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Abstract. Most humans living in industrialized societies are routinely exposed to bioavailable aluminum salts in the form of
additives—in commercially-prepared foods, alum-clarified drinking water, certain pharmaceuticals, sunscreens, and other topical
applications. Minute amounts of this aluminum are absorbed into the circulation. Trace aluminum levels cross the blood-brain
barrier and progressively accumulate in large pyramidal neurons of the hippocampus, cortex, and other brain regions vulnerable
in Alzheimer’s disease. More aluminum enters the brain than leaves, resulting in a net increase in intraneuronal aluminum with
advancing age. Aluminum is responsible for two main types of toxic damage in cells. As a pro-oxidant, aluminum causes oxidative
damage both on its own and in synergy with iron. Aluminum also competes with, and substitutes for, essential metals—primarily
Mg2+, iron and Ca2+ ions—in or on proteins and their co-factors. The author hypothesizes that intraneuronal aluminum interferes
with Ca2+ metabolism in the aged brain and describes a way to test this hypothesis. This paper reviews: 1) major changes that
occur in brain Ca2+ homeostasis and Ca2+ signaling, subtly with aging and more overtly in Alzheimer’s disease; and 2) evidence
from the scientific literature that aluminum causes these same changes in neurons.
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INTRODUCTION

Ionic calcium (Ca2+), the physiologically active
form of calcium, is a ubiquitous messenger that ful-
fils a central regulatory role in the metabolism of all
cells. Ca2+ signals control a diverse set of biological
processes in neurons, ranging from gene transcription,
cell growth and differentiation to neurotransmission,
synaptic plasticity, memory processing, and cell death.
Healthy neurons have mechanisms that rigorously
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control their intracellular Ca2+ content because pro-
longed elevation of the Ca2+ concentration would be
excitotoxic [1–4]. For example, Ca2+ concentrations
in neurons rise during neural activity from the resting
level, peak, and then restore to the resting level, thus
readying neurons for their next bout of activity. This
requires normally functioning Ca2+ transport mecha-
nisms, Ca2+ buffering proteins, and intracellular Ca2+
storage systems [5].

Subtle changes in Ca2+ homeostasis and signal
transduction occur during aging that become more
extensive and overt in Alzheimer’s disease (AD)
despite the elaborate biological controls in place to reg-
ulate Ca2+. A potential cause of these changes was
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Fig. 1. Hippocampal pyramidal cells stained for Al from human brains of an age-matched non-demented control and a severely-affected AD
case. A) Al stains the nucleoli magenta in aged controls denoting Stage I Al accumulation. B) These cells show stage V Al accumulation where
Al staining occurs throughout the nucleus and cytoplasm of pyramidal cells. Reproduced from [109] with permission from Elsevier.

brought about by new 20th century industrial prac-
tices and products that now result in routine ingestion
of aluminum (Al) throughout life from Al additives
contained in commercially-prepared foods and alum-
treated drinking water [6], and exposure to Al from
other sources. Al salts have been increasingly used
since the end of World War II as anti-caking agents
in salt, coffee whiteners, pancake mixes and other
powdered foods, emulsifiers and melting agents in
cheeses, clarifying agents in water, puddings, and
other processed foods where precipitates may form,
as mordants for binding food dyes to solid foods, pick-
ling agents, hardening agents for candying fruit, meat
binders, gravy and sauce thickeners, rising agents in
baking powders and baked goods, for buffering and
as neutralizing agents. Other sources of Al exposure
include topical applications, certain pharmaceuticals,
some medical treatments, and Al-adjuvanted vaccines.

Trace amounts of Al are continuously taken up into
the brain where Al shows net accumulation by old age
[7–9]. Al particularly localizes in pyramidal neurons
of brain regions specifically affected in AD [10–13]
(Fig. 1A and B). In contrast to the essential nature of
Ca2+, Al1 is an element that is non-essential for life
and is toxic to living organisms. Al is abundant in the
environment and evolution has provided mucus barri-
ers for animal and plant protection. A mucus layer that
lines the gastrointestinal tract, and another that coats
the roots of plants, effectively exclude most (about
99.7%) adventitious Al that these might encounter
in the natural environment. However, the protective
mucus barriers can be overwhelmed by human activity.

The author hypothesizes that intraneuronal Al inter-
feres with Ca2+ metabolism in the aged human brain.
An experiment is suggested to address this hypothesis.

1 The generic abbreviation “Al” is used throughout this report to
collectively refer to all Al species present in solution.

The author endeavors to describe the status of changes
in Ca2+ metabolism in association with Al as a signif-
icant element in the intraneuronal changes that occur
in aging and in AD, as will become evident from this
review. Many of the reviewed studies will show that
Al gives rise to cellular changes comparable to those
associated with aging as it now occurs. These changes
include: 1) elevation of the resting Ca2+ and peak Ca2+
levels in neuronal cytoplasm; 2) less Ca2+ influx; 3) a
modest inhibition of phosphoinositide 4,5-biphosphate
(PIP2) hydrolysis by phosphoinositide-specific phos-
pholipase C (PI-PLC) in phosphoinositide signaling
pathways, resulting in less inositol triphosphate (IP3)
availability for signaling and protein kinase C (PKC)
activation; and 4) a slower rate of Ca2+ removal from
the cytoplasm. There are at least four major Ca2+
regulatory proteins that are fundamental to the main
changes that occur in Ca2+ homeostasis and signaling,
both in aging and AD.

The available evidence indicates the transition from
aging to AD, in relation to Ca2+ metabolism, is on
a continuum with changes observed with aging that
become disabling in AD. Al inhibits the relevant pro-
teins in a dose-dependent manner so it is possible that
AD changes could result from the effects of progressive
intraneuronal Al accumulation, on Ca2+ homeostasis
and signal transduction, as increasing numbers of cells
accumulate Al above the neurotoxic threshold. It is
useful to first focus attention on the physical proper-
ties of Al that govern its interactions with essential cell
metal ions, in order to better understand how Al can
adversely affect Ca2+ metabolism.

THE PHYSICAL PROPERTIES OF AL
GOVERN ITS BEHAVIOR

Al has complex chemistry. Al is a highly reactive
element that forms various hydrolytic products with
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pH-dependent solubilities in aqueous solutions. Ionic
Al (Al3+), regarded as the most toxic of Al species,
predominates below pH 5 [14] and equilibrates with
other Al forms at higher pH values. Picomolar amounts
of Al3+ produce toxic effects in biological processes
at physiological pH [15].

The small size of the Al3+ ion, its near maximal
charge : size ratio, and its lack of structure are its main
properties [16]. Ionic size is more important than ionic
charge for allowing substitution of a smaller metal ion
in the catalytic site of a slightly larger metal ion [14].
The ionic radius of Al3+ is only 0.51 Å, partly as a
result of the ion’s strong electric charge. The Al3+
ion is almost as large as the ferric iron (Fe3+) and
somewhat smaller than the Mg2+ ion in their favored
coordination state surrounded by six water molecules.
Al is only about 1/9 as large as the calcium ion (Ca2+),
making Al thermodynamically unlikely to substitute in
a catalytic site normally occupied by Ca2+.

Al has high affinity, resulting from its very high
charge density, that causes it to bind to almost any
oxygen or nitrogen atom. Al has high affinity for
Mg2+-binding sites in proteins. For example, Al affin-
ity for the Mg2+-binding site in a G protein is
approximately 107 times higher than the affinity of
Mg2+ [15]. Thus, nanomolar (nM) amounts of Al
can successfully compete with the mM amounts of
Mg2+ present within cells. A major problem with Al3+
competing with and substituting for essential metals
in enzyme reactions is that these reactions normally
rely on the metal having rapid reversible dissociation
whereas Al has very slow release from the ligands to
which it binds.

The order for metal exchange rate constants is shown
in the list below [14], beginning with the slow exchange
rate constant for Al and finishing with the fast exchange
rate constant for Ca2+.

Al3+ � Fe3+ < Ga3+, Be2+ � Mg2+

< Fe2+ < Zn2+ < Ca2+

Each inequality sign represents a 10-fold increase in
the exchange rate, from 1.33/sec for Al3+ to 108/sec
for Ca3+ at 25◦C. Hence, Al3+ dissociates from bio-
logical ligands 108 more slowly than Ca2+ and 105

times more slowly than Mg2+. This slow exchange
rate makes Al3+ a toxic substitute for essential met-
als in biological reactions where rapid dissociation is
critical [14].

More than 300 proteins in cells are regulated by
Mg2+, ATP-Mg2+, or GTP-Mg2+ co-factors [17, 18].

Almost all nucleoside phosphate reactions use Mg2+
so Al that accumulates in cells is an extremely effec-
tive surrogate for Mg2+, providing Al with many
opportunities to disrupt critical enzyme reactions [14].
Some Mg2+-dependent proteins have important reg-
ulatory roles in Ca2+ homeostasis and Ca2+ signal
transduction [19–22]. For example, activation of the
calcium transporter protein, Ca2+-ATPase, requires
Mg2+ binding to ATP to form the ATP-Mg2+ complex.
Al3+ readily replaces Mg2+ in the ATP-Mg2+ complex
to form an inactive ATP-Al3+ complex that renders the
Ca2+-ATPase enzyme useless [14, 15, 23–25].

Al3+ also competes directly with Ca2+ for Ca2+
sites on membrane surfaces, on molecules in the cyto-
plasmic matrix, and in membrane Ca2+ channels. Al
competes with both Ca2+ and Mg2+ for small ligand
oxygen donors such as carboxyl and carbonyl groups,
phosphate groups, inorganic phosphate, nucleotides
and polynucleotides.

Moreover, the combination of high charge and small
size causes Al3+ to have a strong polarizing effect on
the electrons of adjacent oxygen atoms, particularly in
phosphate groups. Al acts as a strong Lewis acid [26],
pulling the polarized oxygen electrons toward itself. Al
is a pro-oxidant, both on its own and in synergy with
iron (e.g., [27, 28]).

Al produces biphasic effects in many of its biological
reactions and these can occur either in time-dependent
or dose-dependent manners. Biphasic effects are often
apparent where Al3+ substitutes for Mg2+ in regula-
tory enzymes: initially stimulating enzyme activity and
subsequently disrupting the same activity [29–31].

Likewise, trace amounts of Al3+ stimulate G
protein-mediated transduction of receptor-generated
signals in acute in vitro experiments [32] whereas
larger than trace amounts of Al produce the opposite
effect by inhibiting G protein-mediated signal trans-
duction [33].

CYTOPLASMIC CA2+ LEVEL INCREASE

Resting and peak cytoplasmic Ca2+ levels
increase in aged neural cells

Many research groups have reported that Ca2+ lev-
els, in hippocampal and cortical neurons of older rats,
rabbits, and monkeys, peak at higher levels during
neural activity and are maintained at higher levels
under resting conditions than in the same neurons of
young animals (e.g., [34–43]). Ca2+ levels are proba-
bly also higher in aged human neurons but evidence for
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this is obscured by postmortem-change [44]. Accord-
ing to Green and LaFerla [45], increased levels of
Ca2+-dependent proteases such as calpain provide cir-
cumstantial evidence of Ca2+ disruption in AD in lieu
of direct evidence.

Al increases the cytoplasmic Ca2+ level in neural
cells

An alternate explanation for increased levels of the
Ca2+-dependent proteases calpain and apopain in AD
brain tissue is that these result from Al accumulation
because AD-affected brain tissue has a 2 to 3-fold
increase in Al content over that of non-demented con-
trols [46] and in vivo Al exposure increases the levels of
calpain and apopain in brain tissue relative to untreated
controls [47].

Experimental treatments with either oral Al,
intraperitoneally-injected Al or tail-vein injection con-
currently raise Al and Ca2+ in brain tissue of rabbits,
rats, mice, and monkeys [48–53]. Ca2+ levels are twice
as high in brains of Al-treated animals as in brains
of unexposed controls [48, 51]. Most Ca2+ increase
occurs in the cortex, followed by the hippocampus and
then the striatum.

Direct injection of Al lactate into the brain ven-
tricles of young rabbits has been used to raise brain
Al levels sufficiently high to produce an acute animal
model for Al encephalopathy in renal failure patients
[54]. The rabbit forebrain exhibits progressive increase
in Ca2+ content as the encephalopathy evolves, from
a control value of 263 �g Ca2+/g brain tissue (dry
weight) to 294 �g/g by 12 days, 340 �g/g by 20 days,
and 550 �g/g post-injection by 29 days as the rabbits
became symptomatic, exhibiting seizures and entering
the terminal stage of encephalopathy [54]. The con-
trols, injected only with sodium lactate in water, are
spared these effects.

This effect can also be seen in cultured neural cells.
Glutamate stimulation causes 45Ca2+ levels in cultured
neurons to rise and peak at up to 280% of the normal
resting 45Ca2+ level. If cells are exposed to Al prior to
glutamate stimulation, their 45Ca2+ level peaks around
400% of the 45Ca2+ resting level and plateaus at a
higher level than in cells exposed to glutamate with-
out Al pre-exposure [55]. Also, astrocytes cultured in
the presence of 100, 200, or 400 �M Al3+ for 1 day
show a significant (>50%) dose-dependent increase in
their basal Ca2+ level compared with that of unexposed
controls. Their basal Ca2+ level further increases in a
time-dependent manner by 130% when Al3+ exposure
is lengthened to 6 days [56].

The in vivo Al accumulation that progressively
occurs in human neurons and astrocytes throughout
life [6, 13] provides a reasonable explanation for the
elevations observed in resting and peak cytoplasmic
Ca2+ levels of aged individuals [47, 51, 53, 57]. Also,
Garruto et al. [58] have observed that high brain levels
of Ca2+ parallel high Al levels in most human neu-
rodegenerative conditions linked to Al neurotoxicity.

CA2+ INFLUX INTO NEURONS

Less Ca2+ flows through plasma membrane Ca2+
channels of aged and AD-affected neural cells

Most Ca2+ influx is through N-methyl-D-aspartate
(NMDA) receptors [59]. Hippocampal CA1 cells from
old rats exhibit significantly (30–40%) less NMDA
receptor binding, suggesting that aged neurons either
have fewer NMDA receptors per cell surface area or
less efficient binding to their NMDA receptors [60, 61].
Similarly, in AD, Ca2+ influx through NMDA recep-
tors is lowered, either because the NMDA receptors are
unable to bind glutamate or as a result of lower NMDA
receptor density in AD hippocampal tissue [62–64].

Voltage-gated calcium channels (VGCCs) play a
pivotal role in coupling electrical activity to neuro-
transmission. Aged neurons have a higher density of
VGCCs in their plasma membrane than young neu-
rons [65]. However, patch clamp experiments have
demonstrated that many VGCCs in old neurons are
non-functional indicating that L-type VGCC activity is
relatively low in old CA1 hippocampal neurons regard-
less of their VGCC density [66]. Moreover, the fast
phase of Ca2+ uptake is diminished in synaptosomes
prepared from rats at age 24 months compared to those
from rats at age 3 months [67]. Thus, older neurons
have reduced Ca2+ influx and are less excitable than
their younger counterparts [68–71]. In view of these
findings, the mechanism for Ca2+ elevation in aged
neurons, during activity and at rest, must involve some
process other than increased Ca2+ influx.

Al decreases Ca2+ influx into neural cells

Al decreases glutamate-activated NMDA and �-
amino-3-hydroxy-5-methylisoxazle-4-proprionic acid
(AMPA) Ca2+ currents by 50% [72, 73]. Furthermore,
Al reduces expression of the NMDA receptor � gene
in a dose-dependent manner (p < 0.01) [74].

NMDA Ca2+ influx is also inhibited in hippocampal
neurons by exposing them to okadaic acid, an inhibitor
of the serine/threonine (Ser/Thr) protein phosphatases
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PP1 and 2A (PP2A) [75]. This is relevant to this
review because Al is also a Ser/Thr protein phos-
phatase (PP) inhibitor: for PP1 [76], PP2A [77, 78],
and PP2B [79]. The Al accumulation that occurs in
rat hippocampal and cortical neurons, after chronic
consumption of Al at human-equivalent Al exposure
levels (adjusted for mg.kg−1 body weight (bw)), is suf-
ficient to inhibit PP2A activity in vivo [78]. Hence, Al
inhibition of Ser/Thr phosphatase activity may be one
more factor that impedes Ca2+ influx through NMDA
receptors.

Al decreases the fast phase of Ca2+ uptake through
VGCCs in vitro and in vivo [51, 80]. Fast phase
Ca2+ channels are those principally involved in neuro-
transmitter release [80]. Al retardation of Ca2+ influx
occurs from competitive and non-competitive interac-
tions between Al and Ca2+, as Al prevents Ca2+ from
reaching Ca2+ binding sites on and within VGCCs [47,
52, 80, 81]. Furthermore, the low 45Ca2+ influx that
occurs in the presence of Al has a depressant effect
on PKC activity and PKC-regulated physiological pro-
cesses [82].

Al blocks Ca2+ influx into cultured neurons in a
manner that involves both transient and sustained com-
ponents for all main types of VGCCs. This blockage
is strongly pH-dependent and is irreversible [81, 83].
Direct application of Al3+ to the external or internal
face of the plasma membrane of these cells inhibits
Ca2+ influx through VGCCs in a concentration-

dependent manner with an IC50 at 2.3 �g/ml or 83 �M
Al [81, 83].

45Ca2+ influx fails to occur through VGCCs of
synaptosomes prepared from the hippocampus and
cortex of monkeys and rats chronically exposed to oral
Al, even when placed in a high potassium solution that
depolarizes their membrane [48, 52, 80]. An investiga-
tion of Al influence on high voltage-dependent calcium
current (IHVA), using a patch-clamp technique with
hippocampal CA1 neurons isolated from weanling rats,
revealed that Al produces biphasic effects on the IHVA,
with Al concentrations lower than 250 �M decreasing
the IHVA [31]. Al levels in aged human hippocampal
and cortical neurons are generally in the 10–250 �M
range [84], making this Ca2+ current susceptible to Al
inhibition.

Amyloid-� forms calcium channels in bilayer mem-
branes of PC-12 cells [85] and of liposomes [86]. Ca2+
influx through amyloid-� channels that form in lipo-
somes is irreversibly blocked by 10 to 20 �M Al [86].

CA2+/PHOSPHOINOSITIDE SIGNALING
PATHWAYS

The events that occur in a typical phosphoinosi-
tide signaling pathway are shown diagrammatically in
Fig. 2A. After an agonist (for example, acetylcholine)
stimulates its receptor, the receptor normally couples

Fig. 2. A phosphoinositide signaling pathway, in health, Alzheimer’s disease, and Al neurotoxicity. A) In healthy neural cells, a tripartite G
protein (1) is coupled to an inactive plasma membrane receptor (R) as a (spherical) agonist approaches. The agonist attaches to the end of
the receptor facing the extracellular matrix and initiates a cascade of intracellular events. The G� subunit of the G protein becomes activated
by GDP/GTP exchange (2), and dissociates from the receptor, and from its � and � constituents. The G� subunit activates PI-PLC (3) which
hydrolyzes PIP2 (4), giving rise to the second messengers IP3 (7) and DAG (5). The IP3 diffuses to IP3R in the ER membrane, stimulating Ca2+
release (8) for signaling from ER stores. DAG activates PKC (6), which translocates to the plasma membrane. B) The phosphoinositide signaling
pathway is damaged at virtually the same loci in Al-exposed neurons as in AD. Experimental evidence indicates that G protein activation, which
normally occurs by GTP-GDP exchange (I), is blocked by Al3+ substitution for Mg2+ in GDP and GTP. Consequently, the G� subunit fails
to activate PI-PLC (II) which in turn impairs its ability to hydrolyze PIP2 (III) and the formation of DAG (IV) and IP3 (VI). DAG thus fails
to activate PKC (V) and insufficient IP3 is available to stimulate its receptor to release Ca2+ from the ER (VII) into the cytoplasm for Ca2+
signaling.
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to and activates G protein. The activated G protein in
turn activates PI-PLC which requires Ca2+ to cleave
PIP2. Cleavage of PIP2 results in the formation of dia-
cylglycerol (DAG) and IP3. IP3 diffuses to its receptors
in the endoplasmic reticulum (ER), thereby stimulating
them to release Ca2+, and DAG activates PKC. A more
simple pathway consists of direct Ca2+ stimulation of
PI-PLC, bypassing G protein activation. Noradrenalin
apparently utilizes both agonist- and Ca2+-stimulated
pathways for phosphoinositide hydrolysis [87].

Ca2+/phosphoinositide signaling pathways are
perturbed with aging and are more disrupted
in AD-affected neural cells

At least eight of ten studies have shown signif-
icant age-related decrements in agonist-stimulated
phosphoinositide signaling pathways in older neural
cells [88–97]. Phosphoinositide signaling pathways
are even more disrupted in neural cells affected by
AD [98–101]. Al interference is apparent at several
locations within these pathways, as described below.

G protein activation is severely inhibited in
AD-affected neural cells

AD brain cytopathology exhibits general dys-
function in G proteins, and in their activation by
guanosine dinucleotide (GDP)/guanosine trinucleotide
(GTP) exchange [review, 102]. G protein activation
has crucial importance in phosphoinositide pathways
because guanine nucleotide binding is regarded as the
rate-limiting step for G protein-mediated signal ampli-
fication from receptor to effector [24].

Al inhibits G protein activation in neural cells
Al3+ substitution for Mg2+ in GDP and GTP pre-

vents the exchange of GTP for the GDP bound to the G
protein and thereby causes a profound impairment of G
protein activation [23, 33] (Fig. 2B). Several examples
illustrate ways that Al inhibits G protein function in
dose-dependent manner [103–107]. A detailed inves-
tigation of the effects of Al3+ on bovine retinal Gv
protein (transducin), as a general model for G protein
activity, used nitrilotriacetic acid to precisely control
the free Al3+ level. This showed that 4 pM Al3+ is suf-
ficient to substitute for Mg2+, an essential co-factor for
G protein activation, and to inhibit receptor-mediated
G protein activation [24].

Tubulin is a G protein [108]. G� subunits of specific
G proteins associated with tubulin are activated by GTP
transfer from tubulin’s exchangeable GTP-binding site
to the G� subunit. Al3+ initially stimulates in vitro

assembly of tubulin sub-units into microtubules. This
was determined by assessing the association con-
stants for Al3+, Mg2+, and the GTP/tubulin ternary
complex required for polymerization. Al3+ competes
with Mg2+, the physiological mediator of micro-
tubule assembly [15], and has an association constant
for the GTP/tubulin ternary complex that is 107

times stronger than that of Mg2+. Tubulin subunits
acutely exposed to Al in minute amounts show that
Al levels as low as 4 × 10−10 M compete effectively
with mM amounts of Mg2+ for tubulin polymerization.
The Al-catalyzed microtubules appear ultrastructurally
identical to normal microtubules but are functionally
defective. Al-catalyzed microtubules are incapable of
responding to Ca2+-regulated depolymerisation and
their rate of GTP hydrolysis is markedly lower than
normal [15]. Aged rats that consumed dietary Al at
human-relevant levels throughout their middle age and
old age, accumulate varying amounts of stainable Al
in their neurons. When neurons with high stage Al
accumulation were immunostained with an antibody
against acetylated tubulin, those neurons failed to show
microtubules whereas microtubules were clearly vis-
ible in adjacent cells that exhibit smaller amounts of
stainable Al [109].

Phosphoinositide hydrolysis by
phosphoinositide-specific phospholipase C
(PI-PLC)

Phosphoinositide hydrolysis by PI-PLC is
impaired in AD-affected neural cells

Activated G protein is normally able to amplify
the signal from the receptor that causes the effec-
tor protein PI-PLC to hydrolyze PIP2 and form DAG
and IP3. PI-PLC also cleaves phosphotidylinositol to
form other phosphoinositides, leading to their accu-
mulation in the membrane. Basal PI-PLC hydrolysis
appears to be the same for brains from AD cases and
controls [98, 102] but studies of carbachol/GTP� [S]-
stimulated, serotonin/GTP� [S]-stimulated, and GTP�
[S]-stimulated phosphoinositide hydrolysis by PI-PLC
in membranes prepared from AD and control post-
mortem prefrontal cortex, and from several other brain
regions, show 40%–50% deficits in PI-PLC activity of
AD brain tissue compared to aged controls [110].

Al inhibits phosphoinositide hydrolysis by PI-PLC
in neural cells

Acute inhibitory effects of Al on phosphoinositide
accumulation and PIP2 hydrolysis by PI-PLC have
been confirmed in a variety of experimental systems:
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in synaptosomes [111], cortical homogenates [111],
hippocampal and cortical slices [103, 111–113], neu-
roblastoma cells [33, 56, 114], and liposomes [115,
116]. Aluminum lactate and aluminum chloride have
similar efficacy for inhibiting phosphoinositide accu-
mulation in rat cortical slices [107]. The inhibitory
effect of Al3+ on PIP2 hydrolysis by phospholipase
C is conserved and consistent, occurring even in plant
cells [117].

Al depresses phosphoinositide hydrolysis by PI-
PLC in both agonist- and non-agonist-stimulated
phosphoinositide pathways [33, 56, 104, 107,
111–114]. For example, 10–500 �M Al inhibits PIP2
hydrolysis by PI-PLC in cortical homogenates in a
dose-dependent manner with an IC50 of 100 �M [107].

McDonald and Mamrack [29] analyzed PI-PLC
activity in a defined system using purified PI-PLC
and showed that Al3+ inhibits the hydrolysis of 5 �M
PIP2 by PI-PLC in a dose-dependent manner with
a 50% inhibitory concentration (IC50) of approx-
imately 0.2 �M AlCl3, with AlCl3 concentrations
ranging from 1 nM to 10 mM (Fig. 3). McDonald
and Mamrack observed that Al affects the hydrol-
ysis of phosphatidylinositols in a biphasic manner.
Al concentrations below 8 �M are without effect.
From 8–10 �M Al produces an increase, enhancing the
continued hydrolytic breakdown of phosphoinositides
by PI-PLC and leading to their accumulation in the

Fig. 3. Phosphoinositide and PIP2 hydrolysis in the presence of
aluminum chloride. Increasing concentrations of AlCl3 produce a
biphasic effect on phosphoinositide (PI) hydrolysis (open circles). PI
hydrolysis is stimulated at 10 �M Al and inhibited at concentrations
above 25 �M. In contrast, PIP2 hydrolysis (closed circles) is inhib-
ited at 0.01 �M Al or higher. Redrawn from [28] with permission
from Elsevier.

reaction mixture. Al concentrations above 10 �M
decrease the hydrolytic activity of PI-PLC on phos-
phoinositides [29].

Al decreases phosphatidylinositol accumulation in
neonatal rats as well as adult rats [113]. Phosphatidyli-
nositol accumulation in rat cortical and hippocampal
slices is significantly inhibited by 10–100 �M Al in
the presence of agonists for muscarinic, adrenergic
or metabotropic receptors [111, 112]. In the absence
of agonists, ten times more Al is required to inhibit
phosphatidylinositol accumulation in brain slices and
in synaptosomes.

Some evidence suggests that Al directly inhibits
PI-PLC activity [57, 104, 111, 113, 114]. Other evi-
dence suggests Al indirectly inhibits PI-PLC activity
by altering PIP2 availability [29, 106, 107]. Al inhi-
bition of PI-PLC activity is probably non-competitive
with Ca2+ as the Ca2+ concentration curve is unal-
tered [107, 112] whereas interaction between Al and
PIP2 is competitive [107]. A third possible mechanism
involves the disruptive influence that Al has on calmod-
ulin (CaM) which is a modulator of PI-PLC activity
[118].

Inhibition of phosphoinositide signaling pathways
reduce PKC activation

Decrements in phosphoinositide signaling
pathways of aged and AD neural cells results in
less protein kinase C activation by diacylglycerol

PKC is normally activated by DAG, generated from
PIP2 hydrolysis, which shifts soluble PKC to a par-
ticulate or membrane-bound form [119]. PKC activity
is more erratic in the neocortex and hippocampus of
aged rats, decreasing in older cortex by 45% of the
value found in young controls while increasing in the
aged hippocampus [120–122]. PKC activity in AD
membrane samples prepared from frontal and tempo-
ral cortical regions is abnormally low compared to that
of age-matched controls [119, 123].

Al inhibits PKC activity in neural cells in a
concentration-dependent manner

Al inhibition of PIP2 hydrolysis reduces the amount
of DAG that forms from this reaction. PKC activity
is abnormally low in the cortex of rats chronically
exposed to Al despite an increase in PKC translo-
cation from the soluble fraction to the particulate
fraction [124]. Al-treated rats have 31% of their PKC
distributed in the soluble fraction and 67% in the par-
ticulate fraction compared to non-Al-exposed controls
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that have 43% of their cortical PKC distributed in the
soluble fraction and 57% in the particulate fraction
[124].

In addition to Al effects on brain PKC activity via
phosphoinositide signaling pathways, Al has a direct
inhibitory effect on PKC [125, 126]. Exposure of a
rat brain extract of fully-activated PKC to nanomolar
amounts of Al reduces PKC activity by 90% [125].
Sequence studies of PKC have revealed at least three
sites in its catalytic domain that are potentially suscep-
tible to modification by Al [126]. These include the
Mg2+-ATP binding site, the DAG binding site and the
Ca2+ binding site (a carboxyl group). An examination
of Al interaction with soluble PKC has shown that Al
severely inhibits PKC activity by successfully com-
peting with Mg2+ for ATP and also by blocking Ca2+
binding to the carboxyl group on PKC [125].

PKC activity declines in brains of rats given 10 mg
Al/kg bw/day by intraperitoneal (i.p.) injection for 4
weeks, to 52% of the control value in the cerebral
cortex, 54% in the hippocampus, and 61% in the stria-
tum [51]. In vitro, 10-100 �M Al inhibits PKC activity,
both in cytosolic and in membrane fractions of cortical
homogenates [51, 112], in a concentration-dependent
manner between 0 and 100 �M Al with an IC50 esti-
mated at 60 �M [110]. PKC transfer of 32P from ATP
to histone increasingly diminishes as the Al concen-
tration is raised from 10 �M to 100 �M [51]. PKC
activity declines linearly over this range from 20 to
8 pM 32 p.min−1.mg−1 protein.

These alterations in neural cell PKC activity
relate to other important aspects of AD pathol-
ogy: acetylcholine deficiency and amyloid formation.
Acetylcholine deficiency may, in part, result from the
inhibitory effects of Al on PKC activity [126], because

PKC phosphorylation is required for the functional
regulation of choline acetyltransferase (ChAT) [127].
Al also has inhibitory effects on choline uptake and
acetylcholine release [128, 129] and lowers the con-
tent of acetyl-coenzyme A available for acetylcholine
synthesis in cholinergic cells [129]. These observations
could help to explain the large (up to 70%) reduction
in ChAT activity, abnormally low amounts of acetyl-
choline released, and impaired coupling of muscarinic
acetylcholine receptors to G proteins that occur in AD
[130].

PKC phosphorylation of amyloid-� protein precur-
sor (A�PP) or �-secretase contributes to the formation
of sA�PP� in healthy brain tissue [131–135]. Chronic
Al exposure, as an inhibitor of PKC activity [124],
stabilizes amyloid-� oligomers [136] and increases
�-amyloidogenesis in vitro [136, 137] and increases
amyloid plaque formation in experimental animal
models [138, 139]. Hence, the mechanism that
switches A�PP metabolism from sA�PP� to amyloid-
� could involve Al inhibition of PKC activity (Fig. 4).

Ca2+ release from the endoplasmic reticulum

Ca2+ release from the ER is reduced in aged
and AD-affected neural cells

Ca2+ released through IP3 and ryanodine receptors,
primarily in response to IP3 generated from phospho-
inositide signaling pathways, gives rise to Ca2+ signals
that take the form of local and global changes in Ca2+
concentration, including Ca2+ spikes and oscillations.
Old rats (aged 28 months) have almost 50% fewer IP3
receptors in their cerebral cortex than young rats (aged
3 months) whereas ryanodine receptor numbers in both
age groups appear to be similar [140]. Severe decreases

Fig. 4. PKC phosphorylation and A�PP metabolism. Schematic diagram depicting A�PP processing in young neural cells (A), aged neural cells
(B), Alzheimer’s disease-affected neural cells (C), and neural cells chronically exposed to Al (D). From left to right, inhibition of PKC activity
increases, diverting A�PP cleavage from its neuroprotective form (sA�PP�) to an aberrant (amyloid-�) form that fibrillizes and accumulates in
the extracellular matrix as amyloid plaque. Al exposure produces amyloidogenic effects in brain tissue that expresses the human sequence for
amyloid-�.
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by 50–70% have been demonstrated in the number
of IP3 receptors in AD hippocampal pyramidal cells
and/or IP3 receptor binding sites [141–143].

Al inhibits Ca2+ release from the ER in neural
cells

Al inhibition of PIP2 hydrolysis in turn reduces the
amount of IP3 generated from this reaction (Fig. 2B).
Chronic exposure of developing rats to 0.3% Al in
drinking water for 2-3 months inhibits IP3 accumula-
tion in their hippocampus by 15% [144]. Al interferes
with Ca2+ signaling by restricting both IP3-evoked and
caffeine-evoked Ca2+ release from ER stores [145].
In vitro observations show that 100 �M Al depresses
the frequency of spontaneous and synchronous intra-
cellular Ca2+ oscillations in networks of cortical
neurons by 25% of the control value at day 15 and by
58% at day 22 of primary culture [146, 147]. Al expo-
sure also disrupts oscillatory Ca2+ signaling mediated
by phosphoinositide signaling pathways in non-neural
tissues [e.g., 148].

CaM and CaM-mediated signal transduction

CaM and CaM-mediated signal transduction are
altered in aged, and even more so in AD-affected,
neural cells

CaM is a major Ca2+ signal transducer that responds
to transient changes in cytoplasmic Ca2+ levels by
binding to Ca2+/CaM-dependent protein kinase II
(CaMKII) and other CaM-binding protein targets.
CaMKII decodes Ca2+ spike and oscillation frequen-
cies, transforming them into discrete quanta of kinase
activity [149].

Measurements for CaM content in the cerebral
cortex, striatum, and cerebellum of young (3 month-
old), late middle-aged (22 month-old) and old (29-30
month-old) rats show age-related decline in CaM con-
tent, most of which occurs between youth and middle
age [150–152]. CaM protein content is significantly
decreased in AD brains compared to age-matched con-
trols [153].

Aging has parallel effects on CaM activity, reduc-
ing its ability to activate target proteins such as plasma
membrane Ca2+-ATPase (plasma membrane Ca2+-
ATPase pump; PMCA) in older humans [154] and
adenylyl cyclase [155] in those with AD. Aging is
associated with increased oxidation levels and the CaM
sequence contains easily-oxidizable methionine which
could increase CaM sensitivity to oxidative stress
[156].

Conformational monoclonal antibodies raised
against Ca2+/CaM and CaM (i.e., CAM1 and CAM4,
respectively) show that CAM1 immunoreactivity is
absent from the AD cortex whereas CAM4 immunore-
activity is less intense in AD cortex compared to
cortex from controls [157]. The changes in CaM levels
and CaM conformations in AD brain tissue severely
impact on the activity of CaM-binding proteins.

O’Day and Myre [158] observe that AD is associated
with many proteins with CaM-binding domains that are
yet to be recognized as CaM-binding proteins. CaM-
binding domains are found in the NMDA receptor
protein calcium ion channel, L-type VGCC Ca2+ chan-
nels, ryanodine receptor channels, adenylyl cyclase II,
PI-PLC, neuronal nitric oxide synthase, phosphodi-
esterase, A�PP, presenilins 1 and 2, BACE-2, synapsin,
tau, and protein phosphatase 2B (calcineurin). These
proteins are involved in major events pertaining to
Ca2+-mediated neuronal function.

Al alters CaM and CaM-mediated signal
transduction in neural cells

Ca2+, Mg2+, and Al3+ bind to CaM, causing
different conformational changes in CaM as an impor-
tant mediator of Ca2+ signaling [19, 21, 159]. One
article [160] has disputed the original report [161]
that Al binds to spin-labeled CaM. However, Al-
CaM interactions have since been confirmed by many
techniques including the use of steady-state and time-
dependent fluorescence spectroscopy, circular dicroic
spectroscopy, equilibrium dialysis, electron paramag-
netic resonance, heteronuclear 2-dimensional NMR,
surface plasma resonance, calorimetry, monoclonal
antibody (non)recognition and by chelation studies
using citric acid or desferrioxamine B which can both
chelate Al and reverse the effects of Al on CaM con-
formational change that occurs with Al exposure [157,
159, 162–169]. These studies and others have helped
to define conditions under which Al binds to CaM, and
how Al interferes with signal transduction.

1H-15N heteronuclear single quantum correlation
spectroscopic studies have shown that Al binding
occurs in three regions of CaM, in both domains and
in the middle of CaM’s central helix [159]. Al inter-
action with CaM causes subtle, small-scale, change
in CaM conformation. When CaM binds to a target its
central helix bends to hold the target between the glob-
ular domains of CaM. Al binding to the central helix
alters its structural flexibility, reducing CaM’s affinity
for its targets [159]. The monoclonal antibody CAM-1
fails to recognize CaM that has bound Al [157]. The
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monoclonal antibody CAM-4, which normally recog-
nizes CaM with or without bound Ca2+, recognizes
epitopes on the terminal lobes. In the presence of Al,
CAM-4 recognises CaM complexes bound to some
target proteins (e.g., calcineurin), partially recognizes
CaM-binding to other target proteins (e.g., phospho-
diesterase), and shows little recognition, if any, of
CaM-binding to yet other proteins (e.g., mastoparan)
[162].

The binding affinity of Al for CaM has been esti-
mated to be about one order of magnitude greater for
the first mol bound than that of Ca2+ for its equiva-
lent site on CaM [163]. Al3+ and Ca2+ bind to CaM
at different locations [164]. The solvation structure of
Al/CaM also appears to be changed, making Al/CaM
unfavorable for the otherwise proper fit between CaM
and its target proteins. These alterations to CaM are
partially preventable by citrate chelation of Al [165].
Concentrations of CaM measured in an all-purpose
cell strain engineered for high-level protein expres-
sion, ranged from 3 to 20 �M. In vitro exposure of
these cells to 100 �M Al reduced their CaM activity to
approximately 40% of its control value [159].

CaM- and cAMP-mediated synaptic events play
important roles in memory and learning [170]. Ani-
mals with chronic Al exposure show marked decrease
in both CaM and CaMKII activity levels in their brains
[166]. CaM efficacy for activating CaMKII and phos-
phodiesterase in brains of Al-treated rats and rabbits
declined progressively to approximately 1/2 and 1/3
of their control values, respectively [51, 54]. Exoge-
nous CaM-stimulated CaMKII activity in Al-exposed
animals fell by 45% in the cerebral cortex, 42% in
the hippocampus, and 23% in the striatum [166].
CaM’s ability to stimulate cAMP-dependent phospho-
diesterase decreased maximally in the hippocampus
(to 37%), then the cortex (32%), followed by the stria-
tum (23%) [166]. Other types of experiments have also
shown Al inhibition of cAMP [171, 172]. Given that Al
is a pro-oxidant, at least part of Al’s inhibitory effects
on CaM could be due to oxidative damage which has
been shown to alter the activation and regulation of
CaMKII, thus disrupting Ca2+ signal decoding [173].

RESTORATION OF CA2+ TO ITS RESTING
LEVEL

Mechanisms that restore the resting Ca2+ level
are impaired in aged and AD-affected neural cells

Calbindin, calretinin, and parvalbumin normally
bind and sequester excess cytoplasmic Ca2+ [174].

These Ca2+-buffering proteins contribute to restora-
tion of the resting Ca2+ level in neurons after action
potentials. Much of the excess Ca2+ is removed from
neuronal cytoplasm by Ca2+-ATPases that either pump
Ca2+ into the ER stores (sarco/endoplasmic reticu-
lum Ca2+-ATPase, SERCA) or extrude Ca2+ into the
extracellular matrix (PMCA) [175]. PMCA activity is
supplemented by Na+-Ca2+ exchange when the intra-
cellular Ca2+ concentration is highly elevated [175].
Mitochondria also take up cytoplasmic Ca2+ but this
is conditional upon their proximity to certain regions
of the ER.

The time required to completely restore cytoplas-
mic Ca2+ to its resting level after neural activity is
up to ten times longer (p < 0.0001) in neurons from
old animals than from young animals [176]. Several
age-related changes impede Ca2+ removal from the
neuronal cytoplasm. For one, the content and/or activ-
ity of Ca2+-buffering proteins, particularly calbindin,
calretinin, and parvalbumin, progressively decline with
age without loss of the relevant cells [177–182].
Also, there are age-related reductions in Ca2+-ATPase
activity. For example, PMCA activity levels are signif-
icantly lower in central nervous system synaptosomal
membranes prepared from brains of old animals than
from their young counterparts [183–187]. Another
consideration is that PMCA activity is sensitive to
oxidative stress which is known to accompany aging
[183].

In AD, there are significant decreases in cal-
bindin mRNA and protein in the nucleus basalis,
hippocampus, and nucleus raphe dorsalis [177].
Calbindin-D28K protein content has been shown to
decline from 312 �g.g−1 protein in corticolimbic tis-
sue of age-matched controls to 228 �g.g−1 protein in
AD corticolimbic tissue [153].

PMCA activity is also significantly altered in AD.
Isolated membrane from the temporal cortex of healthy
controls shows that free Ca2+ normally stimulates total
Ca2+-ATPase activity in the pCa (free Ca2+ concen-
tration) range between 7.5 and 5.5 and inhibits total
Ca2+-ATPase activity in the pCa range between 5.5
and 3.0. Maximal activity occurs at pCa 5.5 (3.16 mM
free Ca2+) [188]. This Ca2+ dependence hinges on
Ca2+ binding to four transport sites on the Ca2+-
ATPase protein [189]. Ca2+-ATPase of membranes
from the temporal cortex of AD subjects lacks this bell-
shaped Ca2+ dependent activity, exhibiting instead
much broader, flat-topped activity reaching maximum
activity at pCA 6.5 (0.316 mM free Ca2+) that contin-
ues up to pCa 3.75, indicating significant impairment
for Ca2+ transport.
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SERCA and secretory protein Ca2+-ATPase
(SPCA) exhibit normal Ca2+-dependence and activity
in the AD membrane samples. However, PMCA
activity resembles that seen with total Ca2+-ATPase
activity, indicating that (1) change in PMCA activity
in AD brain tissue accounts for most impairment
observed in the total Ca2+-ATPase activity; and (2)
PMCA has lost its dependence on Ca2+ [188].

Al alters mechanisms that restore the resting Ca2+
level in neural cells

Al accumulation in neurons coincides with age-
related changes that slow Ca2+ removal from
the cytoplasm. Al reduces the expression of the
Ca2+-buffering protein calbindin-D28K and its mRNA
[190, 191]. This effect has mainly been studied in
the intestine where Al reduces Ca2+ absorption by
inhibiting calbindin-D28K synthesis [192]. Acute Al
exposure inhibits 45Ca2+ uptake and sequestration
into mitochondria in a concentration-dependent man-
ner [193] whereas Ca2+ release from mitochondrial
suspensions occurs at an abnormally rapid rate in the
presence of 50 �M Al [194]. Acute Al exposure also
stimulates SERCA activity while inhibiting 45Ca2+
transport into microsomes [195, 196]. Al strongly
inhibits Ca2+ transport by microsomal enzyme pumps
in a dose-dependent manner (at 0–100 �M Al lactate)
with 25 �M Al producing 50% inhibition of SERCA
activity [194].

Chronic oral Al exposure significantly decreases
total Ca2+-ATPase activity in primate brain [51],
disrupting Ca2+ transport from the cytoplasm. In mon-
keys, a 30% decline in this activity has been shown in
the cerebral cortex (p < 0.001), followed by 23% in
the hippocampus (p < 0.001), and 16% in the striatum
(p < 0.001). Chronic Al gavage decreases PMCA activ-
ity in the rat cerebral cortex by 22% (p < 0.05) and in
the hippocampus by 27% (p < 0.001) [48].

Ca2+-ATPase measured in synaptosomes exposed
to Al at concentrations ranging from 0 to 100 �M
showed a dose-dependent reduction in their PMCA
activity with the IC50 at 10 �M Al. Moreover, the
synaptosomes showed decrease in their 45Ca2+ uptake
when exposed to both polarizing and de-polarizing
media [51, 80]. Exogenously added desferrioxamine (a
chelator that removes Al and Fe3+) almost completely
restored PMCA activity [51].

These studies demonstrate that low Al doses effec-
tively disrupt PMCA activity, prevent Ca2+ removal,
and contribute to the 2-fold increase in resting Ca2+
levels observed in cortical and hippocampal tissue of

Al-treated rats relative to controls. Al effects on PMCA
activity appear to be similar to those resulting after
RNA-induced silencing of the PMCA2 isoform in neu-
rons [197]. Under the latter condition, SERCA, SPCA,
and Ca2+-buffering proteins were unable to adequately
compensate for the loss of PMCA activity, leading to
disruption in Ca2+ homeostasis and signaling.

There are several mechanisms by which Al3+ could
inhibit Ca2+ transport. First, Al disrupts the phospho-
lipid bilayer, impairing membrane receptors and their
Ca2+ channels [198], and significantly inhibiting the
fast phase of voltage-dependent 45Ca2+ uptake [51,
80]. Second, Al3+ may act as a competitive inhibitor of
Ca2+ for the Ca2+-binding sites on Ca2+-ATPase [51].
Al3+ directly displaces Ca2+ from its phospholipid
binding sites on membranes [198] and may also dis-
place Ca2+ at the four binding sites on PMCA normally
destined for Ca2+ transport [189]. Third, �M concen-
trations of Al compete with Ca2+ for phosphate needed
for Ca2+-ATPase activity [14, 198]. Fourth, Al3+ can
substitute for Mg2+ in the Mg2+-ATP cofactor, form-
ing Al-ATP, a dead-end inhibitor for Ca2+-ATPases
[14, 23]. Finally, as PMCA is a CaM-regulated protein
[175], Al-induced change in the conformation of CaM
could prevent CaM from binding in a physiological
manner with PMCA and other CaM-binding proteins
important to Ca2+ homeostasis and signaling [51, 162].

One other family of AD-related proteins has been
implicated in Ca2+ homeostasis and that is the prese-
nilins.

PRESENILINS

An inducible variant presenilin isoform is
diagnostic for sporadic AD

Aberrant forms of presenilin have been reported to
alter Ca2+ homeostasis. The nature of this relationship
has yet to be determined but, according to Green et al.
[199], it appears to involve the SERCA pump activ-
ity of Ca2+ from the ER. Others have reported that
presenilins function as passive ER Ca2+ leak channels
[200].

The vast majority of humans have sporadic AD.
Interestingly, a truncated, alternatively spliced variant
of the PS2 gene (PS2V), missing the exon 5 sequence,
has been found to occur in brains of humans with spo-
radic AD. PS2V is found in 70% (21/30) of brains from
sporadic AD cases and only 17.6% (3/17) from elderly
non-demented controls. Consequently, PS2V can serve
as a diagnostic feature of sporadic AD [201].
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The aberrantly-spliced isoform of the PS2 gene
results in a PS2V-encoded protein that, like wild-
type PS2 protein, localizes in membranes of the ER
and Golgi complex of pyramidal neurons, particularly
those within the CA1 field of the hippocampus and
temporal cortex of sporadic AD cases [201].

This abnormal PS2 variant alters the correct folding
and maturation of A�PP. PS2V protein down-regulates
the signaling pathway of the unfolded protein response
(UPR) and increases the sensitivity of cells to ER
stress. Neural cells that express wild-type PS2 show
N- and O-glycosylated forms of A�PP within a 20 min
chase period whereas N- and O- glycosylated A�PP
forms were absent from cells expressing PS2V. PS2V
causes significant increases in both amyloid-�1-40 and
amyloid-�1-42. CA1 pyramidal neurons that are highly
immunoreactive for PS2V exhibit shrinkage and den-
dritic dieback. Other CA1 cells appear apoptotic. These
findings indicate that aberrant splicing of the PS2
gene is implicated in sporadic AD neuropathology
[202].

Neuroblastoma cell lines normally lack this PS2
variant but its expression can be induced by hypoxia,
accompanied by a 60% increase in lipid peroxidation.
Pre-treatment with cycloheximide and antioxidants
block PS2V formation, indicating that reactive oxy-
gen species (ROS) intermediaries may be important
for generating this alternative splice variant of the PS2
gene [201].

Al induces alternate splicing of presenilin 2,
giving rise to the PSV variant isoform diagnostic
for sporadic AD

Several ROS-producing metals were tested to learn
whether they might be involved in PS2V formation.
Neuroblastoma cells were exposed to FeCl2, FeCl3,
ZnCl2, CuCl2, CuSO4, AlCl3, and Al-maltol. Al (both
AlCl3 and Al-maltol) was the only one of these metals
that consistently produced the PS2V isoform and it
did so at low concentrations (25 �M), either with or
without hypoxia [203].

Al-induced oxidative stress in the ER has also been
studied and found to involve apoptotic features similar
to those described for AD [204, 205]. The shrinkage
of hippocampal CA1 neurons and dieback described
in neural cells highly immunoreactive for PS2V indi-
cate microtubule depletion as this same trio of features
occurs in chronic Al neurotoxicity, affecting Al-rich
neurons both with and without neurofibrillary tangles
[109, 206, 207].

IMPACTS OF AL ON CA2+ HOMEOSTASIS
AND SIGNAL TRANSDUCTION IN
NEURAL CELLS

A study to test the hypothesis

The author hypothesizes that intraneuronal Al inter-
feres with Ca2+ metabolism in the aged human brain.
A test of this hypothesis on humans would need to
involve intentional long-term exposure to a neuro-
toxicant. Clearly, this approach would be impractical
and unethical. Instead, an appropriate animal model is
needed. Aging in the outbred Wistar rat is an excellent
model for human aging and much gerontological work
has focused on this research subject. If such animals
are raised and maintained into old age on the dietary
Al protocols previously described [10, 208], some of
them develop cognitive deterioration with AD-related
neuropathology [78, 109]. These animals consume a
diet with a total dietary Al level in their food and water
in amounts equivalent to those routinely consumed by
humans from their food and water.

One needs to start with twice as many animals
needed for statistical significance in order to allow for
sudden deaths. We started our experiments [10, 208]
on this basis and were pleased to learn that rat mortal-
ity before 28 months was lower than anticipated. The
Al treatment commences at physical maturity (at least
age 6 months) to insure normal brain development prior
to the onset of study. At least two Al dose levels are
needed, one equivalent to the high end of the human
dietary Al range and one at the low end of this range to
provide a source of controls. Al accumulates in their
neurons as the rats age.

The rats should be trained in a behavioral task
that assesses memory performance in order to objec-
tively distinguish which of them remain cognitively
intact and which show cognitive deterioration in old
age. Cognitive deterioration generally becomes evi-
dent around age 28 months when using the dietary Al
protocols as described [10, 208]. Reference [208], in
its electronic form, includes video sequences of a high
Al dose rat performing a T-maze task before and after
developing cognitive deterioration.

The author expects that commencement of the addi-
tional Al treatment at age 6 months, instead of age 12
months as previously used, might either cause cogni-
tive deterioration to result earlier and/or in a greater
proportion of the animals which should be allowed
to live their lives to term; i.e., not subjected to pre-
mature sacrifice. Experimental animals that reach the
old age equivalent of elderly humans are particularly
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valuable as their neural plasticity and capacity for com-
pensatory repair differs substantially from younger
animals [209]. A wealth of studies can be carried out
on their brain tissues.

There are at least four major Ca2+ regulatory pro-
teins that are fundamental to the main changes that
occur in Ca2+ homeostasis and signaling in the brain
during aging and with AD. These are G proteins,
PKC, CaM, and PMCA. They are all Mg2+-dependent
proteins that are inhibited by Al in dose-dependent
manner. All of these Ca2+ regulatory proteins can
be analyzed in each rat brain. It would be useful to
make measurements on some rat brains at 6 months to
obtain baseline values in young fully-grown rats and
at 6 month intervals up to 28–30 months to obtain an
overview of Al-induced change in these enzyme values
over time.

Biochemical analyses of the protein activities, and
determination of their contents in the hippocampus,
entorhinal, and/or temporal cortex, with biochemical
and immunochemical techniques, might show that one
protein exhibits change earlier than the others. It would
be very interesting to observe if Ca2+ regulatory pro-
tein activities were to fall dramatically in brains of rats
that develop cognitive deterioration after consuming Al
at the high dose, especially if this effect were absent in
brains of the low Al dose group that age normally.

Julka et al. [51] have already shown that Al
inhibition of PKC activity is preventable with desfer-
rioxamine (DFO) but the results would be even more
meaningful in an animal model that mimics human
dietary behavior and human aging. This may reveal
that an animal cohort treated with both Al and DFO
(for example), could be rescued from cognitive deteri-
oration. Studies such as those suggested can probe the
basis for dementia of the Alzheimer type and treatment
of the condition. Recognition of the role of Al in dis-
rupting Ca2+ homeostasis and signaling should also
lead to other techniques for timely Al removal from
the human brain.

CONCLUSIONS

Humans living in industrialized societies are abun-
dantly exposed to Al from a variety of sources.
Observational studies of brain tissue from older
individuals, with and without AD, and from experi-
mental animal models of aging, have shown that Al
progressively appears in neurons, particularly in AD-
vulnerable brain regions. Al can be readily visualized
in aged human hippocampal and cortical neurons of

appropriately-stained sections [13, 157] and Al3+ has
been shown to cause neurotoxic damage at picomolar
concentrations [15, 24].

Many of the reviewed studies have shown that
intraneuronal Al gives rise to metabolic changes com-
parable to those associated with aging as it now occurs.
These changes include: 1) elevation of the resting Ca2+
and peak Ca2+ levels in neuronal cytoplasm; 2) less
Ca2+ influx; 3) a modest inhibition of PIP2 hydroly-
sis by PI-PLC in phosphoinositide signaling pathways,
resulting in less IP3 formation, less PKC activation; and
4) and a slower rate of Ca2+ removal from the cyto-
plasm. A distinguishing difference between aging and
AD relates to the severity of impairment in the activi-
ties of major proteins that regulate Ca2+ metabolism:
G protein, PKC, CaM, and PMCA.

A strength of the data described in the present paper
is that the findings pertaining to various aspects of Al
perturbation to Ca2+ homeostasis, signaling pathways,
and signal transduction are consistent, form a cohesive
body of information, and the results are demonstrable
with various soluble Al species, and various animal
species, in experimental systems having different lev-
els of complexity: from an in vitro defined system using
purified chemicals to in vivo brain tissue from aged
humans with sporadic AD.

Al inhibits the relevant proteins in a dose-dependent
manner, so it is possible that age changes in Ca2+
metabolism result from neurotoxic effects of progres-
sive intraneuronal Al accumulation that appear as
subtle cellular changes, comparable to those associated
with aging as it now occurs. Critical changes in Ca2+
homeostasis and Ca2+ signaling could occur from the
continued accumulation of Al in neurons as they age,
leading to the more extensive and disabling disruptions
that affect Ca2+ metabolism in AD.
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