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Abstract. Data-intensive science presents new opportunities as well as challenges to research libraries. The cyberinfrastructural
challenge, although chiefly technological, also involves social-economic and human factors, therefore requires a deep under-
standing of what roles research libraries should play in the research lifecycle. This paper discusses the rationale and motivations
behind a research project to investigate effective library big data cyberinfrastructure strategies.
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1. Introduction

As a key component of the nation’s knowledge infrastructure, libraries must continuously reinvent
themselves with the emergence and the establishment of new discovery paradigms. The recent wave
of data-intensive science has motivated many high-profile library big data projects, notably the ambi-
tious plan to archive all tweets at the Library of Congress [13], the heterogeneous and geographically-
replicated archival storage known as the Digital Preservation Network (DPN) [15], the data mining
facility at the HathiTrust Research Center (HTRC) [12], and the metadata hubs developed at the Digital
Public Library of America (DPLA) [4] and the SHARE initiative [14]. Many more are being developed
or being planned.

The common theme of these library projects is to handle high volumes of data. Since the volume
usually exceeds the currently deployed capacity of the typical library cyberinfrastructure (CI), we must
have more storage, processing capacity, and network bandwidth, to name a few requirements. It would
be prohibitively expensive to build local, proprietary capacities at each library. Fortunately a wide range
of shared CI options exist, including, but not limited to: 1) Institutional high-performance computing
(HPC), high-throughput computing (HTC) and storage facilities, e.g., Indiana University’s Big Red II,
Virginia Tech’s BlueRidge, etc.; 2) National HPC, HTC, and storage facilities, most notably XSEDE
resources [16]; 3) National research clouds such as Chameleon Cloud, CloudLab, Open Science Data
Cloud, etc.; 4) Commercial clouds, such as Amazon Web Services (AWS), Rackspace, etc.

These shared resources, especially the commercial clouds, have drastically lowered the barrier to entry
for the big data game. This has become especially evident in the Information Technology (IT) industry,
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where even a small start-up can handle high volumes of data today. Indeed, most library big data projects
we surveyed are built on such shared CI resources and do not require significant initial investment. It
is therefore a fallacy to assume that only libraries with deep pockets are qualified to provide big data
services.

However, operating library big data services on shared CI resources is far from turnkey. Although some
general guidelines exist [3,7,9] it is not always clear what we can learn from the IT sector’s success in
developing big data services. Are big data services to be operated at a research library the same as or
different from those provided by common commercial services? What are the key technical challenges?
What are the key performance characteristics? What are the monetary and non-monetary (time, skill set,
administrative, etc.) costs? Are there any cost patterns or correlations among the CI options? What are
the knowledge and skill requirements for librarians? To answer these questions, we must seek better
understanding of why and how research libraries develop big data services.

2. Big data, small science, and libraries

Big data used to be closely associated with big science, which in turn is characterized by big organi-
zations and big budgets [2,5,6]. This is no longer true. The fast advance and ubiquitous availability of
sensing technologies, the Web, and the Cloud have erased the data volume boundary separating big and
small science. For example, the 1000 Genomes project [1] produced 200 TB of data from 2008 to 2012.
The Sloan Digital Sky Survey [18] produced about 130 TB of raw and derivative data over eight years in
phases I and II. In contrast, the sensors installed in Virginia Tech’s Goodwin Hall alone can collect 200
TB per year at moderate sampling rate, and a handful of Amazon EC2 instances can gather as much web
data in weeks. Neither the big organization nor the big budget is a must-have to conduct data-intensive
research. The Goodwin Hall project was started by two faculty members and a small lab. Crawling and
analyzing web data is so affordable today that even a student can initiate his or her own web analytics
project.

The leveling of the big data playing field makes it possible for many more small science projects
to take advantage of big data. Organization-wise, these projects usually emerge from the ground up,
with user communities naturally forming, growing, and self-organizing around the data connected with
their own needs, use cases, and perspectives. However, these project teams usually lack experience and
expertise to effectively extract values from the large data sets, therefore opening up the opportunities for
the research libraries to build and offer new value-added services.

3. Use and reuse driven big data management

Even if cost is not a major concern, a traditional digital library can hardly deliver services suitable for
data-intensive research, especially for small science projects. For example, a download link is no longer
sufficient to provide effective access to terabytes of research data, because randomly-moving data to
a remote site may take too long, and therefore clog the reuse workflow. When the data volume grows
larger, it also becomes more difficult to justify a dark archive or traditional preservation approaches, e.g.,
making multiple copies and storing them among geographically-distributed locations. The ingestion and
dissemination processing may involve much time and processing overhead, challenging the conventional
wisdom that data may need to be stored in a different format, layout, or logical unit from when they are
in use. In contrast to the more immediate user needs to effectively access data, these traditional digital
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library functions become relatively trivial. Moreover, libraries are increasingly expected to deliver not
just the raw data but also knowledge extracted from them, e.g., running user-specified algorithms against
preserved data, pushing customized information from a metadata hub, or analyzing web archives.

It is therefore imperative to manage data with the use and reuse-driven approach [17]. Using the DCC
Curation Lifecycle Model terms [8] developed by the Digital Curation Centre (DCC) in the UK, the
library big data service should focus more on facilitating data use and reuse instead of spreading the
library resources evenly among storage, preservation, resource description, and various transformations,
each for its own purpose. Facilitating data use and reuse should become the driving force behind other
activities. For example, under this approach, the storage layout should be optimized towards more effi-
cient reuse, with multi-copy preservation considered a side effect of the replication deployed to increase
access bandwidth.

4. Library big data service patterns

There will be many different library big data services, and each may be operated on any of the shared
cyberinfrastructure options listed in Section 1. However, without appropriate categorization, it would
be non-trivial trying to mix and match them to achieve optimal performance. We therefore conduct an
environmental scan to extract service patterns.

Conceptually, we can draw three distinct, although not mutually-exclusive, service patterns, schemat-
ically shown in Fig. 1: 1) The Bridge Pattern clearly separates the data storage and data processing in
different facilities, and answers sporadic, on-demand, and sometimes user-specified computing needs
by moving data from storage to processing nodes through the network link between them. The Digital
Preservation Network (DPN) nodes [2], despite being primarily concerned with data storage, may be
considered special cases of the Bridge Pattern. This is because the data ingestion, validation, periodic
fixity checking, and refreshing are indeed on-demand data processing performed at compute nodes away
from where the data is stored. 2) The Network Pattern, as exemplified by warcbase [11] – an open-source
platform for managing web archives built on Hadoop and HBase – features a much tighter integration
between data storage and processing. Typically involving a Hadoop cluster, this pattern uses a large
number of interconnected nodes, each serving both as a storage and processing unit. These nodes repli-
cate, balance, and co-optimize both storage and computing across the interconnections. The Network
Pattern excels at MapReduce types of computation and can sustain high processing loads. However, the

Fig. 1. Three patterns for library big data services.
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initial data loading stage is known to be a bottleneck [10]. As a result, data tend to be “sticky” to the
CI. Once loaded, the data usually stay put. 3) The Hub Pattern includes the Digital Public Library of
America (DPLA) [4] and SHARE Notify [14], both specialized as metadata hubs. This service pattern
continuously draws live data from potentially many sources, undertakes necessary processing, and then
disseminates processed information to potentially large numbers of data consumers. It has higher quality
of service (QoS) requirements, since downtime may lead to permanent data loss. In addition to the per-
formance requirements on the computing and storage nodes, it also requires stable network connections
to the external systems upon which it depends.

5. Summary

With an emphasis on big data sharing and reuse, we are conducting a research project aiming to
develop an evidence-based, broadly-adaptable Cyberinfrastructure (CI) strategy to operate digital library
services. The strategy will equip research libraries with knowledge and techniques to leverage shared CI
resources and balance their desires, needs, and constraints with a clear understanding of the tradeoffs.
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