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Abstract.
Background: Patients with mild cognitive impairment (MCI) have varying risks of progression to Alzheimer’s disease (AD).
Objective: To test the utility of the relative abundances of blood plasma polypeptides for predicting the risk of AD progression.
Methods: 119 blood plasma samples of patients with MCI with different outcomes (stable MCI and progressive MCI) were
analyzed by untargeted, label-free shotgun proteomics. Predictive biomarkers of progressive MCI were selected by multivariate
analysis, followed by cross-validation of the predictive model.
Results: The best model demonstrated the accuracy of ca. 79% in predicting progressive MCI. Sex differences of the predictive
biomarkers were also assessed. We have identified some sex-specific protein biomarkers, e.g., alpha-2-macrogloblin (A2M),
which strongly correlates with female AD progression but not with males.
Conclusion: Significant sex bias in AD-specific biomarkers underscores the necessity of selecting sex-balanced cohort in
AD biomarker studies, or using sex-specific models. Blood protein biomarkers are found to be promising for predicting AD
progression in clinical settings.
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INTRODUCTION

Alzheimer’s disease (AD) is the most common cause
of senile dementia [1]. It has a long asymptomatic
phase, which can last decades before the clinical onset
[2]. AD diagnosis relies on medical history, physiolog-
ical and cognitive tests, and neuroimaging techniques.
Currently, there is no cure for AD, which might be
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due to the lack of early and accurate diagnosis [3]. To
address these issues, the National Institute on Aging
redefined three AD stages (dementia due to AD; mild
cognitive impairment (MCI) due to AD; and preclini-
cal AD), and recommended implementing biomarkers
as a complementary diagnosis tool [4]. For personal-
ized treatment, it is important not only to diagnose AD,
but also to identify the MCI patients that will rapidly
progress to AD (P-MCI) as opposed to those that are
likely to remain stable with MCI (S-MCI). So far the
most studied and validated polypeptide biomarkers are
those found in cerebrospinal fluid (CSF). Amyloid-�
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Table 1
Descriptive statistics of the study population at baseline

Pooled samples Stable MCI Progressive MCI Individual samples Stable MCI Progressive MCI

Patients, n = 139 92 47 Patients, n = 119 76 43
Gender, male/female (%/%) 32/60 (35/65) 13/34 (28/72) Gender, male/female (%/%) 28/48 (37/63) 15/28 (35/65)
Age at baseline, years (±s.d.) 72 ± 5 71 ± 6 Age at baseline, years (±s.d.) 72 ± 5 71 ± 6
MMSE (±s.d.) 24.6 ± 3.0 23.7 ± 2.7 MMSE (±s.d.) 22.6 ± 4.1 22.4 ± 3.3
Follow-up time, months (±s.d.) 28 ± 16 27 ± 18 Follow-up time, months (±s.d.) 27 ± 17 28 ± 18

peptide (A�)42, total tau (t-tau), and phosphorylated
tau (p-tau) are in use for discriminating AD versus
healthy subjects with the sensitivity and specificity
around 80–90% [5]. Similarly, somewhat lower lev-
els of accuracy are claimed for the differentiation of
P-MCI from S-MCI, although broader validation is
needed for these latter claims [6, 7]. However, CSF
is an invasive biopsy and not routinely analyzed for
MCI patients in most countries.

Compared with CSF, blood analysis is much less
invasive and routinely used in clinics in massive screen-
ings, and thus prediction of the AD progress by blood
biomarkers in presymptomatic individuals would be
highly valuable. Indeed, several studies have investi-
gated blood samples in search for AD biomarkers in
the past decade [7]. One of the most influential stud-
ies found a panel of 18 signaling plasma proteins that
differentiate AD and healthy control with sensitivity
and specificity around 90% [8], although later stud-
ies similarly based on immunological assays showed
worse performance [9]. In the original study [8], the
combination of 18 proteins could discriminate S-MCI
and P-MCI with the sensitivity and specificity around
80%, which, to our knowledge, is the best performance
achieved among such type of studies [10, 11].

This and similar immunology-based studies have
frequently focused on proteins linked to AD disease
progression, which are often found in blood at low or
ultralow concentrations, e.g., cytokines. These proteins
are not easily accessible for mass spectrometry analy-
sis, and when they are, the accuracy of the abundance
measurements suffers from low signal levels, which
reflects in poor values of the coefficient of variability
(CV) [12]. In contrast, abundant blood proteins can
be measured by label-free analysis with CVs as low
as 1% to 3% [13]. We have recently shown that accu-
rately measured levels of ca. 100 most abundant blood
proteins reflect important phenotype differences, such
as sex. A panel of ca. 20 proteins differentiated males
from females with ca. 90% accuracy [13]. Hypothet-
ically, the relative concentrations of highly abundant
blood proteins can be predictive of the AD progres-
sion. Indeed, the third most abundant protein in blood,

alpha-2-macrogloblin (A2M), is named in literature as
one of the AD biomarker candidates [14, 15]. In the
present study, we aimed at testing the above hypothe-
sis and determining the predictive power of abundant
blood proteins for AD progression, i.e., differentiation
between S-MCI and P-MCI. In doing so, we used the
same label-free proteomics technique that has previ-
ously been employed for sex differentiation from blood
plasma samples [13].

MATERIALS AND METHODS

Participants

139 blood plasma samples of elderly MCI patients
were selected from the Kuopio cohort [16] and pooled
into four age-matched groups based on their sexes
and disease stages, such as S-MCI and P-MCI. Then
119 samples among them were randomly selected for
individual analysis. The participant and pooling infor-
mation is given in Table 1. Informed written consent
was acquired from all the subjects according to the
Declaration of Helsinki, and the study was approved by
the Ethics Committee of the Kuopio University Hospi-
tal (Finland). The plasma samples were collected in the
morning and mostly after fasting. The frozen plasma
were then stored at −80◦C until further analysis. The
follow-up diagnosis performed on average 28 months
after the sample collection revealed the S-MCI/P-MCI
status of the patients.

Protein extraction and solubilization

Samples were analyzed as grouped in four pools
according to sex and AD progression [17], as well as
individually. 0.2 �L plasma proteins from each sam-
ple were dissolved in a mixture of 50 mM ammonium
bicarbonate (AmBic) in 10% acetonitrile (ACN) with
0.1% Protease MAX™ Surfactant Trypsin Enhancer
(Promega) to a total volume of 80 �L per sample. The
sample mixtures were incubated for 15 min at 50◦C,
sonicated for 10 min, and centrifuged for 5 min to get
rid of the undissolved debris.
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Trypsin digestion

Each pooled blood plasma sample was indepen-
dently digested in triplicate, and individual sample in
duplicate. 70 �L supernatant from each sample was
taken and digested by the MassPrep (Packard) robot.
The proteins were reduced by adding 25 �L of 20 mM
dithiothreitol (DTT) in 50 mM AmBic and incubated
at 56◦C for 30 min. 25 �L of 66 mM iodoacetamide
in 50 mM AmBic was further added for alkylation at
room temperature for 30 min. Then 25 �L of 13 ng/�L
sequencing grade modified trypsin (Promega) was
added to each sample and incubated at 37◦C overnight.
The digestion was stopped by adding 7 �L of formic
acid (FA) and incubating the solution for 20 min at
37◦C. Then the samples were desalted by StageTips
(Thermo), dried by SpeedVac, and stored at −20◦C
until further analysis.

Mass spectrometry (MS) analysis

Each digest was resuspended in 0.1% FA, and 0.5 �g
of protein digest was used in a single analysis. For
technical reasons, the analysis of the 238 individual
samples (duplicates from 119 patients) was performed
in four series of analytical runs, with each group
analyzed with an at least two weeks break from the
previous one. The analysis sequence was randomized
within each group. Group I and II of the runs analyzed
1st digestion of S-MCI and P-MCI from both sexes (53
and 66 samples of both sexes, respectively), Group III
- 76 samples of the 2nd digestion of female samples,
and Group IV - 43 samples of the 2nd digestion of
male samples. Moreover, different chromatographic
instrumentation was employed: Group I and Group
II analyses were performed using nanoAcquity Ultra
Performance LC® (Waters), while Group III and IV
samples together with pooled samples were analyzed
by Easy-nLC system (Thermo Fisher Scientific). In all
cases, the LC was coupled online with Velos Orbitrap
mass spectrometer (Thermo Fisher Scientific). The fact
that the analysis was performed in groups and with
different chromatographic equipment complicated the
data processing, but made the results more realistic and
relevant to clinical settings.

Both LC systems used elution buffer A containing
0.1% FA, and buffer B containing 0.1% FA in ACN
with a flow rate of 300 nL/min. The LC elution condi-
tions are given in Supplementary material.

Velos Orbitrap mass spectrometer analyzed the
eluted peptides that were ionized with electrospray
ionization. The survey mass spectrum was acquired

at a resolution R = 60,000, with m/z of ions ranging
from 300 to 2,000. Five most abundant ions were
selected with a window of 3 m/z units and fragmented
by higher-energy collision dissociation (HCD) as well
as electron transfer dissociation (ETD) MS/MS. The
HCD fragments were detected in the Orbitrap at a res-
olution R = 7,500, while ETD fragments were detected
in the Velos trap at low resolution.

In summary, there were four pooled samples (S-MCI
and P-MCI, for both sexes), each digested in triplicate,
with each digest analyzed in two technical replicate
LC-MS runs, thus yielding six LC-MS analyses for
each pooled sample. For each individual sample, there
were two independent digests, with each digest ana-
lyzed once. Thus there were two LC-MS analyses for
each individual sample.

Data processing

The LC-MS data obtained from each of the four
groups of individual samples was processed separately
by Quanti software, which performs accurate label-
free peptide and protein quantification with correction
for instrumental response fluctuations [13]. The data
obtained from the pooled samples was also processed
in a similar way as described in [13] in details.

Proteins and peptides identification

MS/MS spectra were extracted using a home-
written program RAW to MGF which selected in each
MS/MS spectrum up to 200 most abundant ions. The
MS/MS data from different LC-MS runs within the
same group were clustered together using the pro-
gram Cluster MGF to make a single .MGF file for
each group. Cluster MGF gathers groups of spectra
whose precursors are presumed to be the same pep-
tides. Spectra were included in this group if they shared
at least 12 of the 20 most-abundant ions with at least
one other MS/MS spectrum in the group. One spectrum
from each group with the maximum aggregate intensity
is taken as a representative of this group for deposi-
tion in the .MGF file. The resultant .MGF files were
searched by Mascot search engine (Matrix Science,
London, UK) version 2.3.02 against April 2013 version
of human reviewed canonical sequence complete pro-
teome database from UniProtKB [18] (contains 33,226
sequences, 16,613 of them are reversed) using HCD
and ETD MS/MS data, with precursor mass accuracy
of 10 ppm, MS/MS accuracy of 0.6 Da, a maximum
of 2 missed tryptic cleavages, carbamidomethyla-
tion of cysteine as a fixed modification, asparagine
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and glutamine deamidation and methionine oxidation
as variable modifications. Peptide assignments were
treated as false positives if the best match of the cor-
responding MS/MS spectrum in the database was to a
reversed protein sequence.

Proteins and peptides quantification

Quantification of the peptides and proteins was per-
formed by Quanti version 2.5.3.1 [13]. This program
performs quantification of peptides found by Mascot,
or externally supplied, based on peptides’ extracted ion
chromatograms. Proteins are quantified based on pep-
tide abundances. Quanti uses for quantification only
reliably identified (FDR <0.01), first-choice, unmodi-
fied, unique-sequence peptides. If two database protein
entries have partial sequence overlap, then all the
peptides belonging to this overlap are excluded from
quantification. As an output, Quanti provided tables of
relative abundances for proteins and underlying pep-
tides.

Statistical analysis

Only proteins found in all four experimental groups
(male/female, S-MCI/P-MCI) were submitted for sub-
sequent statistical analysis. Since each sample was
analyzed twice, the reproducibility of analysis could
be evaluated for each protein in each sample. The over-
all median CV for relative protein abundances within
the same sample measured in different replicates was
calculated as 11%, which includes both sample prepa-
ration (protein extraction, digestion, desalting) and
LC-MS-related variability. Thereafter the abundances
of proteins with CV more than 30% (21% of all
protein abundance values) were excluded as unre-
liable measurements (treated as missing data) from
the results for the corresponding sample. The protein
abundances were log-transformed and then averaged
between two replicates. The resulting dataset was sub-
mitted to orthogonal projection to latent structures
discriminant analysis (OPLS-DA) by SIMCA software
(version 13.0.0.0, Umetrics AB, Sweden). OPLS-DA
model was built for discrimination of S-MCI and
P-MCI groups. To avoid overestimation, sevenfold
cross-validated scores were calculated [19]. These
scores were used for receiver operator characteristic
(ROC) analysis to estimate the predictive accuracy of
the model [20]. As a negative control, S-MCI/P-MCI
identifier was randomized for all MCI samples, and the
above procedure was repeated.

Biological function analysis

The functional analysis of the potential prognostic
biomarkers was performed by the overrepresentation
analysis in the pathway analysis of REACTOME [21].
Protein prognostic biomarkers categorized by OPLS-
DA as positively/negatively correlating with P-MCI
were assessed separately by the overrepresentation
analysis using p value less than 1.0e−08 as the sig-
nificance cutoff empirically.

RESULTS

Protein putative biomarker analysis

125 proteins were quantified in all four groups
with FDR ≤1% and the other requirements described
above. OPLS-DA model gave R2 = 0.42 and Q2 = 0.30
for the discrimination of S-MCI and P-MCI groups,
and showed the predictive accuracy of 79% (Fig. 1).
Among the 60 proteins (Supplementary Table 1)
significantly contributing to the S-MCI/P-MCI dis-
crimination by the OPLS-DA model, the top twelve
(six most positively and six most negatively correlating
with P-MCI) proteins are given in Table 2 as putative
AD progression biomarkers.

In the negative control, where S-MCI/P-MCI
identifier was randomized for all samples, no
valid OPLS-DA model (R2 = 0.24, Q2 = −0.08) was
obtained, and cross-validation confirmed that the
model is statistically indistinguishable from random
guessing with the “predictive accuracy” of only 59%
(Supplementary Fig. 1).

Sex effects in blood protein biomarkers

It is known that human blood proteome has sex-
specific profiles [13, 17, 22, 23]. To assess such effects
among the AD biomarker candidates, we calculated
the correlation factors for all the 60 significantly pre-
dictive proteins with the disease progression (P-MCI).
Opposite regulation directions between the two sexes
were found in 13 proteins out of the total 60 proteins
(22%) (Supplementary Table 1). Proteins that corre-
late with P-MCI differently in females and males, e.g.,
A2M (Fig. 2A-B), are more informative in sex-specific
models than in the sex-unified model.

The OPLS-DA models built on the same dataset with
sex differentiation showed 86% accuracy for males
and 73% accuracy for females (Supplementary Figs. 2
and 3). Since addition of sex specificity should always
increase the prediction accuracy, the lower accuracy
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Fig. 1. Left: Orthogonal projection to latent structures discriminant analysis (OPLS-DA) model for discrimination of stable mild cognitive
impairment (S-MCI) and progressive MCI (P-MCI) patient samples. Open circles represent S-MCI samples, black dots represent P-MCI
samples. Right: ROC-curve based on seven-fold cross validation of the corresponding OPLS-DA model.

Table 2
Blood plasma proteins that, according to OPLS-DA model, most significantly contribute to the discrimination of stable mild cognitive impairment
(S-MCI) and progressive MCI (P-MCI) patients. Note that the regulation values here depend upon the variability within the dataset: larger

variability leads to smaller regulation values [13]

Protein ID Protein desc. Corr- Corr- Corr- Regulation: Regulation: Regulation: Min Max
female male all female (%) male (%) all (%) pep pep

CFAB HUMAN Complement factor B −0.23 −0.61 −0.35 −6.5 −15.5 −3.2 16 25
CFAI HUMAN Complement factor I −0.34 −0.45 −0.38 −6.9 −9.0 −2.2 1 4
A1AG1 HUMAN Alpha-1-acid glycoprotein 1 −0.25 −0.09 −0.20 −15.6 −5.1 −2.0 3 6
IGHG3 HUMAN Ig gamma-3 chain C region −0.09 −0.29 −0.16 −8.4 −27.0 −6.8 3 4
CERU HUMAN Ceruloplasmin −0.35 −0.59 −0.41 −9.7 −12.6 −2.6 16 26
CFAH HUMAN Complement factor H −0.24 −0.49 −0.33 −5.9 −14.0 −1.4 26 35
IC1 HUMAN Plasma protease C1 inhibitor 0.18 0.20 0.18 10.6 14.4 2.3 6 8
FINC HUMAN Fibronectin 0.22 −0.08 0.15 23.6 −4.9 11.9 23 41
FIBG HUMAN Fibrinogen gamma chain 0.25 0.35 0.28 33.2 36.5 16.3 26 34
FIBB HUMAN Fibrinogen beta chain 0.27 0.29 0.27 17.4 15.5 6.3 22 30
FIBA HUMAN Fibrinogen alpha chain 0.28 0.23 0.26 18.2 12.7 5.9 29 41
GELS HUMAN Gelsolin 0.01 0.25 0.09 2.9 42.7 7.0 10 13

for females-only model compared to sex-unified model
was surprising. It was probably due to two reasons: the
stochastic nature of the accuracy determination (the
estimated uncertainty is ±10%), and the detrimental
effect of a smaller cohort on statistical analysis.

Note that of the 12 P-MCI predictive proteins in
Table 2 selected by OPLS-DA model, all but one pro-
tein have the same direction of regulation in all three
models. Only fibronectin is found strongly upregu-
lated in females (+25%) and weakly downregulated
in males (−5%), with moderate upregulation (+12%)
in the joint model. Note also that the regulation fac-
tors for the joint model are more modest in value than
in sex-specific models. This is a feature of the quan-

tification approach used [13], which takes variability
into account when estimating the regulation: stronger
variability, as in the joint model, reduces the perceived
regulation value. As has been shown earlier, such an
approach improves the accuracy of predictive models
by suppressing stochastic fluctuations.

Protein biological function analysis by
REACTOME

Among the 47 proteins negatively correlating with
P-MCI patients (Supplementary Table 1), complement
cascade was significantly enriched, encompassing
14 proteins (p = 6.7e−17). Among the 13 proteins
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Fig. 2. Box plots of relative protein abundance measured for: A) alpha-2-macrogloblin (A2M) from individual samples, and B) A2M from
pooled samples. In both cases, the values correlate differently with AD progression for two sexes. The middle bar indicates mean value, upper
and lower bars encompass data deviating by one standard deviation, and ∗represents p < 0.05 by two-tailed Student t test.

positively correlating with P-MCI patients (Supple-
mentary Table 1), hemostasis was enriched, with 9
proteins (p = 1.6e−09).

DISCUSSION

“Top proteome” blood analysis

Blood proteome has a concentration dynamic range
of more than ten orders of magnitude [7]. This makes
it a very challenging system to analyze with LC-MS
that has a dynamic range of three to four orders of
magnitude in direct (“discovery”) analysis and up to
six orders in targeted analysis [12]. However, if pro-
gressing AD leaves a strong enough signature in the
abundances of hundred most abundant blood proteins
(“top proteome”), then for predicting this progression,
a basic proteomic experiment may suffice that requires
minimum sample preparation and lasts an hour, or per-
haps even less. This “top proteome hypothesis” has
driven us to dedicate our efforts to developing the label-
free “top proteome” workflow, focusing on achieving
the best possible precision of the abundance measure-
ments as the critical parameter in reducing the time, and
thus the cost, of the proteomic analysis [13]. Indeed,
based on around 100 abundant blood proteins, we can
successfully discriminate S-MCI with P-MCI with ca.
80% accuracy.

Sex differences in human blood proteome are well
known [13, 17, 22, 23]. The level of A2M, the
third most abundant protein in plasma, is typically
15%–20% higher in adult females than in adult males
[24]. In literature, A2M is often listed as an AD
biomarker [14, 15]. The 5′ splice-site deletion in exon
18 of A2M was genetically linked to AD with the

same degree of certainty as the APOE-�4 allele [25].
Since then, several studies have implicated A2M in
AD, although its function in AD pathology still remains
unclear. It has also been reported that the level of A2M
increases in AD patients compared with healthy con-
trols by 20% (quantified by western blot) [14]. Also,
A2M levels have been found to correlate with AD
progression [26]. These findings are only partially con-
sistent with our results here. As shown in Fig. 3A,
A2M levels are increased in P-MCI females, but
decreased (although without statistical significance) in
P-MCI males. The picture is even clearer for pooled
data, where the same individual samples were pooled
according to their sexes and disease progression [13].
A2M level in P-MCI females is higher than in S-MCI
females by 13% and in males the corresponding level is
lower by 12% (Fig. 2B). The strong dependence upon
sex precluded the use of A2M as predictive marker
for AD in Table 2. Several other proteins also show
sex differences (Supplementary Table 1). Fortunately,
it was possible to select proteins that demonstrate
more disease specificity than sex specificity. Among
all the putative biomarker candidates in Table 2, only
fibronectin shows “opposite” behavior in male and
female models.

Yet it is important to remember that such a strong
phenotype difference as sex inevitably affects the blood
proteome [13]. We have previously shown that sig-
nificant sex differences exist in blood at the level of
abundant proteins [13], glycosylation of IgG [27], and
isoaspartate content [17]. These results put under ques-
tion the previous AD biomarker findings made without
regard to patient sex. For instance, strong dominance
(>75%) of females in the AD cohort due to higher AD
prevalence can skew the results of a sex-unified model
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[7]. This conclusion is valid not only for diagnos-
tic and prognostic AD biomarkers, but also for blood
serum biomarkers of basic activities of daily living in
AD patients, among which strong sex differences have
recently been reported [27]. Since in the cohort used in
the current study females dominate males as 2 : 1, we
were extra cautious to avoid sex bias in the predictive
model.

Biological roles of the proteins in Table 2 can hint
on the mechanism of disease progression. The stark-
est feature of AD progression is the elevated levels in
P-MCI of the three fibrinogen chain proteins (alpha,
FIBA, beta FIBB, and gamma FIBG), fibronectin
(FINC) as well as plasma protease C1 inhibitor (IC1).
Moreover, REACTOME pathway overrepresentation
analysis has also identified hemostasis as the enriched
process in all the P-MCI elevated blood proteins. This
feature strongly supports the recently uncovered role
of the hemostatic system and the clotting process
in AD [29]. Fibrinogen that is normally circulating
in blood, deposits in AD together with A� in the
brain parenchyma and cerebral blood vessels. The
interaction of A� and fibrin(ogen) leads to increased
fibrinogen aggregation, A� fibrillization, and the for-
mation in brain of degradation-resistant fibrin clots
[29].

In Table 2, decreased levels of immunoglobulin,
like Ig gamma-3 chain C region (IGHG3), as well
as complement factors (complement factor B (CFAB),
complement factor I (CFAI)) in P-MCI patients sug-
gest the involvement of immune system from this
group of biomarkers. Among all the 47 negatively
correlating proteins, complement cascade was found
over-represented. Complement activation is a key com-
ponent of neuroinflammation in AD, which is potently
induced by aggregated A� [30]. The complement sys-
tem may play a neuroprotective role in eliminating
aggregated proteins, but an exaggerated/insufficient
activation may also be neurodestructive by generat-
ing proinflammatory cytokines and oxidative species
[31]. Although the role of complement activation as
a positive or negative factor in AD is not clear, the
involvement of the complement cascade proteins in AD
has been documented in multiple independent stud-
ies [32], as well as our previous work related to IgG
glycosylation [27].

Performance of AD prognostic model

As mentioned above, the current “gold standard” for
discriminating P-MCI versus S-MCI by immunoassay
of blood cytokines exhibits the specificity and sen-

sitivity of around 80% [5]. Here, based on a set of
abundant proteins analyzed by proteomics, we could
achieve a similar accuracy in predicting AD onset
(P-MCI). Among all the putative biomarkers proteins
in Table 2, complement factor I [33], ceruloplasmin
[34], plasma protease C1 inhibitor [26], and fibrino-
gen [29] have been reported as increased in AD blood
samples compared with healthy controls. These reports
support the validity of our predictive model.

Regarding the importance of taking sex into account
in biomarker discovery, it is clear that the cohorts
for mixed-sex discovery have to be more or less sex-
balanced. We are also of the opinion that one should
also employ sex-specific models to validate sex-unified
models. Larger cohorts are likely to clearly demon-
strate superior performance of sex-specific models, as
would be expected from the theoretical point of view.
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