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Abstract. Reliable and rapid non-invasive testing has become essential for COVID-19 diagnosis and tracking statistics. Recent
studies motivate the use of modern machine learning (ML) and deep learning (DL) tools that utilize features of coughing sounds
for COVID-19 diagnosis. In this paper, we describe system designs that we developed for COVID-19 cough detection with the
long-term objective of embedding them in a testing device. More specifically, we use log-mel spectrogram features extracted from
the coughing audio signal and design a series of customized deep learning algorithms to develop fast and automated diagnosis
tools for COVID-19 detection. We first explore the use of a deep neural network with fully connected layers. Additionally, we
investigate prospects of efficient implementation by examining the impact on the detection performance by pruning the fully
connected neural network based on the Lottery Ticket Hypothesis (LTH) optimization process. In general, pruned neural networks
have been shown to provide similar performance gains to that of unpruned networks with reduced computational complexity in
a variety of signal processing applications. Finally, we investigate the use of convolutional neural network architectures and in
particular the VGG-13 architecture which we tune specifically for this application. Our results show that a unique ensembling of
the VGG-13 architecture trained using a combination of binary cross entropy and focal losses with data augmentation significantly
outperforms the fully connected networks and other recently proposed baselines on the DiCOVA 2021 COVID-19 cough audio
dataset. Our customized VGG-13 model achieves an average validation AUROC of 82.23% and a test AUROC of 78.3% at a
sensitivity of 80.49%.
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1. Introduction

With the outbreak of the COVID-19 pandemic caused
by the coronavirus SARS-CoV-2, the severity of the
infection and the associated fatality rates around the
world are increasing at an alarming rate [1]. Although
reverse transcriptase-polymerase chain reaction (RT-
PCR) testing is generally adopted, coughing sounds
have been found to reveal useful signatures pertaining
to COVID-19 which can be used to facilitate rapid,
noninvasive, and reliable screening methodologies [2].
Consequently, spectral and waveform signatures from
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coughing patterns associated with the disease are being
considered as biomarkers for prognosis. In this context,
there are several initiatives towards enabling open re-
search on COVID-19 detection from coughing sounds.
For example, the authors of [3] curated the Coswara
dataset consisting of cough samples collected from sub-
jects who either tested positive or negative for COVID-
19. Similarly, the COUGHVID dataset described in [4]
is comprised of crowd-sourced cough samples collected
from COVID-19 positive and negative patients across
a wide range of demographic backgrounds. These ef-
forts naturally pave way to the development of diagno-
sis tools powered by machine learning (ML) and deep
learning (DL) for detecting COVID-19 from cough
sounds. Although ML has been extensively applied
for a variety of speech and audio processing applica-
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Fig. 1. A block diagram depicting an overview of the system used for COVID-19 detection using cough samples. The system uses a unique
combination of cross entropy and focal loss functions which yield improved performance with COVID-19 audio.

tions [5–12], there have been new studies [13–25] that
specifically address audio analysis for COVID-19. Ap-
plications of these studies range from implementation of
COVID-19 audio detection software for individual use
to widespread pandemic monitoring across communi-
ties and cities. The authors of [18] gathered audio sam-
ples of coughing and breathing through the “COVID-19
Sounds” app and demonstrated the feasibility of using
ML based tools for COVID-19 diagnosis. In [23], it
was shown that biomarkers originally developed for
Alzheimer’s disease characterization could be repur-
posed for designing COVID-19 detectors. Similarly, the
authors of [24] identified a novel set of biomarkers from
coughs of COVID-19 patients and utilized deep neural
networks to design predictive models. The majority of
these studies utilize deep neural networks (DNNs) for
classification in lieu of conventional ML algorithms ow-
ing to the need for accurately characterizing the com-
plex decision boundaries between spectral signatures of
COVID-19 positive and negative subjects.

Given the complex nature of coughing audio spectral
signatures, there is a need to systematically develop
architectural designs [29] that can effectively leverage
the audio features for accurate detection (Fig. 1). To
this end, in this paper, we describe DL system designs
that we developed to classify cough samples from the
DiCOVA 2021 dataset [3] into two categories, namely:
healthy (COVID-19 negative) and unhealthy (COVID-
19 positive). We begin by investigating the use of a
DNN with fully connected layers for cough detection.
With an intent to import such DNN models for COVID-
19 cough detection on mobile and edge-devices, we
prune the neural network based on the Lottery Ticket
Hypothesis (LTH) [28] optimization process. Pruned
neural networks have been explored for various appli-
cations in energy, signal, and image processing [26–28]
and have shown to provide similar performance gains
with unpruned networks yet yield computationally effi-
cient implementations. Finally, we investigate the im-
pact of convolutional neural network (CNNs) archi-
tectures, in particular VGG-13 [30] for detection. In-
terestingly, based on extensive empirical analyses, we

find that a unique ensembling of the VGG-13 archi-
tecture trained using a combination of binary cross en-
tropy and focal losses [39] with minority class over-
sampling (COVID-19 positive) and data augmentation
(addition of samples from an auxiliary dataset) signif-
icantly outperforms the fully connected networks and
other recently proposed baselines on the DiCOVA 2021
COVID-19 cough audio dataset. Our proposed convo-
lutional model achieves an average validation AUROC
of 82.23% and a test AUROC of 78.3% at a sensitiv-
ity of 80.49% evidencing the efficacy of the proposed
approach for COVID-19 cough detection.

The rest of the paper is organized as follows: We
first describe the related work in this area of research
in Section 3 followed by pre-processing and feature
extraction strategies adopted in our work in Section 4.
We then describe in detail the design methodologies
adopted beginning from a general fully connected DNN
(Section 5), pruned networks based on LTH (Section
6) followed by the proposed, customized VGG-13 ar-
chitecture for cough detection (Section 7). We also de-
scribe our approaches to handle imbalanced data by
a) using up-sampling, b) modifying the loss function
and c) employing ensemble strategies. We discuss our
findings and inferences in Section 8, and we close with
concluding remarks in Section 9.

2. Related work

Diagnosis of COVID-19 by cough sound analysis
is plausible due to the fact that the coughing patterns
are reflective of the physical alterations to the lungs
and diaphragm [32,33] which are predominantly tar-
geted by the virus. As a result, there have been sev-
eral efforts [2–4,18,22,34–36] for detecting signatures
of COVID-19 from cough samples using ML tools.
Brown et al. [18] used ML based algorithms to distin-
guish between healthy and COVID-19 cough sounds
using crowdsourced data. The authors gathered data
using their own “COVID-19 Sounds” web and Android
app where 141 COVID-19 samples and 350 healthy
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samples were selected for training. Classical audio
features including root mean square energy (RMSE),
mel-frequency cepstral coefficients (MFCCs) and spec-
tral centroids were used for training logistic regres-
sion/support vector machines (SVMs) classifier models.
The authors report an average AUROC metric of 80%
for the different tasks reported in their study. Subse-
quent to this effort, the Coswara project [3] compiled
a crowdsourced dataset containing a variety of sounds
including sustained phonations, counting, coughs and
breathing patterns. Also, multiple types of coughs and
breathing sounds were collected from the users. The
Coswara project was one of the first publicly available
COVID-19 audio datasets and remains unique in its
wide variety of sounds collected. Utilizing classical
features such as MFCCs [37,38], spectral centroid and
mean square energy to train a random forest classifier
for the sound classification task, the authors report a
test accuracy of 66%. More recently, Imran et al. [2] de-
veloped tools that utilize CNNs trained with mel spec-
trograms for cough detection followed by model en-
sembling to determine whether or not the sample be-
longed to a COVID-19 patient. In this study, the authors
gathered cough samples from patients diagnosed with
COVID-19, bronchitis, and pertussis. 48 COVID-19,
102 bronchitis, 131 pertussis, and 76 healthy samples
were used in order to train their algorithm. The algo-
rithm consisted of three separate classifiers, namely,
a deep learning-based multi class classifier, classical
ML based multi class classifier, and deep learning-
based binary class classifier. The authors report ac-
curacies of 93.56%, 94.06%, and 88.89% for these
classifiers, respectively. They also developed an app,
“AI4COVID-19”, in order to allow users to interface
with their AI-based COVID-19 detection algorithm. A
recent study [27] by MIT’s Open Voice Team has fur-
ther validated the practicality of detecting COVID-19
using cough samples powered by deep neural networks
and have reported significantly higher sensitivity and
specificity metrics. Their model was trained and veri-
fied using 2,600 COVID-19 positive audio samples and
2,600 COVID-19 negative audio samples. The authors
extract MFCC features which are then passed through
a CNN architecture built upon the designs in [39,40].
At a sensitivity of 98.5% and a specificity of 94.2%,
the authors achieved and AUROC metric of 97%. Simi-
larly, the authors from the Virufy consortium [41] have
employed an ensemble of three neural networks trained
on mel-spectrograms of cough audio to perform the
detection. The algorithm is reported to predict COVID-
19 infection with an AUROC of 77.1% which further

motivates the use of deep neural network models for
carefully discriminating between the types of cough
sounds. In our previous work [22], we use an ensemble
of four deep models namely CNNs, Recurrent Neural
Networks (RNNs), Gated CNNs (GCNNs), Gated Con-
volutional Recurrent (GCRNNs) for COVID-19 cough
detection on the DiCOVA 2021 dataset. However, the
average validation accuracy obtained using the stacked
approach was only 65%. In this paper however, we find
that in addition to model ensembling or fusion strate-
gies, the careful choice of loss functions and meaningful
data augmentations was critical in improving the overall
generalization performance (improved accuracies and
AUROC scores on the validation folds and the blind
test dataset) of the VGG-13 convolutional architecture
under limited data scenarios.

3. Pre-processing and feature extraction

3.1. Description of the DiCOVA dataset

The DiCOVA Challenge [46] was designed to find
scientific and engineering insights on COVID-19 by
analyzing acoustic cues gathered from COVID-19 pos-
itive and non-COVID-19 individuals. The goal is to
use cough sound recordings from COVID-19 and non-
COVID-19 individuals for the task of COVID-19 de-
tection. The train dataset contains a total of ∼ 1.36 hrs
of cough audio recordings from 75 COVID-19+ve sub-
jects and 965 non-COVID-19 subjects. Out of these
samples, there were a total of five splits for training and
validation. The challenge also required the participants
to evaluate the models on a blind test dataset.

3.2. Silence removal and downsampling

We first perform silence removal on the given cough
audio files. If the duration of silence was greater than
500 ms, we split the audio wave file at that correspond-
ing instance. Similarly, if the amplitude of the wave files
was less than −48 dB, we remove the corresponding
part of the wave file. After silence removal, we perform
down sampling of the audio files to 32 kHz.

3.3. Feature extraction

We transform the pre-processed wave files into the
spectral logmel scale. Log-mel features are a popular
choice for classification using neural networks as they
benefit from the additional information such as rich
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Fig. 2. A sample audio file split into 1 s segments with silence removed. The corresponding spectrograms are passed to the neural network.

Table 1
Parameters used to obtain the log-mel spectrogram

Parameter Configuration
Sample rate 32000 Hz
Window size 512
Hop size 256
Mel bands 64

temporal and spectral structure of the original signal.
These wave files are chunked into excerpts of dura-
tion ∼ 1 s. If the excerpt is less than 1 s, the log-mel
spectrogram is zero padded. We choose a window size
of 512 and hop size of 256 to correspond to the 1 s
spectrogram. Therefore, each spectrogram has a size of
128 × 64. Table 1 shows the parameters used to obtain
the log-mel spectrogram. Figure 2 shows an audio file
being split into multiple 1 s chunks, and the extraction
of its corresponding spectrogram. The spectrograms of
size 128 × 64 are passed as input to the neural network
classifier.

3.4. Experimentation with additional features

Prior to choosing the log-mel spectrogram, we in-
vestigated the use of classical features [42] such as the
frame level MFCCs with the delta and delta-delta co-
efficients, RMS energy, Spectral Centroid (SC), Spec-
tral Roll-off (SR), Spectral-Bandwidth (SB) and the
Zero-Crossing Rate (ZCR) in classifying the cough
sounds as either belonging to a COVID-19 positive or
a healthy patient. In particular, we concatenated these
statistical features and utilized an XGBoost [58] model
to perform the classification. However, we found that
despite using sophisticated model selection strategies,
namely 5-fold cross validation and hyperparameter tun-
ing, the generalization even to the validation data was
not sufficient. We found that the model predicted almost
all of the COVID-19 positive samples as belonging to

the healthy class. We also observed that the other clas-
sification metrics (AUROC, Specificity) was found to
be 55% and 40% respectively which naturally moti-
vated the choice for a more powerful feature extractor.
We observed similar performances with the use of a
feed-forward neural network when trained with these
features. Studies in [31] show that the log-mel spectro-
grams outperform traditional representations such as
MFCCs for deep neural network architectures. In the
following section we describe the use of a fully con-
nected neural network for COVID-19 cough detection
where the NN is trained using the log-mel spectrograms.

4. Detectors based on fully connected neural
networks

In this paper, we consider the COVID-19 cough de-
tection as a supervised learning task. For the fully con-
nected neural network, consider a dataset {X, y} where
X ∈ Rm×n where m is the total number of samples
and n is the input feature dimension; y ∈ {0, 1} is
the target label of whether the sample belongs to the
COVID-19 negative (0) or the positive (1) class. In or-
der to feed the cough audio spectrograms into a fully
connected network, we vectorize (flatten) and stack the
spectrograms to obtain a dataset X ∈ R6385×8192. Us-
ing the input spectrogram as features, we feed them as
inputs to a fully connected neural network, popularly
referred to as the multi-layer perceptron (MLP). We
use a 5 layered neural network of hidden layer dimen-
sions 50, 100, 500, 1000 respectively. Information flows
through the neural networks in two ways: (i) In forward
propagation the MLP model predicts the output for the
given data and (ii) In backpropagation the model adjusts
its parameters considering the error in the prediction.
The activation function used in each neuron allows the
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Fig. 3. A figure depicting a pruned neural network using the Lottery Ticket Hypothesis.

MLP to learn a complex function mapping. Input to the
model is the feature vector x ∈ X , the output of the
first and consecutive hidden layer is given by

h1 = σ(W1 · x+ b1) (1)

hi = σ(Wi · hi−1 + bi) (2)

where i is the layer index and σ is the activation func-
tion. The final output of the MLP is obtained as:

ŷ = φsoftmax(hout) (3)

Weights of each neuron are trained/updated using a
scaled gradient backpropagation algorithm. Each layer
is assigned a tanh (hyperbolic tangent) activation func-
tion. From our experiments, we find that the tanh acti-
vation function provided the best accuracy. The output
layer uses the SoftMax activation function to categorize
the type of cough in the given dataset. We utilize the
given train and validation splits of the DiCOVA dataset
to train and evaluate the model. Using a fully connected
neural network, we observed an average accuracy of ∼
65% on the given validation splits. Consequently, we
explored pruning the neural network to develop sparse
or compressed neural networks to understand whether
similar performance gains can be expected. The use of
sparse neural networks can be potentially used in devel-
opment of COVID-19 detection software on hardware
and cloud applications. We discuss the method in the
next section.

5. Pruned neural networks using lottery ticket
hypothesis

Pruned NNs on embedded hardware significantly
provides computational efficiencies and reduce mem-
ory requirements with only with slight reduction in ac-
curacy in comparison with the unpruned networks. A
popular strategy to prune NN is based upon the Lottery
Ticket Hypothesis [28]. It is based upon the idea that

a randomly initialized, dense network contains a sub-
network initialized such that when trained in isolation
it can match the test accuracy of the original network
after training for at most the same number of iterations.
Consider a fully connected NN with N neurons in each
layer initialized by weight matrices W 0 = [W 0

i ]
L
i=1.

After training this network for t epochs, the resulting
weights of the network are W t. Next, compute a mask
M by pruning p% of the of weights closer to zero by
taking the absolute value. Reinitialize the network with
W 0 masked by M . The network training and network
pruning process is iterated until 2.5x compression is
achieved, after which the networks performance de-
grades due to underfitting of the data.

– Randomly initialize a neural network f(x;m
⊙
θ)

where θ = θ0 and m = 1|θ| is a mask.
– Train the network for j iterations, reaching param-

eters m
⊙
θj .

– Prune s% of the parameters, creating an updated
m′ where Pm′ = (Pm − s)%.

– Reset the weights of the remaining portion of the
network to their values in θ0. That is, let θ = θ0.

– Let m = m′ and repeat steps 2 to 4 until a suffi-
ciently pruned network has been obtained.

For the network pruning experiments, we consider
NNs with four hidden layers each with N = {50, 100,
500, 1000} neurons (Fig. 3). All NNs were trained for
150 epochs and at every pruning iteration 10% of the
remaining weights were pruned. We find that pruning a
network for this setup degrades the performance of the
classification task as shown in Fig. 4. While utilizing
fully connected neural networks, the inputs are essen-
tially vectors of the spectrogram samples. The architec-
ture of these NNs is such that they do not consider local
spatio-temporal and periodic patterns highly prevalent
in audio spectrogram data. Therefore, in order to exploit
these patterns, we explore the use of deep convolutional
neural network architectures which by design can iden-
tify markers in audio critical to distinguish between
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Fig. 4. Results depicting pruned neural networks for covid audio clas-
sification. The pruning across the dataset degrades the performance
of the classification task.

healthy (COVID-19-ve) and unhealthy (COVID-19+ve)
cough sounds.

6. Customizing the VGG-13 architecture

We utilize a VGG-13 [30] architecture to train and
evaluate performance over the different training and val-
idation splits in the DiCOVA 21 challenge dataset. The
VGG architecture has been successfully used for image
recognition and audio classification audio classification
applications [59,60]. VGG-13 consists of multiple con-
volutional blocks followed by a fully connected net-
work to make the final predictions. Each convolutional
block consists of two convolutional layers followed
by a max pooling layer that halves each of the spatial
dimensions. Every convolution layer is followed by a
ReLU activation function and batch normalization [43]
which is a form of regularization to tackle internal co-
variate shifts. After the convolutional blocks, the result-
ing feature maps are averaged pooled and fed as inputs
to a feed forward neural network. Finally, a SoftMax
layer is used to generate the predictions. The size of the
spectrogram that is used as input to the VGG network
is 128 × 64. Spectrograms were generated from each
excerpt after suitable pre-processing. An overview of
the overall system is shown in Fig. 5.

Due to the imbalance in the DiCOVA dataset across
the healthy and COVID-19 positive classes, through
extensive empirical studies, we find model ensembling
and data augmentation strategies to improve model gen-
eralization. The term ensembling here implies the use

of the best two models for each loss function. We then
obtain the output by averaging the probability scores
from each model. In this work, we ensemble two mod-
els for our predictions. To train the first model, we use
the DiCOVA dataset and augment with the COVID-19
positive samples from the COUGHVID dataset [4] and
up-sample the training data to maintain data balance.
We use a cross entropy loss to train this model. To train
the second model, we perform data augmentation simi-
lar to that of the first model except up-sampling and use
focal loss [44]. These methods are described in more
detail below.

6.1. Data augmentation

Since the DiCOVA 2021 dataset has only 50 COVID-
19 positive samples per validation fold, we augment
it with the COUGHVID dataset to train the network.
We use 400 COVID-19 positive samples from the
COUGHVID dataset for network training. To avoid
overfitting during training, we utilize an additional data
augmentation strategy. We use the audio mix-up [45]
method to achieve the same. Mix-up randomly mixes a
pair of inputs and their corresponding outputs. Consider
a pair of inputs x1 and x2 with y1 and y2 being their
corresponding labels. Mix-up uses a parameter λ ∈ (0,
1) to create a convex combination as shown below:

x = λx1 + (1− λ)x2 (4)

y = λy1 + (1− λ)y2 (5)

Mixup operates on the fly by randomly mixing a pair
of inputs and their associated target values. The output
of Eqs (4) and (5) were used to train the network rather
than the original inputs. The parameter λ was chosen
to be a random variable from the uniform distribution
U ∼ (0, 1).

6.2. Loss functions

We train two models based on two different loss
function choices. One model is trained using the cross-
entropy loss while the second model is trained using the
focal loss. We ensemble these two models to generate
the probabilities on the validation and test datasets.

6.2.1. Cross entropy loss
To address data imbalance, we augment the

COUGHVID dataset and up sample the training data for
each training fold. We balance the number of samples
in both classes in the training data through up sampling.
The up-sampled training data is used to train the VGG-
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Fig. 5. The overview of the model used for COVID-19 detection using VGG-13. Each VGG-13 model is trained with combined cross entropy loss
and focal loss. The final results are obtained after integrating the two models.

13 model using the cross-entropy loss. The binary cross
entropy loss is given as:

CE = −y log(p)− (1− y) log(1− p) (6)

where y ∈ {0, 1} corresponds to the label of the two
classes and p is the probability of the outputs.

6.2.2. Focal loss
Focal loss is used to address the class imbalance

problem [39]. Two modulation hyper-parameters α and
γ are added to the cross-entropy loss in Eq. (6) to make
it efficient to the imbalanced class problem. We then
include 400 all the COVID-19 positive samples from
COUGHVID in each training fold containing 50 Di-
COVA COVID-19 positive samples. We then use the
focal loss with modulation parameters α = 025 and
γ = 2 to train the network.

FL = {−α log(p)(1− p)γy = 1
(7)

− (1− α) log(1− p)pγotherwise}
The parameters alpha and beta were finalized through

extensive experimentation using grid search. Grid-
search was used to determine the optimal hyperparam-
eters of a model which results in the most ‘accurate’
predictions. Focal loss applies a modulating term to the
cross-entropy loss in order to focus learning on hard
negative examples. It is a dynamically scaled cross en-
tropy loss, where the scaling factor decays to zero as
confidence in the correct class increases. Intuitively, this
scaling factor can automatically down-weight the con-
tribution of easy examples during training and rapidly
focus the model on hard examples. We introduced the
focal loss in training to address the issue of data imbal-
ance in the given dataset.

6.2.3. Ensembling
We use the two models trained with the loss functions

above. We use the predictions from the individual mod-
els on the five validation folds and on the test dataset.
We finally obtain the prediction probabilities for all val-
idation/test samples by averaging the predictions from
the two models. We describe the results in detail below
in Section 8.

7. Results

7.1. Benchmarking different design strategies

For the fully connected neural networks, we obtain an
average validation accuracy of 65% on the 5 folds pro-
vided. In case of the pruned neural networks for cough
detection, we observe a similar classification accuracy
of 64.3%. We find that smaller networks achieve greater
compression of about 60% for a drop in accuracy by
7%. We then explored more sophisticated convolutional
neural network architectures such as the VGG-13. We
first discuss the results obtained from VGG-13 models
before and after ensembling. For the first model, which
was trained using the DiCOVA dataset augmented with
COUGHVID data for each of the five folds with cross-
entropy loss, we obtain an average AUROC of 84.02%
on the five folds. The test AUROC was found to be
73.48%. For the second model, which followed a simi-
lar augmentation strategy as the first model except up
sampling and focal loss, we find an average validation
AUROC of 72.01% on the five folds. The test AUROC
was found to be 73.44%. We summarize these results in
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Table 2
AUROC for each individual fold of the validation dataset with com-
bined cross entropy loss and focal loss with highest specificity for
each fold

Validation fold
AUROC under

cross entropy (%)
AUROC under
focal loss (%)

1 80.71 70.27
2 89.88 68.76
3 87.12 77.78
4 73.59 70.52
5 94.92 72.93

Table 3
A table comparing the validation AUROCs of the methods used for
COVID-19 audio detection in the DiCOVA 2021 challenge

Method AUROC
Light gradient boosting [47] 67.28
SVM and LSTM [48] 94.31
Random forest and SVM [49] 73.29
Logistic regression and random forest [50] 73.41
Autoregressive predictive coding [51] 76.45
Autoencoder [52] 47.28
SVM [53] 71.7
Resnet18 [54] 61.9
VGG-13 (our method) 82.23

Fig. 6. Average validation AUROC curve on the five folds. We ob-
served that our proposed approach yielded an AUROC score of
82.28%.

Table 2. Since the individual models reported low AU-
ROC scores on the test dataset, we predict the probabil-
ity scores on the best of the two models. i.e., to obtain
an improved AUROC score, we select and ensemble the
two best models for each loss function and from each
fold and predict on the corresponding validation fold to
obtain the ensembled AUROC. Following such an en-
sembling strategy, we notice that the average validation
AUROC increases to 82.23% (as observed from Fig. 6)
on the validation folds while the AUROC on the blind
test dataset was found to be 78.3%.

Figure 7 depicts the confusion matrix obtained at a

Fig. 7. The average validation confusion matrix consolidated from
the five folds at sensitivity of 80%. The specificity on the validation
data was found to be 77.88%.

sensitivity of 80% which implies that 80% of the pos-
itive class is correctly detected. We obtain the valida-
tion scores from each fold and report the overall perfor-
mance. We can observe that at such a high sensitivity,
the number of false negatives is significantly less than
the total number of true negatives which is indicative of
the detection performance.

7.2. Comparison with methods from the Interspeech
DiCOVA 2021 challenge

We also entered our modified VGG-13 classifier
into the “Diagnosing COVID-19 Using Acoustics” (Di-
COVA) 2021 challenge [46], a special session of Inter-
speech 2021. Participants were tasked with a COVID-
19 audio classification task involving a blind test set
of 233 audio samples. Our team placed eleventh out of
85 teams in the Track-1 challenge. Here, we describe
methodologies and results for a number of the partic-
ipants. All AUROC values given are for performance
on the 5-fold cross validation. Team PANACEA [47]
developed a method using Teager energy operator cep-
stral coefficients (TECCs) and a light gradient boost-
ing machine (LightGBM) to achieve an AUROC of
69.80%. In [48], a method is developed using support
vector machines (SVMs) and long short-term memory
(LSTM) networks in order to achieve and AUROC of
94.31%. In [49], Random Forests, and SVMs are used
in conjunction with the ComParE 2016 feature set. An
AUROC of 73.29% was attained using this method. The
study described in [50] demonstrated the use of logistic
regression, random forests, and multilayer perceptrons
to obtain an AUC value of 73.41%. In [51], autore-



S. Rao et al. / COVID-19 detection using cough sound analysis and deep learning algorithms 663

gressive predictive coding (APC) is used in addition
to an LSTM to achieve an AUC value of 76.45%. The
algorithm described in [52] only achieved an AUC of
47.28% but uses a unique encoder-decoder methodol-
ogy for COVID-19 cough classification. In [53], the au-
thors describe the use of a weighted SVM and the use of
audio features such as super-vectors, formants, harmon-
ics and MFCCs to attain an AUROC of 71.7%. In [54],
the authors use a Resnet18 model for classification
and evaluate performance of their algorithm between
samples from male and female participants. This algo-
rithm achieved an AUC of 61.90%. The study described
in [55] reported an AUROC of about 73.4% using hand-
crafted features and an SVM classifier. In [56], the
authors use an SVM classifier with high-dimensional
acoustic features, as well as a CNN with log-Mel spec-
trograms. These models are fused in order to achieve an
AUROC of 81%. Our approach can perform COVID-
19 detection with an average AUROC of 82.23%. We
identify COVID-19 samples with an accuracy of 80%
and a false positive rate of 17%.

8. Conclusions

In this paper, we described system designs that was
adopted for the DiCOVA 2021 dataset. We first ex-
plored the use of fully connected and pruned neural
networks for COVID-19 cough detection. For the fully
connected neural networks, we obtain an average val-
idation accuracy of 65% on the 5 folds provided. In
order to reduce complexity, we also explore the use of
pruned neural networks. Using simulations, we demon-
strate that the test accuracy of a network pruned by
50% (a significant reduction of weights) reduces only
by 5%. The pruned network is represented by half the
number of parameters compared to the fully connected
neural network. We then explored the use of convolu-
tional architectures namely the VGG-13 for detection.
In particular, we utilized a modified VGG-13 neural
network with combined cross entropy and focal loss,
operating on the log-mel spectrogram to learn to dis-
criminate between the spectral signatures of coughs
from a finite set of COVID-19 positive and healthy
patients. We improved the overall generalization per-
formance by: (i) performing data-augmentation using
the COVID-19 positive cough sounds from the crowd
sourced COUGHVID dataset; and (ii) using ensembles
of two VGG-13 models, wherein the former was trained
using the cross-entropy loss and the latter was trained
using the focal loss. With these key modifications to the

predictive modeling pipeline, our approach achieved
high validation AUROCs (82.23%) and blind test AU-
ROCs (78.3%), thereby encouraging the potential use of
such models to support rapid diagnosis in clinical set-
tings. With additional tuning of features and integrated
loss functions, we anticipate further improvements on
our results.
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