
(abnormalities in sensory and motor performance)
were associated with APOE genotype, age, and
Mini-Mental State Examination (MMSE) determined
cognitive performance, suggesting that such neuro-
logical soft signs may be useful in determining people
at greater risk of cognitive decline [56], and again
showing that APOE genotype influences the risk of
cognitive decline.

INTRODUCING AIBL

From its start in 2006, the collaborative project
known as the Australian Imaging Biomarkers and
Lifestyle study (AIBL) of aging [57] has been par-
ticularly productive with respect to increasing the
understanding of amyloid deposition during early
stages of AD, providing evidence of many poten-
tial CSF and peripheral biomarkers, and increasing

our knowledge of how much lifestyle choices such as
diet, physical activity, and sleep can affect the risk and
development of AD [58, 59]. This study is an ongo-
ing collaboration between the two major AD research
groups in Australia based in Melbourne and Perth (led
by Colin Masters, Chris Rowe, and David Ames in
Melbourne, and Ralph Martins in Perth), in partner-
ship with the CSIRO throughout Australia. AIBL is
a flagship study of aging which recruited 1,112 indi-
viduals over the age of 60 to do prospective research
into AD. Early publications described the screening,
diagnoses, collection of medical history and current
medications, comprehensive baseline cognitive test-
ing, blood collection, as well as extensive health and
lifestyle questionnaires with the aim of using this
data to help predict potential AD risk factors and
protective factors [60]. The AIBL cohort therefore
comprises highly-characterized individuals keen to
be part of this long-term research program. Partici-
pants were assessed at 18-month intervals for over
a decade, a quarter of the participants also under-
went amyloid PET imaging using !'C-Pittsburgh
compound B (PiB-PET)—a specific in vivo amyloid
marker [61], and MRI brain imaging. A subgroup
of 10% also underwent ActiGraph activity monitor-
ing and body composition scanning. For AIBL, the
MRI parameters of the Alzheimer’s Disease Neu-
roimaging Initiative (ADNI) were adopted, and the
PiB-PET acquisition and neuropsychological tests
were designed to permit comparison and pooling with
ADNI data.

Early cross-sectional analysis of the baseline data
revealed links between cognition, brain amyloid
burden, structural brain changes, biomarkers and
lifestyle factors [62]. It was also evident early on that
there was a strong relationship between A depo-
sition and brain atrophy very early in the disease
process [63].

Examining APOE in AIBL

With such a highly characterized cohort, it was pos-
sible to extend the research on apoE, for example
by doing longitudinal investigations into the influ-
ence of APOE allele status on various indices of
memory decline. In our initial studies of the influ-
ence of the &4 allele on cognitive function in the
AIBL older adults, we found relatively little evidence
of a role for the &4 allele [64]. However, using a
subset cohort of 84 cognitively normal people with
high A burden (as assessed by PiB-PET), cognitive
tests such as the MMSE, Clinical Dementia Rating
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scales, and the Cogstate Brief Battery carried out
every 18 months for up to 54 months demonstrated
that possession of APOE &4 alleles is associated with
a faster decline on memory tasks [65]. We carried
out similar studies with a larger group (317 subjects)
from the AIBL cohort, with assessments done using
the Cogstate Brief Battery and the California Ver-
bal Learning Test, Second Edition. The cognitively
normal adults with high AR burden (as assessed by
PiB-PET) who were APOE &4 carriers had the most
pronounced decline in learning and working mem-
ory over 18 months, whereas in non-carriers high A3
burden was unrelated to such cognitive decline [66].
Cognitively normal APOE &4 + ve older adults with
low AP levels also showed a significantly increased
rate of decline in learning, yet an improved cognitive
performance on measures of verbal episodic mem-
ory after 18 months. When the majority of the AIBL
cohort was used to investigate whether possession of
APOE €4 alleles alone influenced cognitive decline
(irrespective of brain A3 levels) in a study spanning 3
years, healthy APOE &4 + ve control subjects showed
a slightly greater decline in verbal episodic memory,
yet APOE &4 + ve MCI individuals showed a greater
decline in several cognitive tasks compared to APOE
g4-ve MCI individuals, possibly reflecting imminent
AD [67]. Overall these results indicate APOE &4 alle-
les increase the rate of cognitive decline in older
adults and add to the evidence that brain AR levels
and possession of APOE &4 alleles are strong indica-
tors of AD risk, particularly in the preclinical stages
of the disease.

Our more recent study of correlations between
APOE &4 carriage and cognitive decline in a cog-
nitively normal subset of the AIBL cohort has shown
that the presence of subjective memory complaints,
APOE &4 genotype or advancing age all help iden-
tify elderly participants who have high A burden,
and who may benefit from prevention trials [68]; and
suggests that subjective memory complaints may be
the first clinical expression of AD pathology. We have
also extended some longitudinal studies to 72 months
in a cognitively normal subset of the AIBL cohort
(n=423) who have undergone A3 PiB-PET imaging
[69]. Some previous studies had not detected Af-
related memory decline in APOE &4 non-carriers,
however in our extended study, we found that com-
pared to AB-ve APOE &4 non-carriers, both AB+ve
APOE &4 carriers and non-carriers showed signif-
icantly increased declines in measures of memory,
language, and executive function as well as higher
rates of progression towards a clinical classification

of MCI. The rate of decline was slower in the AB+ve
APOE &4 non-carriers, yet these results show a cor-
relation between pre-clinical A accumulation and
cognitive decline, regardless of APOE &4 status.
The large number of AB-imaged people (n=423)
in the AIBL cohort and the longitudinal nature of the
study has made it possible to determine the extent and
nature to which carriage of APOE &4 alleles increases
the risk for clinical disease progression from cogni-
tively normal status. Analysis of data without taking
into account A3 status, being APOE &4 + ve (com-
pared to APOE &4 —ve) increased the risk over a
72-month period by 2.66 times [70], yet if AR lev-
els are taken into account, carriage of APOE &4 is
no longer predictive of progression. These results
support the theory that apoE &4 is less efficient at
facilitating AR clearance from the brain, resulting in
greater A3 deposition, thus aiding AD pathogenesis.
This theory is further supported by a recent cross-
sectional AIBL study which involved most of the
AIBL cohort, including a subset all of whom had
undergone A3 PiB-PET imaging as well as MRI hip-
pocampal volume measurement [71]. The aim was to
investigate the relationship between APOE &4 allele
status and A3 levels, hippocampal volume, as well as
memory [71]. It was found that APOE &4 alleles influ-
ence AP levels, episodic memory and hippocampal
volume in a dose-dependent fashion, again under-
scoring the influence of apoE &4 on AD pathogenesis.
Although the majority of research into apoE’s iso-
forms modulating AD risk involves A clearance
and A aggregation, there are other apoE roles that
may influence AD pathogenesis. These include apoE
effects on vascular function, neuroinflammation,
metabolism, synaptic plasticity, and transcriptional
regulation [72, 73]. For example, recent studies have
found that apoE binds a microglial receptor, trigger-
ing receptor expressed on myeloid cells 2 (TREM?2),
a member of the Ig superfamily of receptors. Cer-
tain TREM2 mutations influence the risk of AD, and
TREM2 is thought to be involved in AR clearance;
however, the exact relationship between these pro-
teins is currently still being researched [74]. Perhaps
more importantly, APOE &4 alleles are a well-known
factor for cardiovascular disease (CVD) [75], thought
to be due to APOE &4 allele-associated higher levels
of total serum cholesterol, particularly LDL, which
are themselves known risk factors for CVD. Since
CVD and associated conditions such as obesity, dys-
lipidemia, and hypertension have all been linked to
an increased risk of AD, this underscores the the-
ory that apoE &4 is a protein that carries out apoE
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functions less effectively than the more common
apoE €3, and due to this deficiency, can lead to a
greater risk for many conditions. The link to CVD,
obesity and other conditions consolidates the theory
that improved diet and exercise could reduce risk
of all these conditions, by reducing the pressure on
the lipid metabolic pathways, as discussed further
below.

DIAGNOSIS

Itis now well-accepted that AD pathogenesis starts
2-3 decades before the onset of symptoms. How-
ever, to date, there is still no simple, inexpensive and
minimally invasive test to diagnose AD prior to the
onset of symptoms. Imaging techniques using PiB-
PET that show gradual A3 accumulation in the brain,
as well as the measurement of CSF levels of AB42,
and phosphorylated tau are proving to be relatively
reliable indicators of imminent AD [76]; however
these are relatively expensive and invasive diagnostic
techniques that, while serving as a gold standard for
investigative work and clinical trials, would be diffi-
cult to apply in general population screening. Cures
and effective treatments for AD have not eventu-
ated despite several decades of research. There are
several potential reasons for this: by the time AD
manifests, there is already widespread damage to
the brain, including considerable loss of synapses,
neurons, and brain tissue, and there has been no
success in trying to slow or prevent this gradually
increasing pathology, after symptoms have begun
[77]. Effective treatment needs to be implemented
at pre-clinical stages when damage is minimal, cog-
nition is relatively intact, and the pathogenesis can be
slowed or prevented from progressing. For potential
disease-preventing or disease-delaying treatments to
be tested, the tests need to be carried out on popula-
tions at these pre-clinical stages—people who are in
the very early stages of disease development. For this
to occur, clinicians need to be able to identify at-risk
populations which requires a very good understand-
ing of the early stages of AD pathogenesis. Some
of the major outcomes of the AIBL studies, which
have involved considerable collaboration with many
research groups, has been the significant increase
in understanding of AD early pathology (particu-
larly AR accumulation), risk factors, the discovery
of many potential peripheral biomarkers, and the dis-
covery of the importance of physical activity and
diet in AD risk as well as disease management.

The outcomes of these studies that have had signif-
icant input from our research group are discussed
below.

AP imaging: PiB-PET

Both the ADNI and AIBL cohorts have been
investigated extensively as part of biomarker and
brain imaging research. Yet while AIBL and ADNI
adopted very similar approaches to neuropsycholog-
ical assessments, blood biomarkers, and structural
MRI, the approaches to disease-specific biomark-
ers differed, with AIBL concentrating from the very
beginning on AP imaging, while ADNI initially
focused on 18(F) fluorodeoxyglucose-PET imaging
and CSF biomarkers.

About one third of AIBL participants underwent
structural MRI and A3 imaging scans with PiB-PET
[60, 78]. Initial results showed that the prevalence
of high AR burden (AB+) in cognitively unim-
paired individuals increased with age, and that it was
higher in individuals carrying at least one APOE
g4 allele [78]. Furthermore, while memory in the
cognitively unimpaired adults with low A burden
(AB-) remained stable over 18-months, all aspects of
episodic memory were observed to deteriorate sub-
stantially in AR+ non-demented participants [79, 80].

From a clinical perspective, some biomarkers have
been shown to serve as predictors of disease progres-
sion. For example, A3 imaging data demonstrated
that AB+ amnestic MCI were much more likely to
progress to AD over 18-36 months than AB- MCI
[81, 82]. It was also observed that subtle memory
impairment in AP+ healthy individuals indicated
a high risk for progressing to MCI or AD within
three years. Furthermore, Af3 deposition was found
to be strongly related to grey matter atrophy, where
the rates of atrophy were significantly higher in
AR+ cognitively unimpaired individuals [83, 84].
Moreover, hippocampal volume and temporal A
deposition provided independent contributions to
memory deficits, suggesting that both factors should
be independently targeted in therapeutic trials aimed
atreducing cognitive decline [85]. These associations
were not observed at the MCI and AD stages, suggest-
ing that other pathological, probably downstream,
events might be responsible for the progressive
atrophy and cognitive decline [63].

The prospective longitudinal design of the AIBL
study allowed the examination of changes in Af3 bur-
den over time, where small but significant increases
in neocortical AP burden were observed in the AD
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and MCI groups, and in AB+ve controls, confirming
the notion that AP deposition precedes cognitive
impairment [81]. Furthermore, higher rates of A3
deposition were associated with higher A3 burden
and identified the existence of AR ‘accumulators’ and
‘non-accumulators’, with A ‘accumulators’ even
found among Af- controls [86]. Consequently, A3
imaging data from the 3-year follow-ups were then
used to calculate the rates of AP deposition over time,
showing that A3 deposition is a slow protracted pro-
cess that takes about two decades to go from the
threshold of abnormal A burden to the levels usu-
ally observed in AD, and that A3 deposition precedes
hippocampal atrophy and memory impairment by
more than a decade [12]. Interestingly, when com-
paring the rates of A deposition, memory decline
and hippocampal atrophy between the sporadic cases
in AIBL and the autosomal cases in the Dominantly
Inherited Alzheimer’s Network (DIAN) [87, 88], the
rates of annual change in those three variables were
almost identical [12].

In AIBL studies, we have used A3 imaging as the
gold standard for the validation of CSF assessments
[89] and for the determination of the different bio-
chemical pools of A in the brain [90]. AR imaging
has also been used to assess the accuracy of a panel
of blood-based biomarkers in predicting brain A3
burden [91, 92], as well as disease progression [93].
These blood-panels used 6 plasma biomarkers as well
as age, APOE genotype and Clinical Dementia Rat-
ing (CDR)-Sum of Boxes (CDR-SOB), and were able
to predict brain AP burden with an accuracy >80%;
accuracy that was further validated using independent
biomarker data from ADNI (more on ADNI below)
[92]. The CDR involves interviews with a patient as
well as a reliable informant, and rates the severity of
AD using a 5-point scale that categorizes a patient’s
ability to function in the six cognitive categories of
memory, orientation, judgment and problem solving,
community affairs/involvement, home-life and hob-
bies, as well as personal care. The CDR can either
provide a global score by using an algorithm that
weights memory more heavily than the other cate-
gories, or it can be scored using the SOB method in
which all categories are weighted equally [94]. Either
way, the higher the score, the greater the severity of
dementia.

The implementation of the new biomarker crite-
ria for the AD spectrum found that about 70% of
healthy elderly controls did not fit the three cate-
gories [95], where 43% had no positive marker of
amyloidosis or neurodegeneration, and 23% were

classified with neurodegeneration without evidence
of amyloidosis. On the basis of this observation,
Jack and colleagues introduced two new categories:
a Stage 0 which comprised those healthy elderly
controls with no evidence of amyloidosis or neurode-
generation, and a group termed “suspected non-AD
pathophysiology” (SNAP) consisting of older adults
with AD-like neurodegeneration but no evidence of
amyloidosis [96]. As a consequence of this extended
classification, several studies tried to elucidate the
short and long term clinical, cognitive and volumetric
trajectories of these four groups, the overwhelming
majority showing that, in contrast with those with
amyloidosis/AD pathway, those classified as SNAP
did not decline over time and were indistinguishable
from those elderly controls with no evidence of amy-
loidosis or neurodegeneration, suggesting a different,
non-AD, underlying pathophysiological mechanism
[97]. The lack of a strong association between A3
deposition and measures of cognition, synaptic activ-
ity, and neurodegeneration in AD, in addition to the
evidence of AP deposition in a high percentage of
MCI and asymptomatic healthy controls, suggests
that AP deposition is an early and necessary, though
not sufficient, cause for cognitive decline in AD [81,
98, 99], indicating the involvement of other down-
stream mechanisms, triggered or not by Af, such
as NFT formation, synaptic failure, and eventually
neuronal loss.

The detection of AP pathology at the pre-
symptomatic stages is of crucial importance because
itis precisely the group that may benefit the most from
therapies aimed at reducing or eliminating AP from
the brain before irreversible neuronal or synaptic
loss occurs [100]. AR imaging with PET is there-
fore contributing to the development of more effective
therapies by allowing better selection of patients for
anti-Af therapy trials and providing a means to mea-
sure their effectiveness in removing AP from the
brain [101, 102]. However, different pharmacolog-
ical and pharmacokinetics properties from separate
AP tracers have presented small issues for multicen-
ter studies wishing to compare results. Therefore, a
method has recently been developed to produce a
single common quantitative output value, called the
Centiloid, for AP imaging across tracers and imaging
analysis approaches, to improve clinical and research
use of these AP tracers [103]. All F-18 labelled A
tracers are being cross-calibrated against PiB. Among
them, 18F-NAV4694 and 18F-florbetaben have been
the first two A tracers validated using the Centiloid
approach [104, 105].
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Benefits of studying dominantly inherited AD

The establishment of DIAN by Professor John
Morris from Washington University, of which there
are three sites in Australia (Perth, Melbourne, and
Sydney) has enabled access to mutation carrier and
non-carrier members of autosomal dominant AD
families. This global partnership has helped deter-
mine many changes that occur very early in the
disease process in familial AD. Although it can-
not always be assumed that early (pre-clinical)
pathogenic changes that occur in the mutation car-
riers of these families will apply to sporadic AD,
the study of these families has been invaluable in
revealing how early pathogenic changes do start.
For example, our studies of dominantly inherited
AD have shown that CSF AR4, appears to decline
25 years before expected symptom onset, and AR
deposition is detectable 15 years before expected
symptom onset [87], as discussed below. We have
also detected elevated levels of CSF tau, phospho-
rylated tau (181), and visinin-like-1, all markers of
NFT and neuronal injury, in asymptomatic mutation
carriers 10-20 years before their estimated age of
symptom onset, and before the detection of cognitive
deficits [106]. Longitudinal studies of asymptomatic
AD mutation carriers have shown that amyloid bur-
den (as determined by PiB-PET) predicts future
decline in episodic memory, whereas in symptomatic
carriers, cerebral amyloidosis correlates with worse
baseline performance, and predicts greater decline
in global cognition, working memory and MMSE
results [107]. More recently, we have found that
white matter hyperintensities, as measured by T2-
weighted MRI scans, are increased approximately
6 years before expected symptom onset in autoso-
mal dominant AD, suggesting these changes are a
core feature of AD [108]; we have also shown low
body mass index appears to correlate with preclini-
cal stages in autosomal dominant AD, with signs of
weight loss occurring 10-20 years before expected
symptom onset [109].

BIOMARKERS: PREFERABLY
PERIPHERAL

As we have mentioned previously, it is estimated
that AD takes 2-3 decades to develop in the brain,
before clinical symptoms are apparent. Brain func-
tions decline as consequence of synaptic loss and
neuronal death. A cure at this late stage is unlikely,

since such widespread brain damage has already
occurred by the time symptoms appear, and current
treatments mostly reduce symptoms and temporarily
reduce the rate of decline. The emphasis is cur-
rently on treatments that may address the underlying
pathogenesis at the earliest stage possible, so that peo-
ple in preclinical stages can have therapy to delay,
or even prevent disease progression. To investigate
and monitor such treatments, an understanding of
disease progression is essential, to help determine
an individual’s risk or pre-clinical disease stage, if
pathology is already present. The search for pre-
clinical biomarkers has occupied many laboratories
worldwide, and many advances have been made. As
described above, the study of brain A accumulation
is helping to determine disease pathogenic stages,
yet this is clearly a method that is too expensive and
technically complicated to use for routine diagnosis.
Below we describe other developing technologies for
AD diagnosis.

Cerebrospinal fluid (CSF)

In AD subjects, the CSF concentration of AB42
decreases over time, while 181-phospho-tau and
total tau concentrations increase, when compared to
healthy controls (including patients with psychiatric
disorders such as depression) [110]. CSF studies have
shown that the combined measurement of CSF AB43,
total tau, and 181-phospho-tau levels can diagnose
AD [111] with a sensitivity and specificity reaching
92 and 89%, respectively [112]. Other studies have
suggested an assay using AB4; and T-tau levels can
accurately discriminate AD from controls by means
of a discrimination line, which has been validated
in clinical practice [113] and in autopsy-confirmed
patients, with sensitivity levels of 100% and speci-
ficity of 91% [114]. Changes in these three CSF
biomarkers allow the diagnosis of AD already in its
prodromal stage—people with MCI [115].

A collaboration with the DIAN study group,
involving PiB-PET data, CSF biomarker mea-
surement, and cognitive assessments, has helped
investigate changes in AD mutation-carrying indi-
viduals long before their estimated time of symptom
onset. The study suggests that CSF A levels decline
25 years before disease onset; that A deposition
(detected by PiB-PET), increases in tau protein lev-
els and greater than normal brain atrophy are all
first detected about 15 years prior to expected dis-
ease onset, and that cerebral hypometabolism and
impaired episodic memory can be observed about 10
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years prior to symptom onset [87]. Cognitive impair-
ment, as measured by the MMSE and the Clinical
Dementia Rating Scale, was detected 5 years prior to
expected symptom onset. These results are important
as they underscore the long time-frame and stages
of AD pathogenesis, and the early disruption in A3
metabolism; and although the results may not all be
applicable to sporadic AD cases, there will undoubt-
edly be many similarities.

However, the use of CSF for diagnosis is not ideal,
as CSF collection is a relatively invasive and expen-
sive procedure. Ideally, a blood-based test for AD
using serum or plasma would be a better choice, as
it would be inexpensive, relatively non-invasive, and
widely accessible.

Blood biomarkers

Several groups have attempted to create biomarker
panels to differentiate between AD and other forms
of dementia, and to detect early (preclinical) stages
of AD. In 2007, Ray and collaborators devised a
plasma biomarker panel of 18 proteins that was able
to predict the conversion to AD 2-6 years later
[116]. This panel was considered a breakthrough
in the field, other groups have since attempted to
confirm these results in different cohorts. In 2008,
one study suggested that a biomarker panel of only
5 proteins from the former 18-protein panel was
sufficient to distinguish controls from AD with
the same accuracy [117], yet in one study of the
original 18-protein panel, only 3 proteins (epider-
mal growth factor (EGF), platelet-derived growth
factor-homodimer (PDGF-BB), and the inflamma-
tory chemokine MIP-15) [118] were found to be
associated with AD, whereas another study which
investigated 16/18 of the proteins found 5 proteins
[EGF, MIP-14, the macrophage inflammatory pro-
tein MIP4, glial-derived neurotrophic factor (GDNF),
and chemokine ligand 5 (also known as RANTES)]
were found to be associated with AD and/or MCI
[119]. A combined effort involving the AIBL group
and the ADNI has led to an 18-protein panel which
was able to distinguish between healthy controls and
AD [91]. The study first produced the biomarker
panel using the AIBL cohort, and the ADNI cohort
was then used to validate the biomarker panel, pro-
viding strong evidence that this set of biomarkers
is useful for AD diagnosis. Validation using the
ADNI cohort reached a sensitivity and specificity
of 80%, and 85% for area under the receiver oper-
ating characteristic curve. The biomarkers included

some that significantly increased (cortisol, pancre-
atic polypeptide, insulin-like growth factor binding
protein 2, 3(2) microglobulin, vascular cell adhe-
sion molecule-1, carcinoembryonic antigen, matrix
metalloprotein 2, CD40, MIP1«, superoxide dismu-
tase, and homocysteine) and decreased (apoE, EGF
receptor, hemoglobin, calcium, zinc, interleukin 17,
and albumin) in AD. Other researchers have detailed
similar analyses in their cohorts, using different
biomarker panels [120-123].

The biomarkers found to distinguish between
healthy controls, MCI, and AD are often quite dif-
ferent between studies, and this will have occurred
for many reasons. Some of these reasons include the
differences in cohort ages, disease severity, diagnos-
tic methods, assay platform, blood collection and
processing methods, populations being compared,
and whether assays are cross-sectional or allow for
longitudinal data to be analyzed too. A further com-
plication came to light recently as a study of serum
samples from Mexican Americans (AD and healthy
controls) found that the biomarker profile from this
population was different to that found in prior studies
of non-Hispanic populations [124], again compli-
cating the interpretation and comparison of studies,
and suggesting that further studies are needed to
characterize racial/ethnic differences in biomarker
profiles. It is most likely that assays dependent on
APOE &4 allele status will be necessary, due to
the widespread influence of the apoE protein on
AD-related biomarkers—an issue highlighted in one
biomarker study [121], which found increases in
pancreatic polypeptide, N-terminal protein B—type
brain natriuretic peptide and tenascin C levels, and
decreases in IgM and apoE in patients with AD and
mild cognitive impairment. The study also found that
the APOE genotype was associated with a unique bio-
chemical profile irrespective of diagnosis, as APOE
g4 carriers (e3/e4 and e4/e4) were characterized
by low C-reactive protein and apoE levels and by
high cortisol, interleukin 13, apolipoprotein B, and
gamma interferon levels [121]. Our most recent set
of results, which again emphasize the effect of the
APOE e4 allele, showed that high levels of IL-10
and IL-12/23p40 were significantly associated with
amyloid deposition in healthy controls, suggesting
that these two biomarkers might detect at risk indi-
viduals. Additionally, other biomarkers (Eotaxin-3,
Leptin, Peptide YY) exhibited altered levels in AD
participants possessing the APOE &4 allele [125].
One of our more recent AIBL cohort studies is a
54-month follow-up investigation of a blood-based
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signature which had already shown promise at strat-
ifying individuals into high and low neocortical A3
[98] burden [98]. Results included the finding that
40% of the participants with MCI who had estimated
high NAB progressed in comparison to 5% of the
participants with MCI who had estimated low NAB
(odds ratio=12.3) [93]. These results indicate that
a simple blood-based signature not only provides
estimates of amyloid deposition, but also predicts
cognitive decline and disease progression, which is
essential for the testing and monitoring of potential
interventions or therapies. Nevertheless, the advances
made in the last decade in blood biomarker studies,
together with advances in other potential diagnostic
avenues (such as those listed below) suggest that pre-
clinical diagnosis, and even disease ‘““staging” may be
available in the next few years.

A drop in levels of ARy, in the CSF is considered
one of the gold standard biomarkers for AD patho-
genesis. It can be argued that changes in CSF AP
levels would be more likely than changes in plasma
A levels to reflect pathological changes in the brain,
however the need for more accessible biomarkers
prompted us, and others, to investigate plasma Af3
levels.

Disruptions to lipid metabolism, obesity, hyper-
tension, and cardiovascular disease are all linked to
increased AD risk, and our group has investigated
several aspects of lipid metabolism, for example
the effects of APOE allele status on AP clearance,
and the links between dyslipidemia and AD. We
extended these studies to determine whether plasma
AP levels correlate with plasma lipid profiles. In
cognitively normal people as well as people with
subjective memory complaints (may indicate very
early AD), we found that AB49 levels correlated neg-
atively with HDL levels. [126]. Cause and effect
has not been established here, but if so, the results
support the concept that lifestyle interventions or
novel therapeutics could help slow disease pathogen-
esis. Some lipid changes are more likely part of AD
pathogenesis, as suggested by studies of autosomal
dominant AD mutations: in subjects from the DIAN
Australian cohort, carriers (symptomatic and asymp-
tomatic) and non-carriers of PSEN1 mutations, we
investigated plasma phospholipid and sphingolipid
profiles. Of the 139 plasma lipid species mea-
sured, significantly altered species belonged mostly
to choline and ethanolamine-containing classes, and
ceramides. Within the mutation carrier group, three
phosphatidylcholine species correlated with CSF tau,
and two plasmalogen ethanolamine species corre-

lated with CSF tau and brain NAB [127]. These
statistically relevant differences were found in this
pilot study of only 26 people, and further studies
should be carried out in the larger DIAN cohort as
well as in sporadic AD populations. Other recent
studies involving cognitively normal individuals with
preclinical AD demonstrated alterations in the ery-
throcyte fatty acid composition, wherein increased
arachidonic acid and decreased docosa-pentaenoic
acid were observed in high NAB individuals (com-
pared to those with low NAB) [128]. Further
lipid studies will provide greater characterization
of these pathogenic changes, and also determine if
these changes can be used as preclinical diagnostic
markers.

Investigations in the AIBL cohort enabled com-
parisons between PiB-PET-determined A load and
levels of potential blood biomarkers. In one study,
plasma AB49, AP42, and N-terminal cleaved frag-
ments were measured using both a commercial
multiplex assay and a well-documented ELISA [129].
We found that lower plasma A4 levels and AB4z:
A4 ratios were observed in patients with AD, and
were inversely correlated with PiB-PET derived brain
AP load. In another cross-sectional study of the AIBL
cohort, we investigated whether plasma apoE levels
correlated with AD pathogenesis (determined by PiB-
PET brain A load), as previous studies had produced
conflicting results, yet few studies had had the oppor-
tunity to correlate with AD pathology premortem. We
found that total apoE and apoE &4 levels were signif-
icantly lower in patients with AD in the entire cohort,
and within the subset that had brain A3 load assessed
by PiB-PET, ApoE levels decreased with increasing
AR load. ApoE levels were also significantly lower
amongst the e4 homozygous individuals [130]. Simi-
lar links between low apoE levels and AD risk, as well
as APOE allele-related differences in plasma apoE
levels, have been found by other researchers, sup-
porting these results [43, 55, 121]. Continuing these
studies, we have shown that apoE is decreased in indi-
viduals with AD compared with healthy controls at
an 18-month follow-up, consistent with our results
published at baseline. The results also showed lowest
apoE levels in €4/e4 individuals [131].

Our later studies, which provided both baseline
and 18-month follow-up A3 measurements, demon-
strated a decrease in the AP42/AB40 ratio in patients
with AD, which was inversely correlated with NAB
[132]. Furthermore, over the 18 months, plasma A342
decreased in subjects with MCI, and in those transi-
tioning from healthy to MCI. Thus we first suggested
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that baseline plasma AP4, and the AB4>/AB4g ratio
could be putative biomarkers indicative of cognitive
decline, and then provided validation for these sug-
gestions using 18-month data. Our published results
to date indicate that plasma A3 levels may be useful
as part of a panel of peripheral biomarkers [132, 133].
In support of these results, a recent study of 41
subjects (23 brain AB+ve and 18 AB—ve) has also
suggested plasma A3 may be useful as a brain amy-
loidosis biomarker, though in a different way. A stable
isotope labeling kinetics protocol was used to investi-
gate the turnover of AB3g, AB40, and AP42 in human
plasma. The study found faster fractional turnover
of AB4p relative to AB4p, as well as lower ARy
and AB42/AB4p concentrations in amyloid-positive
participants, suggesting blood AB4; shows similar
concentration changes to those seen in CSF [134].
Our interest in oxidative stress and inflammation in
the pathogenesis of AD led us to investigate levels of
homocysteine, vitamin B12, and folic acid levels in
the AIBL cohort. Homocysteine is needed for methio-
nine biosynthesis, which requires both folate and
vitamin B12, and diet (a modifiable factor) influences
vitamin B12 and folate levels. Plasma homocysteine
levels are known to increase with age, and correlate
inversely with vitamin B12 and folate levels in the
blood. A relationship between plasma homocysteine
levels, cognitive performance, and the risk of AD has
previously been reported, particularly in longitudinal
studies with 5-9 year follow-up, showing increases
in homocysteine correlating with cognitive decline
[135], though some studies have not found this cor-
relation [136], possibly due to shorter follow-up time
(2.7 years). There has also been disagreement on
blood vitamin B12 and folate levels, possibly as many
study cohorts were small. With access to the large
AIBL cohort, we investigated whether levels of these
three blood components correlated with cognitive
decline. We found homocysteine levels were signif-
icantly higher in female AD patients compared to
female healthy controls, but this association was not
present in the male population. Nevertheless, episodic
memory and global cognition correlated negatively
with homocysteine in all clinical categories. Red cell
folate has a U-shaped association with homocysteine,
such that high red cell folate levels were associated
with worse long-term episodic memory total episodic
memory and global cognition [137]. Thus, we have
added to the evidence of an association between
homocysteine levels and cognitive decline (although
this is not unique to AD), and our red cell folate
results may reflect low conversion of homocysteine

to methionine, though this requires further investiga-
tion. In a later investigation of cognitive impairment
in a cohort of over 1,300 elderly subjects, participants
with low serum vitamin B12 (<250 pmol/L) and high
red cell folate (>1594 nmol/L) levels were more likely
to have impaired cognitive function, when compared
to participants with normal range levels [138], sug-
gesting supplements providing high levels of folic
acid may be detrimental to the elderly if they have
low vitamin B12 levels.

OTHER DIAGNOSTIC AVENUES
Eye tests

The diagnostic potential of the eye has been inves-
tigated widely, as it shares many neural and vascular
similarities to the brain and potentially reflects the
brain pathology [139, 140]. The eye is also accessible
and easily imaged. The first studies to find changes
in AD versus healthy controls discovered abnormal
patterns in electroretinograms; later studies found
enhanced pupil response to cholinergic drops, reti-
nal nerve fiber layer (RNFL, ganglion cell axons)
thinning as well as optic nerve degeneration [141,
142], which indicated widespread ganglion cell loss.
In our own studies, we have shown that pupillary
reactions such as pupil flash response, can distin-
guish autosomal dominant AD mutation carriers from
non-carriers prior to symptom appearance [143]. AD
patients have also been found to be more sensitive
to tropicamide eye drops (muscarinic cholinoceptor
antagonist), thought to be due to AD-associated loss
of noradrenergic neurons in the locus coeruleus [144].

Over the years, higher resolution imaging technol-
ogy has allowed for better sensitivity in measuring
RNFL thickness, thus it is possible to distinguish
MCI and AD from healthy controls. However, the
specificity of the RNFL thickness and other eye
biomarkers is low due to confounding factors such as
age and comorbid eye disorders including glaucoma
[142, 145]. Polarization-sensitive optical coherence
tomography, which has been shown to detect AD-
associated birefringence due to microtubule damage,
is a sensitive new technique [146]. The birefringence
is thought to precede RNFL thinning and thus this
method appears promising to detect AD at an earlier
stage.

Various other eye abnormalities have been linked
to AD, such as changes in choroidal thickness [147],
though this could be present in other eye conditions.
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Changes to retinal blood flow on the other hand have
been shown to distinguish MCI and AD from con-
trols [148]. In our own studies of the AIBL cohort, we
have been able to detect vascular abnormalities such
as venular branching asymmetry and higher arteri-
olar length-to-diameter ratios in healthy individuals
with high levels of brain AP load [149]. Thus, reti-
nal blood flow may have good preclinical diagnostic
potential. Our recent studies of retinal vasculature,
RNFL, and retinal ganglion cell layer thickness in
AD subjects and individuals with subjective memory
complaints showed significant association with NAB
[150], adding evidence for the diagnostic potential of
retinal measures in AD. We have also investigated the
correlation between AD and early signs of age-related
macular degeneration in a subset of participants
of the AIBL cohort, and found a highly signif-
icant association with AD diagnosis (p <0.0001);
the reason for this association is unclear [151] and
warrants further investigation. Furthermore, we have
investigated the association between retinal arterio-
lar central reflex and retinal vessel width, and found
that the central reflex:vessel width ratio (CRR) is
higher in APOE €4 carriers, and there is also a
trend toward higher levels in AD patients compared
to controls [152]. This may prove to be useful for
monitoring apoE isotype effects on cerebrovascular
disease.

The eye itself has been shown to produce ABPP and
accumulate A3, and novel AB-binding agents such
as curcumin are showing promise as detection agents
[140, 141, 153]. Preliminary results (n =40) from our
laboratory using in vivo curcumin fluorescence retinal
AP imaging method in the AIBL cohort showed high
correlation (r=0.762, p =0.0001; calculating the reti-
nal amyloid index) with brain A3 plaques (Frost S
et al., unpublished results). Besides the high corre-
lation, the test could also differentiate between AD
and non-AD with 100% sensitivity and 80.6% speci-
ficity, respectively. However, not all studies have had
the same outcome; some have found no A deposits
in the eye, and others indicate retinal hyperphospho-
rylated tau may be a better marker [142]. In a recent
animal study, retinal A was identified using a novel
hyperspectral imaging method in live mouse retina,
without any extraneous agent [154]. AP deposition
has also been reported in the postmortem crystalline
lens of AD individuals [155]. To conclude, the ability
toidentify changes occurring in the eye which reflects
the build-up of brain AP could be an excellent can-
didate or surrogate marker in AD diagnostic process
and for monitoring therapeutic response.

Buccal tests

Buccal cells were initially collected from AD and
control subjects mostly to carry out APOE genotyp-
ing. However, a CSIRO study of such cells revealed
that the frequency of basal cells, condensed chro-
matin cells, and karyorrhectic cells were significantly
lower in AD patients [156]. Collaborating with these
CSIRO researchers, we then found abnormal num-
bers of chromosome 17 and 21 (aneuploidy) in AD
compared to age-matched control buccal cell sam-
ples, significantly greater amounts of DNA/cell and
greater numbers of abnormal nuclear shapes were
found in both MCI and AD compared to controls
[157], yet similar significant differences were not
found in hippocampal tissue when comparing AD
and controls. Another group carried 3D quantitative
imaging of telomeres in buccal cells, and were able to
distinguish between mild, moderate and severe AD
patients, based on five 3D parameters: 1) telomere
length, 2) telomere number, 3) telomere aggregation,
4) nuclear volume, and 5) a/c ratio, a measure of
spatial telomere distribution [158]. The most recent
study by the same group used a different cohort
with participant information blinded to the analysis.
The 3D telomere profiles can distinguish between
AD and control subjects [159], and further stud-
ies must aim to improve the technology for this
promising biomarker, as well as investigate earlier
(preclinical) stages of the disease. In our own AIBL
studies, we have shown that numbers of buccal cell
(intermediate filament) expressing cytokeratin 14 are
significantly lower in MCI as well as AD. We also
found in this pilot study that APOE &4 carriers trended
toward lower CK14 expression [160]. Following up
on this in a larger AIBL study, we put together a
biomarker panel which included CK14 expression,
plasma vitamin B12, Mg2+, LDL, and homocysteine.
We again found that CK14 levels were significantly
lower in the MCI and AD groups compared with con-
trols, and that this correlated with changes in plasma
Mg2 + and LDL levels, as well as red blood cell vol-
ume, hematocrit, and basophil cell count[161]. When
combined in the biomarker panel, the level of signifi-
cance was enhanced (particularly when incorporating
vitamin B12 and homocysteine: MCI (p =0.003) and
AD (p=0.0001) groups compared with controls).
More recent studies have investigated AP and tau
content of these cells, and found little difference
in tau levels, yet buccal cell AR levels correlated
with MMSE scores (r=-0.436, p=0.001) and sev-
eral blood-based biomarkers [162]. The automated
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assay used in these studies, which was developed
using laser scanning cytometry, also demonstrated
higher levels of AR in AD compared to control cells
[162]. More recent findings by other groups of telom-
ere changes [159] and DNA structural changes [163]
in buccal cells in AD compared to controls add to the
evidence that AD is a systemic pathology. The evi-
dence also supports the potential of an AD combined
peripheral biomarker panel, which would aid in early
diagnosis and the testing and monitoring of potential
therapies.

OXIDATIVE STRESS, INFLAMMATION,
AND AD

Oxidative stress, chronic inflammation, mitochon-
drial dysfunction, and dyslipidemia are all early
events in AD [164]. These early pathological changes
are also seen in conditions which are becoming
increasingly common in middle age; such as insulin
resistance, obesity, T2D, and cardiovascular disease
and these conditions in turn have all been linked to
an increased risk of AD [8].

Insulin and diabetes

Changes in glucose use in AD brains compared to
elderly controls had been detected as far back as 1980
[165]. Alink between AD and diabetes was confirmed
in 1996 in the Rotterdam study, which indicated a pos-
itive association between the two conditions [166].
Many studies having been carried out since then; it is
now clear that abnormalities in glucose metabolism,
and changes linked to insulin resistance and T2D,
may be some of the earliest pathogenic changes in
AD [167, 168]. Further, in AIBL, we have shown
that increased insulin resistance in the cognitively
normal older adults is associated with poorer perfor-
mance across several cognitive domains, including
episodic memory and executive function [169]. There
are many metabolic changes common to both condi-
tions, and it is hard to determine which changes or
steps initiate neuronal dysfunction and neurodegen-
eration. For example, hyperglycemia, dyslipidemia,
and hyperinsulinemia are all known to promote A3
accumulation, and these occur in both conditions [8].
Oxidative stress and inflammation are common to
both conditions, and signs of these include higher
levels of reactive oxygen species [170], an increase
in advanced glycation end products [170], detrimen-
tal actions of the receptor for advanced glycation end

products [171], increases in inflammatory cytokines
TNF-a, IL-1B, and IL-6 [172], and higher Ca?™ lev-
els [173]. In addition, aging, hypertension, insulin
resistance, diabetes, hypoxia/obstructive sleep apnea,
obesity, and vitamin B12/folate deficiency (among
others), also synergistically promote cerebral hypop-
erfusion as well as low glucose usage in the brain,
adding to the sources of inflammation and oxidative-
nitrosative stress in the brain [174]

Itis known that the reduced glucose utilization and
energy metabolism seen in AD are associated with
brain A and hyperphosphorylated tau accumulation,
increased oxidative stress, and the accumulation of
unfolded/misfolded proteins [175, 176]. As insulin
had also been shown to influence ABPP processing,
we investigated whether AP binding to the insulin
receptor could influence ABPP processing. Using an
in vitro model, we showed that insulin could facili-
tate the release of ABPP from cells transfected with
insulin receptors, and that the addition of A3 could
block this release [177].

Another early link between diabetes and AD was
the finding that a major insulin breakdown enzyme,
the insulin degrading enzyme (IDE), also degraded
AP peptides. For these reasons, and with the knowl-
edge that both insulin and A are amyloidogenic
peptides, we investigated whether AP could bind
to the insulin receptor. We found reduced insulin
binding and receptor autophosphorylation, with the
reduction in binding caused by a decrease in the
affinity of insulin binding to the insulin receptor
[178], suggesting that AR could compete directly
with insulin binding.

It has been shown that cardiovascular disease, obe-
sity, and dyslipidemia are also all associated with AD,
which is not that surprising since there is considerable
overlap in the underlying changes that lead to these
conditions (oxidative stress, disruptions to glucose
and lipid metabolism, and chronic inflammation) as
in diabetes and AD [8, 179]. Proteomics studies, and
recent lipidomics studies in particular, are beginning
to reveal common pathological pathways that link
these conditions [168].

Evidence is also mounting for the intriguing con-
cept that AD pathology could contribute to insulin
resistance and T2D [180]. The AP peptide and
ABPP have been suggested to regulate systemic
metabolism, as reviewed in [181, 182], and plasma
levels of the more pathogenic AB4, are increased
in T2D compared to aged matched controls [183].
Tau has roles in insulin transport and secretion by
the pancreatic [3-cells [184, 185], and can also mod-
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ulate insulin-dependent translocation of the glucose
transporter, GLUT4 [186, 187], which is critical for
glucose uptake by tissues. The deposition of both A
and phospho-tau can be found in postmortem pan-
creatic tissue from T2D [188], in animal models of
AD [189], and in a novel mouse model with overlap-
ping T2D and AD developed by Professor Paul Fraser
(University of Toronto) [190]. Studies in AD mouse
models also have indicated that A impairs insulin
signaling in liver and muscle tissue, contributing to
insulin resistance in these mice when fed a high fat
diet [190, 191]. AP active immunization has been
reported to improve insulin sensitivity and glucose
tolerance in the mice [190]. Together, these findings
provide strong evidence for a contribution of A3 in
moderating peripheral insulin sensitivity and glucose
metabolism. Whether the accumulation of phospho-
tau contributes similarly remains to be determined.

Diet

There is considerable evidence that all these con-
ditions linked to AD can be ameliorated by dietary
changes. High calorie diets, which contain signif-
icant amounts of processed carbohydrates, simple
sugars, processed fats, and which are low in fiber,
vitamins, minerals, antioxidants, and healthy fats,
are strongly linked to obesity, T2D, hypertension,
insulin resistance, and cardiovascular disease. In con-
trast, adherence to a traditional Mediterranean diet
(MeDi) [8] is known to be associated with longevity
and good health [192]; similarly, the traditional Oki-
nawa diet, along with an active and social lifestyle,
is also associated with longevity and good health
[193]. The MeDi is characterized by a high intake of
vegetables, legumes, fruits, cereals, fish and unsatu-
rated fatty acids (mostly in the form of olive oil), low
intake of saturated fatty acids, meat, and poultry, low-
to-moderate intake of dairy products (mostly cheese
and yoghurt), and a regular but moderate amount of
alcohol (mostly wine and generally with meals).

As part of the longitudinal AIBL studies, we
investigated the dietary patterns of participants via
questionnaires. In one study, adherence to the MeDi
(based on a score of 0-9 for adherence) was greater
in the healthy control participants compared to the
MCI and AD subjects, with a greater difference
observed between AD and healthy control subjects
(»<0.001) [194]. In a subsequent analysis only look-
ing at healthy control participants, MeDi, western and
prudent dietary patterns were investigated in rela-
tion to cognitive change using a global cognitive

score, as well as six cognitive domains, over 36
months. The western and prudent dietary patterns
reflect actual dietary intakes observed in a given
population, independent of any assumption on their
beneficial or harmful effect. Our western dietary
pattern was heavily loaded with red and processed
meats, chips, refined grains, potatoes, sweets, and
condiments, while our prudent dietary pattern was
loaded heavily with vegetables, fruits, and nuts. The
cohort of 527 cognitively healthy older adults com-
pleted the Cancer Council of Victoria food frequency
questionnaire at baseline, and underwent a compre-
hensive neuropsychological battery at baseline and
two follow-ups. Higher adherence to the MeDi was
associated with less decline in the executive func-
tion cognitive domain in APOE &4 allele carriers
(B=0.077; p<0.001), and a higher adherence to the
western diet was associated with increased decline
in the visuospatial functioning domain in APOE
&4 allele non-carriers (3 =—0.0006; p <0.01). [195].
No significant relationships were observed between
prudent diet score and cognitive decline. We hypoth-
esized that the oily fish component of the MeDi (the
n-3 fatty acids eicosapentaenoic acid and docosahex-
aenoic acid found in oily fish) may be mediating the
effects observed via a mechanism involving inflam-
mation.

Various other studies carried out in our labora-
tories have shown links between dyslipidemia and
AD. For example, in a small study, plasma AB4; lev-
els were found to correlate with body mass index
in healthy people [196]. The study also found (non-
significant) associations with insulin levels, HDL,
and the inflammatory marker C-reactive protein, thus
larger longitudinal studies are required to determine
the significance of the results. We have also shown
that plasma AP49 and A4y were lower in individ-
uals with T2D compared to others from the same
community-based cohort without diabetes [183]. The
AB42: AP4o ratio was also significantly higher in
those with diabetes. Apart from showing an asso-
ciation between plasma A levels and T2D, such
variation needs to be considered when assessing
plasma AP peptides as AD biomarkers.

Most recently, we have found that serum HDL is
associated with better cognitive function, in particu-
lar short and long delay-free recalls, in older women
(average age 62.5) [197]. This positive effect of HDL
on verbal memory warrants further investigation in
longitudinal studies, and since lipid intake is a major
factor influencing HDL levels, this is further evidence
of the importance of diet on AD and cognitive decline.
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As oxidative stress and inflammation are thought
to be central phenomena in the early pathogenesis of
AD (as well as other conditions linked to AD), dietary
supplements, or dietary changes that may increase
antioxidant or anti-inflammatory compound intake,
and reduce the intake of oxidized and processed lipids
and proteins, have been recommended. We have
reviewed a number of these recommended dietary
supplements and changes. For example, we have
reviewed tea as it has been suggested to contain potent
antioxidants: it is rich in phytochemicals includ-
ing flavonoids, tannins, caffeine, polyphenols, boheic
acid, theophylline, theobromine, anthocyanins, gal-
lic acid, and in particular epigallocatechin-3-gallate.
Studies have shown that catechins (flavonoid phy-
tochemicals) may inhibit A plaque formation, and
enhance cognitive function [198]. Further studies of
tea are warranted, to determine more clearly any ben-
efits of the components in reducing AD risk.

Other antioxidant and anti-inflammatory food
sources that have also been investigated by us and
others include curcumin (a component of the spice
turmeric), cinnamon, ginger, and the pepper family
[25, 199]. We have investigated the ability of a cur-
cumin formulation (BiocurcumaxTM) in a 12-month
study involving community-dwelling older adults.
The main finding was a significant time x treatment
group interaction observed for the Montreal Cogni-
tive Assessment, which was subsequently revealed to
be driven by a decline in function of the placebo group
at 6 months that was not observed in the curcumin
treatment group. Further longitudinal assessment is
required to investigate changes in cognitive outcome
[200]. Other clinical studies have also failed to find
significant improvement following supplementation
with curcumin, thought to be partly due to low sol-
ubility and bioavailability, and also due to cohorts
already having AD, which is likely to be at a stage
too late to produce significant positive effects, due
to considerable neuronal loss already being present.
Nevertheless, as described in our review [201], in
vitro studies have indicated that A metabolism is
altered by curcumin, and animal studies report that
curcumin may influence brain function and demen-
tia development, most likely due to antioxidant and
anti-inflammatory properties.

High carbohydrate diets are thought to contribute
to insulin resistance, which is associated with a host of
peripheral changes that can all impact on AD patho-
genesis, including hyperglycemia, hyperinsulinemia,
dyslipidemia, and inflammation [168]. In addition,
we have recently shown greater carbohydrate intake

to be associated with poorer performance in verbal
memory in APOE &4 allele non-carriers, and poorer
performance in attention in APOE &4 allele carriers
[202]. These findings suggest that lowering carbo-
hydrate intake may offer neurocognitive benefits,
with our study suggesting specific cognitive domains
are affected in an APOE genotype-dependent man-
ner; however, all these findings need validation in
longitudinal studies.

Due to the low glucose usage in the brain in the very
early stages of AD, we are investigating the poten-
tial benefits of adding a modified version of coconut
oil to the diet, or more likely replacing some other
dietary fat with some coconut fat. Unlike the fats in
most other dietary fat sources, a significant amount
of lipids in coconut oil consists of medium chain
fatty acids, which may be converted to ketone bodies,
which in turn can provide an alternative energy source
to the brain. There is already mounting evidence that
coconut oil may be beneficial in the treatment of obe-
sity, dyslipidemia, elevated LDL, insulin resistance,
and hypertension (all risk factors for AD), and cer-
tain phenolic compounds and hormones (cytokinins)
found in coconut may help prevent the aggregation
of AR [203]. However, some studies question the
cardiovascular benefits of coconut oil, and in fact
argue that it is detrimental to cardiovascular health.
More definite conclusions as to its clinical signifi-
cance particularly with respect to brain health must
await findings from randomized controlled trials.

Physical activity

Numerous studies have reported positive impacts
of physical activity on cognitive function [204, 205].
However, the majority of previous studies have relied
on self-report questionnaires, which by nature may
introduce reporting biases. To remove this source
of potential bias, we investigated habitual physi-
cal activity levels (quantified from actigraphy units
worn for seven days) undertaken by 217 cognitively
healthy participants from the AIBL cohort, aged
60-89. Actigraphy units measure total physical activ-
ity and intensity of physical activity, and the cohort
was split into tertiles based on physical activity inten-
sity. Comprehensive neuropsychological assessment
was also carried out, and participants in the highest
tertiles of intensity were found to be performing sig-
nificantly better on the digit symbol, Rey Complex
Figure Test copy, and verbal fluency tests, compared
with the lowest tertile [206]. Nevertheless, when the
cohort was split into tertiles based on total amount of
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physical activity, no differences in cognitive perfor-
mance were observed, indicating that intensity may
be more relevant in the association between physical
activity and cognitive function.

We have also examined the relationship between
habitual physical activity levels and neuroimag-
ing biomarkers. In particular, we investigated the
relationship between self-reported physical activ-
ity levels and hippocampal volume in a sub-cohort
of AIBL study cognitively healthy participants. We
observed that participants reporting the highest lev-
els of habitual physical activity had the largest
hippocampal volume [207]. In this study, we also
examined the effect of the brain-derived neurotrophic
factor polymorphism (BDNF Val66Met) on this rela-
tionship: We observed that only Val/Val homozygotes
(i.e., those we assume not to have impaired func-
tion of BDNF on hippocampal neurons) received the
benefit of physical activity in terms of larger hip-
pocampal volume, whereas Met carriers (i.e., those
more likely to have impaired action of BDNF on
hippocampal neurons) did not have an association
between physical activity levels and hippocampal
volume.

We have also used questionnaires to investigate
exercise levels in a subset of the DIAN cohort.
In 139 pre-symptomatic mutation carriers, the rela-
tionships between self-reported exercise levels and
brain NAB, CSF AB4;, and tau levels were evalu-
ated. No differences between NAB, CSF AB4; or
tau levels were observed between low and high exer-
cise groups. However, when examining only those
deemed to be accumulating NAB, low exercisers
had higher mean NAB levels than high exercis-
ers. Furthermore, the interaction between exercise
and estimated years from expected symptom onset
(EYO) was a significant predictor of brain NAB
[208]; whereby the relationship between NAB and
EYO was marked in low exercisers, and the expected
strong relationship between NAB and EYO was not
observed in high exercisers. Whether higher levels
of exercise are associated with protection against
NAB accumulation, or whether decreases in exercise
levels are a symptom of developing dementia, or a
combination of the two, is yet to be determined. Nev-
ertheless, regular exercise should be recommended
to all older adults (and indeed anyone at increased
risk of AD) as a vast array of literature indicates that
it leads to improvements in physical health, a reduc-
tion in frailty, the lowering of depression, and short
or long-term improvements in cognitive function
[209-212].

Sleep

Another aspect of lifestyle which is gaining inter-
est in the field of AD research is sleep. Importantly,
it is becoming apparent that rather than simply
manifesting as a comorbidity of AD, suboptimal
sleep actually appears to contribute both to cognitive
decline and AD pathology, as discussed in our review
which details the proposed bidirectional relationship
between suboptimal sleep and AD pathology [213].
Numerous studies have linked suboptimal sleep to
faster cognitive decline and increased AD and demen-
tia risk [214, 215]. A recent systematic review and
meta-analysis of 18 longitudinal studies indicates that
insomnia, in particular, is linked to an increased risk
of AD [216]. Furthermore, as part of the AIBL study,
we investigated the relationship between sleep quality
and PET-determined brain A burden in cognitively
normal individuals. We found longer sleep latency to
be associated with higher brain A burden, with a 30-
minute longer sleep latency potentially translating to
an equivalent of 2 years of brain A accumulation
[217]. Interestingly, in our cohort, APOE &4 allele
status had no effect on this relationship. However,
our additional investigations using the AIBL study
cohort suggest that genetic variation in the cerebrally
expressed water-channel protein, Aquaporin-4, does
moderate the relationship between sleep and brain
AP burden (Rainey-Smith SR et al., Translational
Psychiatry, in press), an intriguing finding given that
Aquaporin-4 is an astrocytic end-feet expressed water
channel protein postulated to be involved in glym-
phatic system-mediated clearance of AR from the
brain [218]. Further studies, particularly longitudinal
follow-up studies, are needed to gain greater insight
into the extent sleep deprivation can influence cogni-
tive decline.

Some other sleep investigations have involved the
analysis of electroencephalograms (EEG) for both
wakefulness and rapid eye movement (REM) sleep,
performed over the temporal regions of AD patients
and age-matched control subjects. Analysis of the
spectra indicated that AD patients had much slower
EEG readings during REM sleep when compared to
being awake, and asymmetry on the awake EEG of
AD patients was found to be even more prominent
than on the REM sleep EEG [219].

HORMONE STATUS AND AD

Although many factors may influence the inci-
dence of AD, most studies agree that about twice
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as many women as men develop AD. An obvious
gender difference is the sudden drop in sex hor-
mones in women around menopause, and therefore
the relationship between menopause and cognitive
decline has been the subject of many research stud-
ies. Hormone studies have since found that estrogen
can protect neurons from oxidative stress, aid neuro-
plasticity, help regulate learning and memory, shift
ABPP metabolism toward the non-amyloidogenic
pathway, and attenuate AR-induced apoptosis and
inflammation [220, 221]. Treatment of women with
hormone replacement therapy (HRT) has produced
mixed findings, with most studies showing benefits
when treatment is given around the time or just after
menopause. HRT treatments given at a much later
age, or once AD symptoms have appeared have rarely
been found to be beneficial; some have even been
found to be detrimental [222]. Experimental evidence
from animal models suggests the formulation and
regimen of HRT is also of critical importance, with
the best neuroprotective outcomes observed when
estrogen is combined with cyclic rather than constant
progesterone regimens. In our own studies of healthy
post-menopausal women given estrogen replacement
therapy, we found some improvements in memory
functioning and only in women who did not carry
APOE &4 alleles [223], indicating yet another poten-
tial link between apoE and AD.

In contrast to women and menopause, men expe-
rience a gradual decline in testosterone levels with
age, known as andropause. However, there can be
considerable variation, with some men experiencing
much more severe declines in testosterone levels, and
this age-related decline has also been linked to cogni-
tive decline and AD risk [224]. Animal studies have
shown benefits from testosterone supplementation
in improving cognition and reducing AD pathology
[225]. Observations of hypogonadal men and men
on androgen deprivation therapy have shown that
lower androgen levels can impair cognitive function,
particularly verbal memory, visuospatial ability, and
executive functions [226, 227]. Therefore, several
research groups, including ours, have investigated
the benefits of testosterone treatment on cognitive
function in men who have low testosterone levels.
Using the AIBL cohort, we investigated associations
between gonadotropins, testosterone, and brain and
plasma AP in men at risk of AD. We found that
luteinizing hormone (LH) levels influenced plasma
AB4p and APg4> levels, whereas brain AP load as
assessed by PiB-PET was associated negatively with
calculated free testosterone levels [228], supporting

the concept of these hormones influencing preclini-
cal stages of AD. In randomized, placebo-controlled,
crossover studies of men with subjective memory
complaint and low testosterone levels, we investi-
gated the effect of testosterone supplementation, and
found firstly that the treatment was well-tolerated and
did not raise hormone levels above a healthy range
[229]. We also found that such treatment provided
modest improvements on global cognition [230];
however, future clinical trials with longer follow-up,
and the measurement of blood and brain biomarkers,
would provide more conclusive results.

Some of the research interest in sex hormones
has now shifted to LH. This hormone is produced
by the gonadotropic cells in the anterior pituitary
gland, and it controls the release of both testosterone
in men and estrogens and progesterone in women.
Evidence is mounting that age-related increases in
LH may influence AD pathogenesis as it has been
implicated in inflammation, changes to cholesterol
homeostasis, altered metabolism of Af3 and ABPP,
and insulin metabolism [231]. In some of our own
studies we have shown that LH levels (and not
testosterone) correlate with plasma A levels in
elderly men [232], whereas in women, we have
found high endogenous LH is associated with a
lower cognitive score, particularly in women who are
depressed [233]. In addition, well-preserved cogni-
tive functioning was found in the oldest women in the
community-dwelling cohort who had high endoge-
nous follicle stimulating hormone levels. Using a
transgenic mouse model of AD, we found the potent
analogue of LH, human chorionic gonadotropin,
to impair working memory and modestly increase
brain AP levels. Others have since shown that
LH can influence hippocampal-related spatial mem-
ory [234], and that downregulating LH (but not
estrogen therapy) can improve cognitive dysfunc-
tion and spine density loss induced by ovariectomy
[235]; however, the underlying mechanisms by
which these hormones influence AP accumulation,
metabolism, inflammation, or contribute to neurode-
generation, are not completely understood [236],
and further research is needed to determine if some
form of hormone therapy may reduce the risk
of AD.

SUMMARY

Current available treatments for AD, at best,
only target amelioration of symptoms. Preventative
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strategies will need to be implemented, and
therefore tested, within the early stages of the
disease pathogenesis trajectory, preferably at a
preclinical stage prior to cognitive decline and
irreversible damage. Exactly “how early is early
enough?” to prevent clinical changes remains a
major unknown. There is a reasonable chance
that—especially for APOE €4 women—intervention
might need to begin in the fourth or fifth decade
of life. A major challenge involves the develop-
ment of an intervention that is sufficiently safe
to be administered for decades to asymptomatic
subjects.

The current gold standard biomarkers of AD,
namely brain AP load and CSF tau and AB4, con-
centrations, have enabled identification of individuals
within the preclinical stage of AD. However, these
diagnostic modalities are not easily accessible or
economically viable for population wide screen-
ing. Therefore, laboratories worldwide including our
own teams, are focusing on identifying less inva-
sive economical markers to meet the dire need of
early diagnosis. As such, given that the blood is
an easily accessible medium, emphasis has been
placed on identifying blood biomarkers reflecting
preclinical AD, wherein particular protein, lipid and
metabolite profiles have been observed to reflect the
gold standards, with particular marker panels show-
ing considerable accuracy; establishing the highly
characterized AIBL longitudinal study of aging has
enabled us to make major strides towards these
objectives not only with blood biomarkers identifi-
cation but buccal cell biomarkers and more recently
with retinal imaging biomarkers. However, although
promising, these studies require further replication
across all diverse ethnic groups. More importantly,
further research is required to reduce the number
of analytes within biomarker panels for commer-
cialization and clinical setting usage purposes, as
current panels within the existing literature while
showing considerable accuracy require a panel of
several analytes (~20). Interestingly, these biochem-
ical alterations manifesting in the blood in AD
pathogenesis also exhibit the systemic nature of the
disease and provide insight into AD pathomecha-
nisms. Finally, while effective treatments for AD
are yet to be established other approaches in addi-
tion to drug therapy need to be considered and
investigated. Clinical trials targeting healthy lifestyle
approaches provide hope to reduce risk of AD and
should augment the effectiveness of drug action to
combat AD.
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