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Abstract. Big data sets in conjunction with self-learning algorithms are becoming increasingly important in public administration.
A growing body of literature demonstrates that the use of such technologies poses fundamental questions about the way in
which predictions are generated, and the extent to which such predictions may be used in policy making. Complementing other
recent works, the goal of this article is to open the machine’s black box to understand and critically examine how self-learning
algorithms gain agency by transforming raw data into policy recommendations that are then used by policy makers. I identify
five major concerns and discuss the implications for policy making.
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Key points for practitioners:
– Highlights fundamental weaknesses in self-learning algorithms that defeat traceability and political and administrative

accountability.
– States reasons why the usefulness of self-learning algorithms in public administration is much more limited than is often

claimed.
– Combines different strands of literature from various disciplines to provide a more comprehensive picture of how self-

learning algorithms combine with public administration.

1. Introduction

The arrival of digital technologies in general, and that of self-learning algorithms in particular, has
given rise to much scholarly debate about its implications for the public domain, e.g. with regard to
policy analysis, policy making and governance (e.g. Danaher et al., 2017; Gil-Garcia et al., 2018;
González-Bailón, 2013; Hilbert, 2016; Janssen et al., 2015; Just & Latzer, 2017; Katsonis & Botros,
2015; Kosorukov, 2017; Landsbergen & Wolken, 2001; Todorut & Tselentis, 2018; Yeung, 2018, and
others). Digitization, as an overarching term for various techniques and methods, is often seen as a
useful tool that could improve policy analysis and decision making. An oft-repeated argument is that
digitization can unlock insights from big data sets at speeds unattainable for human operators. As such, it
could simultaneously offer unprecedented access to information to guide governmental action, and make
sense of a daunting abundance of data about the state of society. It could be used to model and simulate
decisions to explore possible outcomes of certain policies (Janssen et al., 2015), or to predict certain
societal dynamics (e.g. crime in public transportation, see Kouziokas, 2017) so that authorities can deploy
their resources more efficiently. No wonder then, that great things are expected from such techniques.
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However, there is a growing body of literature that demonstrates that there are severe and persistent
issues with the use of big data and self-learning algorithms in public administration. As will be elaborated
later in this paper: such algorithms are partial and subject to self-confirmation, which may have real and
sometimes dire consequences (e.g. Bellovin, 2019). For example, software used in Florida to assess the
likelihood of sentenced criminals to become repeat offenders only predicted 20% of such occurrences
correctly, and it was particularly likely to falsely predict black defendants as future criminals (at a twice
higher rate than white defendants), while severely underestimating the likelihood of white defendants to
become repeat offenders (Angwin et al., 2016). Naturally, a self-learning machine may be corrected using
additional search and classification rules to counter bias (e.g. Caliskan et al., 2017) but the development
and successful implementation of such a technique is strongly dependent on many factors. Besides, bias
is only one of the major challenges in getting self-learning algorithms to work in public administration.
There are also many practical, operational, legal and ethical questions (e.g. Mittelstadt et al., 2016)
surrounding those techniques when used in policy analysis and policy making.

There appears quite some optimism, and also some hype, about the promises of digitization and the use
of self-learning algorithms in public administration (e.g. Agarwal, 2018; Corvalán, 2018; Keast et al.,
2019; Maciejewski, 2017). The many serious concerns that are starting to surface in literature provide
ample reasons for a more critical approach (see e.g. Wirtz et al., 2019, 2020). For example, one could
reconsider the ways in which administrations are organized, and the ways in which administrators use
digital technology (e.g. Giest, 2017; Lindgren et al., 2019; Veale & Brass, 2019), as well as consider new
practices for transparent data management and review (e.g. Janssen et al., 2020; König & Wenzelburger,
2020). The logic behind such considerations is that the machine is becoming increasingly enmeshed
in the practices of policy analysis and policy making. Consequently, it has a real, tangible effect on
the formulation and execution of policies (e.g. Kolkman, 2020; Valle-Cruz et al., 2020). Indeed, any
enmeshed technology has transformative capacities (Dolata, 2013), which implies that such a technology
may gain agency in that enmeshment with policy making. This point is not novel in itself but is often
discussed at a conceptual level. How it works within the machine itself is less articulated.

While there is a growing body of literature on what digitization could mean for policy making – as
summarized above – and a vast literature on the technicalities of self-learning algorithms (e.g. Conway
& White, 2012; Flach, 2012; Mitchell, 2013), there is scant literature that bridges the two realms (see
e.g. Sun & Medaglia, 2019; Valle-Cruz et al., 2020). The goal of this article is to open the machine’s
black box in order to understand and critically examine how self-learning algorithms gain agency by
transforming raw data into policy recommendations that are then used by administrators, and how this
impacts policy making. Such a critical reflection is necessary because scholars in public administration
should not only get a better understanding the implications of those techniques, they should also gain an
understanding of the machine’s main operations in order to understand how those techniques work. To
this end, the paper follows the process of transforming large data volumes into policy recommendations.
In doing this, I draw from various bodies of knowledge, most notably science and technology studies,
information theory, and the sociology of technology. Mackenzie’s ethnographic studies of digitization and
machine learning (most notably Mackenzie, 2015, 2017) are central to this argument. I attempt to link
these various literatures to the study of public administration and public policy, in the hope to enhance
those literatures with some of the principles of machine learning. The references may also be used as
pointers for public administration scholars who wish to do more in-depth research in this direction.

I start with a brief explanation of what is meant by the enmeshment of the machine in policy making.
Since ‘digitization’ is often used as an umbrella term, it tends to obfuscate various differences between
related techniques. It is therefore necessary to discuss three main aspect of digitization, namely big
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data (as volume as well as diversity), algorithms (to sort, structure and synthesize data) and machine
learning (to develop policy recommendations with a large degree of automated autonomy). The final part
of the paper is dedicated to an in-depth and critical examination of how these three aspects impact policy
making. I argue that these aspects lead to five major concerns that hamper the seamless enmeshment
of machine and administration as advocated by certain authors. First, self-learning algorithms require
dichotomization of data at various levels to produce output, which means that the machine transforms
data before it gives a recommendation. Second, machine output is likely to be biased because of the way
the algorithms were trained. Third, machine learning may lead to normalization, as such confirming that
the machine was correct even if it has generated biased output. Fourth, machines may learn from data
but unlearning it is much more difficult, even though such unlearning is important in generating more
accurate production. Fifth, the machine can’t print intelligible output by itself. Taken together, these five
points imply that humans are poor monitors when using machines in policy making. Machine learning
may possibly have something to add to public administration but an uncritical embrace of the technology
is not justified.

2. Enmeshment

Public policies are developed within networks of actors (e.g. Wachhaus, 2009). Actors in such networks
can be individuals but more often concern collectives as actors such as a Ministry, a government agency
or a stakeholder group (Klijn & Koppenjan, 2015). Digital technologies can also be considered as actors
in such governance networks. The technology derives its actor quality not only from its own capabilities
but above all from the way it interacts with other actors in the network – in the same way that e.g. a group
of stakeholders can gain agency from its interactions with public officials. It is in networks that agency is
created.

The idea that agency is a network attribute is articulated most prominently in Actor-Network Theory or
ANT (Latour, 1991, 2005; Law, 1992; Venturini et al., 2017). Naturally, ANT resonates strongly in the
digital age where social life has become increasingly dependent on all sorts of digital technologies (e.g.
Bächle, 2016; Bellanova, 2017; Haque & Mantode, 2013; Schmidgen, 2011; Stanforth, 2007). Thinking
in terms of actor-networks that include actors of any type (not just humans) is somewhat underrepresented
in policy and governance theories (Ludmilla et al., 2014; O’Brien, 2015). In ANT, all technologies can
have actor qualities, even simple technologies such as the hotel room key in Latour’s 1991 example. While
above I wrote about digitization in broad terms, for the present purpose I focus on self-learning algorithms
that are used to generate predictions. Since it encompasses a variety of computational techniques that are
combined in order to achieve learning and prediction, I refer to this actor as the ‘machine’ in the network.
Importantly, this goes beyond the use of computers for e.g. registering and keeping track of data (although
data management can be part of the machine) or programs made to streamline public service delivery.

The example of predicting whether convicted people may become repeat offenders as given above
serves to demonstrate how much agency a machine may achieve. In that particular case, it recommended
which convicts could be considered eligible for parole, a recommendation that was usually followed-up.
Thus, the machine developed agency. Another example concerns the predictions of livestock disease
outbreaks (Kroschewski et al., 2006). Here, the machine calculates the likelihood of such diseases
spreading from farm to farm. Using input such as contagiousness of the disease, density of the area etc.,
it recommends different scenarios. For example, it may recommend quarantining a farm or an entire
region, or even the destruction of all animals in the infected area. As with the example of repeated crime
prediction, the machine gains agency if its recommendations are acted upon. This is a recurring theme
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when it comes to the role of the machine in policy making, even though that role is still poorly understood
(Janssen et al., 2020; Lindgren et al., 2019; Valle-Cruz et al., 2020).

The machine is an assemblage of hardware and software, of external input and self-generated learning
mechanisms, of predefined schemes for structuring data and autonomous generation of recommendations.
It is a set of different technologies that combine with human input and subsequent action to generate a
certain outcome, such as a decision to turn down a request for probation or the decision to clear a farm
of live-stock. This agency is characterized by invisibility (human operators at least partially unaware of
how data is processed and recommendations are made) and impact (the machine’s output has an actual
outcome on the real world). Although I won’t deploy the entire apparatus of ANT in this paper, I use
the main idea as a search light to discuss how the machine operates and interacts with human operators
to bring about policies. I focus on self-learning algorithms as arguably the most far-reaching role a
machine can obtain in policy making. In literature, various terms such as machine learning, artificial
intelligence and automation are often used interchangeably (see e.g. Etscheid, 2019) so there is a need to
first clarify the main techniques and concepts, and to map how they relate (see also boyd & Crawford,
2012; Manovich, 2012). These are: big data, algorithms and machine learning. Of the three, big data may
be the most loosely defined.

3. Big data

Big data concerns data that is not only characterized by its volume but above all by its unsorted type
diversity as well as granular diversity. While conventional policy analysis works with theoretical frames
and sets of assumptions about relationships between variables to collect and categorize key data such as
census data or data for certain socio-economic key variables, big data sets are principally unsorted and
lacking in predefined structuring (Manovich, 2012). In such large, diverse and unstructured data sets,
each utterance is considered (potentially) valuable data and each piece of information forms a variable,
regardless of its form (Mackenzie, 2015). The key to working with this daunting abundance of information
is categorization, i.e. the sorting and labelling of every piece of data such that those pieces can become
related through statistical operations. Since every piece of data becomes a variable, the entire data set
forms a very-high dimensional space where countless pieces of data are related to countless pieces of
data, i.e. many vectors are formed within this space (Mackenzie, 2017). The question which variables
are to be related to others is determined in the statistics used (Hastie et al., 2009). Compare this with
more conventional approaches to policy analysis, in which the data space is predefined by a limited set
of variables and their relationships, usually in the shape of correlation. In big data, the properties of the
vector space may, and usually does, change because of the sorting and labelling that takes place Big data
spaces contain all contextual, indexical, symbolic or lived differences in data (Mackenzie, 2015). By
implication, the data set is dynamic. That is: new data can enter or leave the space continuously. The new
data is not merged with a given pre-defined causal structure. Instead, it may change the causal structure if
the new data or the discarding of old data provide reasons for doing that. As such, new data becomes part
of the vector space and the causal structure may change continuously.

It is important to note that the diversity of the data in big data sets doesn’t only stem from the nature of
the input data and the continuous flow of new data (and discarding of data considered no longer relevant
in the light of what has been ‘learnt’) but also from the juxtaposition of entire but seemingly incompatible
data sets. The ‘remixing’ (Mackenzie, 2017) of different types of data and of various collections or sets
of data is one of the key aspects of big data, as is the transformation of entire data sets when combined
with other sets in various ways (Mackenzie, 2012).
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The data itself is transformed upon entering the vector space. The machine operates by the grace of
digitization. This requires data to become encoded into bits. The encoding essential for the operation of
the machine but it also causes dichotomization of the data at the micro level (Mackenzie, 2017). Data
that may appear as gradients to the naked eye needs to be cut up into discrete values before it can be
put to work. Naturally, dichotomization of data itself is nothing new. Academic and policy researchers
do it all the time whenever they decide that a certain observation falls into one category or another one.
The same goes for policy makers when they try narrowing the complexity of real-world issues into
categories that can be processed in bureaucracies, even if it is understood that such simplification violates
the actual complexity of those issues (Boisot, 2004, 2006; Boisot & Child, 1988; Gerrits, 2012). The
difference between such instances on the one hand, and dichotomization of big data on the other, is that
the dichotomization of all data is a necessary step before it can be processed to form a vector space in the
latter.

The dichotomization of data takes place at various level. At the micro level, it is encoded in bits.
Above that level, each piece of data is classified into (emerging) categories (Mackenzie, 2017). The exact
consequences of this dichotomization for encoding and vectorization are hard or perhaps even impossible
to assess on a case by case basis. This is not much of an issue in instances of discrete data but becomes
more pressing when the data is ambiguous and open to multiple interpretations. Data that is not easily
classified is still forced into a category, or it may become a new category on its own. Either way, the
ambiguities that are real to social data are hard to deal with in big data sets.

Exactly how data as variables in the vector space relate will emerge once sufficient data have been
collected and labelled – which is why such data sets tend to be enormous. Naturally, it is considered
impossible to sort those data manually and to discern patterns that matter. This where algorithms and
machine learning come into play.

4. Algorithms

If data forms into vector spaces, algorithms can be said to inhabit those spaces (Mackenzie, 2017). In
their very basic form, algorithms are nothing but if-then rules applied to the data in order to form the
vector space by classifying, structuring and relating said data (Cormen et al., 2007), e.g. the rule that if
new data appears similar (in properties) to data that is already classified, the new data will be classified in
the same way. Machines may feature many of such algorithms. They can be complicated, and they can be
combined at will. Many decisions in conventional policy analysis can be considered algorithmic, too, for
example when all instances having a certain set of attributes are considered to fall under the scope of a
particular rule. However, there are some important differences, in particular when it comes to the number
and diversity of algorithms that can be combined, and the speed with which the data can be processed.

When it comes to the algorithms deployed in big data sets, a principal distinction can be made
between reactive systems, i.e. algorithms that trigger an automated response; and pre-emptive systems,
i.e. algorithms that utilize historic data to infer predictions about future behaviour (Yeung, 2018). An
example of the first would be a speed camera monitoring car drivers on a road. Once someone drives
faster than the pre-set limit, it will register that driver as an offender. An example of the algorithms
that generate predictions – which is what I’m after in this article – would be an algorithm that sorts
through (seemingly) unrelated data to establish vectors in order to predict an outcome. An example of
this is China’s ‘Situation-Aware Public Security Evaluation’ (SAPE) platform that was developed for
the prediction of terrorist attacks (Wu et al., 2016). This machine combines different data from different
sources, including (but not limited to) money transfers that appear irregular in size and in sender-receiver
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patterns, and overseas calls by citizens with no relatives outside of China (Gallagher, 2016). This data is
collected on a daily basis and the results are compared to similar patterns in such data preceding terrorist
attacks, as registered in the Global Terrorism Database.1 The outcomes are tailored with the help of data
from over 10.000 ‘public security events’ as registered by Chinese provinces, in order to account for
regional differences. In fitting the curve to the data, authorities may be able to predict that people with
certain characteristics are be more likely to engage in acts of terrorism.

The initial sorting of the data can be done manually in order to provide the machine with an anchoring
point about what constitutes a fit. This is called supervised learning. A sample from an existing data
set may be assessed, sorted and categorized by human operators, giving the machine some basis for the
accurate processing of the rest of the data. The remaining sorting, categorization and relating of data
is done by algorithms that become more able as more data is processed and checked against what has
happened in the real world. A simple algorithm can be told to label all instances of a particular word in
communications as a possible indicator for social security fraud, and another one to check if those words
correspond with actual fraud as detected in the real world. The data can be matched to pre-defined data
and the outcomes can be checked and adjusted in the light of known outcomes. Over time, the algorithms
can be made to learn that certain instances in the data, and the way they relate, also co-occur with given
outcomes. As such, there is not necessarily a need for continuous human oversight. If algorithms are
capable of going through this entire process from sorting to predicting all by themselves, this is called
machine learning.

5. Machine learning

Machine learning enables the machine to develop categories and labels for data all by itself, as such
actively sorting and relating data without much prior instruction as how this should be done exactly. In
other words, the machine will try out in what ways the best fit with real world outcomes can be created.
This is called unsupervised learning. The basic principle of (unsupervised) machine learning constitutes a
positive feedback loop. The data are labelled and related, and the outcomes are then tested to see if the
sorting and structuring have generated the correct prediction. If not, the data will be related repeatedly
until its output starts to approach known reality, i.e. fit has been reached. Once the resulting predictions are
confirmed, the machine will be better able to sort new incoming data and entire data sets. In other words:
the more a machine knows, the more it can know, i.e. generalization through mobilization (Mackenzie,
2015). The inclusion of additional data may improve the capacity of the machine to learn and to get better
at sorting data and predicting outcomes. An evolutionary approach sees the machine pitching alternative,
competing algorithms that label and sort the data in different ways and check their predictions against
outcomes. The algorithm or combinations of algorithms approximating known reality the best will be
kept and the other ones discarded (Salcedo-Sanz et al., 2014). Not only will this enable the machine
to make better predictions, it will also become increasingly more efficient at making such predictions.
It actively selects and shapes the algorithms that work the best, i.e. it is capable of enhancing its own
learning capacities.

While this certainly looks impressive, there is no black magic involved in this process. Machine learning
runs on a collection of known statistical techniques to do the labelling and sorting (Hastie et al., 2009).
The apparent magic derives from the speed with which these enormous amounts of data are labelled,

1https://www.start.umd.edu/gtd/.
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sorted, tested, and resorted and relabelled until they produce output that appears to get closer to reality.
The important point is that it is impossible for human operators to track and trace how the machine
traversed the highly-dimensional vector space in order to come up with a given output (Latour et al.,
2012; Mackenzie, 2015; Mittelstadt et al., 2016). That is, the self-selection of algorithms on the basis
of the machine’s learning curve is invisible to the human operator. In that sense, the machine is indeed
a black box, the capacities of which are to be assessed by its output, i.e. its capacity to predict, but not
necessarily by the way it achieves its predictive capacity.

The best way of telling that the machine has learned is by looking at its ability to generalize (Burrell,
2016). There are two issues with this generalization. First, the resulting model may adapt itself too closely
to the current data set and subsequently fail to generalize (excessive fit), or may not be complex enough,
subsequently representing too little and performing poorly in generalization (underfit). Again, this is
not dissimilar from what administrators also do when they try to match real-world issues to predefined
bureaucratic categories (Boisot, 1998) but the speed at which it happens is unmatched, and the impromptu
flexibility imposed on existing categories is virtually non-existent in bureaucracies. Second, the learning
works well as long as the object it is learning about remains more or less static. A static object allows
the machine to fine-tune its model and to become increasingly good at making predictions. However,
every change in the object of interest requires a new iteration and possibly a change of the predictive
model. By implication, machine learning has a hard time keeping up with the complexity of social reality
(Mackenzie, 2017). Naturally, this also goes for humans (Ang, 2011). The difference here is that machines
can iterate at a much higher rate than humans can do. Regardless, Mackenzie and others are correct
in saying we are still far off self-learning algorithms that respond adequately to the fluidity of human
complexity.

6. Transformations

Following the process from the processing of raw data to policy recommendations, it appears that
the data is transformed in many and profound ways before it reaches the policy maker’s desk. These
transformations are non-trivial in the sense that they alter the lived experience into analytical and
bifurcating units, which is not a difference in degree but a difference in kind (Savage, 2009). Data is
dichotomized at the micro-level and vectorized in as many ways as is necessary in order to produce an
output that appears sensible. The inclusion of different types of data in one data set (e.g. quantitative
gradients vs. qualitative gradients, categorical vs. ordinal, etc.) requires transformations before these data
can vectorized, can be made to relate. Aggregated and transformed data are restructured in all different
types of arrays or schemata such as dendrograms, trees, scatter plots and NK-models. Every traversing
of the (dichotomized) data, every production of curves approximating fit involves a transformation. As
such, there is a considerable difference between the real world and the representation thereof as generated
by the machine – even if its models and predictions appear to resemble social reality. It is this altered
reality that is used for guidance in their policy making. Naturally, the machine may learn from its own
mistakes by developing and then selecting competing algorithms for their best performance. But even
that can be considered a process related only indirectly to human operations. There is no exaggeration in
saying that there is considerable autonomy in, and subsequent agency of, the machine (Stampfl, 2013). At
the same time, however, machine learning would be a dead artifact were it not for the ways in which it is
deployed by human operators in general (e.g. Markham, 2013; Matzner, 2019; following ANT), and by
administrators in particular (e.g. Bellanova, 2017).
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Admittedly, the discussion above only scratches the surface of how the machine operates in generating
predictions on the basis of self-learning algorithms because I can only cover a tiny fraction of the
techniques used. However, the main point is that transformations are real. The remainder of the article
continues to follow the process and examines how that transformation links to practices in public
administration, at which point the machine attains full agency.

7. The machine enmeshed in public administration

The use of computers in policy making goes a long way back. Early versions saw computers computing
the input given by human operators, for instance to assess the possible effects of a certain policy measure
given known facts as collected and structured by those operators (e.g. Kaufmann, 1968). Although
becoming increasingly advanced over time, these models can be considered conventional in that the input
is pre-structured in sets of variables and the relationships between them on the basis of the operators’
prior knowledge of the subject matter. In those instances, the computations are essentially passive. That
is: the models produce outputs in exactly the same was they were told to produce. Algorithms are in place
– otherwise there would be nothing to compute with – but they are not self-learning algorithms so it is not
about machine learning and big data sets. The juxtaposition of those two make the difference between
a machine that produces a complicated, but essentially traceable output, and a machine that produces
outputs no longer (directly) traceable for human operators. In fact, machine learning also means that the
type of output generated may change over time as new data enters the vector space.

Machines of the latter kind are becoming increasingly popular in administration and policy making,
and the number of applications seem to grow year by year (see Yeung, 2018; for an overview). One
could argue that any policy recommendation that is enacted by policy makers allows the machine to gain
agency because it has an impact on the real world. Establishing this fact is a first step. In the following, I
will examine that enmeshment more critically. There are five main critical concerns that come with this
enmeshment.

First, the data transformations as discussed above mean that, contrary what is often believed, the
machine is not generating a true representation. The dichotomization of data when it is classified and
clustered can be a clumsy affair. For example, Ku and Leroy (2014) demonstrated that a human expert
could be more accurate than a machine that was trained to generate automated classifications of anonymous
crime reports. The machine struggled to see differences in between two types of crimes if the reports
were highly similar in other aspects, which is that kind of ambiguity that a human expert (a crime analyst
in this case) has no trouble in dealing with (Ku & Leroy, 2014). While the machine was faster, the expert
was more precise.

Second, the machine is prone to bias (Kolkman, 2020). This can happen in both supervised learning, if
the trainers confirm the bias knowingly or unknowingly, and in unsupervised learning. Prominent and
pressing examples can be found in predictive policing. For example, Ferguson (2017) showed how an
operator can distort the output of the machine if it is told to correlate poor neighbourhoods with crime
rates. While certain neighbourhoods may co-occur with high crime rates, the actual dynamics that produce
the crime rates remain invisible. All that the machine achieves is to make it seem as if the people living in
that neighbourhood are more likely to commit crimes. This may also happen in unsupervised learning. The
nature of self-learning algorithms is such that they need historical data to develop an explanatory model
of the subject matter, thus confirming existing biases more than discovering new causal relationships. If
the machine recommends police to patrol a certain area more heavily – therefore increasing the likelihood
that a larger portion of all people arrested are from that area – the machine will train itself that it has
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made the correct prediction even if it is a heavily biased prediction. After all, self-learning algorithms are
seeking increased fit and not a particular policy outcome, such as a just policing system.

Third, and following from the previous point, the machine’s predictions may lead to normalization of a
situation because humans act upon the recommendations (Coglianese & Lehr, 2017). As such, there may
be a convergence between human behaviour and machine-generated predictions (Mackenzie, 2015). While
the machine itself runs on a feedback loop between the computation of predictions and the matching
of those predictions to reality (establishing fit), there is a second feedback loop that runs between the
generated recommendations and the conforming behaviour of humans. The predictive policing example
given above illustrates this. Ultimately, all machine learning is geared towards ordering, transforming,
and shaping unstructured data in such a way that it can detect patterns that would neither be visible to the
naked eye nor accessible through conventional statistical methods used in isolation with more limited data
sets (Mackenzie, 2015). Some of the obvious errors can be corrected (e.g. prohibiting the machine to use
the label ‘ethnicity’ when traversing crime statistics), provided that the human operator can be vigilant
enough. The keyword, then, is traceability (alternatively: followability; being intelligible). One can, and
should, ask how machines arrive at their recommendation (Coglianese & Lehr, 2017) but this may be
extremely complicated and in many cases impossible. The weak spot may not rest with the machine itself
– it just does what it can – but in how humans interact with machines (Gross, 2013, 2015; Mcsherry,
2005; Pu & Chen, 2007). Even if the machine could share the reasons for its recommendation, there is no
guarantee that human operators would be able to understand the reasons given.

Fourth, while much attention is given to how the machine can learn, ‘unlearning’ is considerably
less developed (Bourtoule et al., 2019). The machine’s algorithms are trained on existing data sets. As
mentioned before, these data bases may be dynamical with new data added continuously. But while older
data can be discarded, the machine cannot stop knowing what it has gathered from those older data.
That is, the older data may remain present in the shape of how the algorithms are trained even when
the original data on which the machine was trained is no longer present. Among others, it implies that a
request to pull data (e.g. under the General Data Protection Regulation (EU) 2016/697; or GDPR) does
not mean that the machine has forgotten what the original data meant. This can be dealt with in various
ways, ranging from discarding the machine’s algorithms and retraining them from scratch using new data,
to marking data such that one can determine the ways in which algorithms were affected by that particular
piece of data. All of those options are inconvenient and require considerable work. For example, marking
data requires the operator to understand the importance of each data point in constructing the final model,
which is a tall order in big data sets (Bourtoule et al., 2019).

Fifth, policy makers essentially deal with machines that do not know how to print an intelligible,
followable output suitable for the human operator requiring that information (Norman, 1989). This is
already an issue when the machine works with a crisp database (Beierle et al., 2003; Clancey, 1983; Puppe
et al., 2013) but becomes even more complicated when the database is ambiguous and the information
needs not clearly defined a priori (Mast et al., 2016), and the dichotomization is applied autonomously
– as is the case with the machines described above. On top of that, the ex-post explanation is still an
aggregate of various algorithms are human operators are unlikely to observe the machine working through
each bit of data. There is ample evidence that humans perform poorly in the role of monitor. Getting the
machine enmeshed has the advantage of analysing heaps of unstructured data that cannot be processed by
humans alone. The disadvantage is that it induces passivity because humans will no longer actively be
involved in structuring data and creating outputs. Such passivity impacts awareness to such an extent that
humans may not be comprehend the output even if was produced in a comprehensible way (Dixon &
Wickens, 2006; Endsley, 1995, 1996). Moreover, information is irretrievably lost if no initial attention is
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paid (Peterson, 1985) and humans have struggle to process complex information, regardless of how it is
produced and presented (Gerrits, 2012).

The enmeshment of machines and human operators stem from the interaction between the both,
where machines build on prior human knowledge, which then leads to real-world consequence, and,
subsequently, more ‘learning’ on behalf of the machine. The five main concerns highlight how that
enmeshment can also create warped realities in public administration. This means that an uncritical
embrace of the machine in public administration is not warranted.

8. Conclusions: The machine and its administration

While the machine has already gained agency in policy making because of its autonomy in developing
recommendations from unsorted data, we are still a long way off building a seamless mesh of humans
and machines (Pantic et al., 2006). Some authors (e.g. Coglianese & Lehr, 2017) have argued that
legal authority and accountability still rests with humans as they are the ones that make the actual
decisions following recommendations by the machine. As such, the decisions are to be subjected to
the usual requirements for sound decision making, including due diligence. From that perspective, the
machine doesn’t change existing questions about transparency and accountability, it only adds a novel
technical layer (König & Wenzelburger, 2020). But that is only half of the story. I argue that such legal
aspects are difficult to uphold if the administrator can’t retrace the operations that lead to the machine’s
recommendation. Certainly, an administrator can choose to follow or ignore a recommendation but won’t
be able to state the reasons of ignoring or following it, outside of one’s own consideration regarding
justice, fairness, representativeness etc. because the machine’s workings remain a black box. In other
words, the fact that there are laws that apply to the administrator in order to maintain accountability
doesn’t solve the problematic deus ex machina. As such, I fully agree with Valle-Cruz (2020) that
administrations should not embrace machine learning uncritically.

While data can certainly make sense of itself, as per Anderson’s famous opinion piece (2008), this
not necessarily produce sensible and traceable outputs that could be used for policy making. A machine
to structure heaps of data into patterns by means of statistics but such patterns may not reveal actual
truths, let alone present something that policy makers can follow blindly. Data volume does not equate
objectivity, complete datasets are as difficult to deal with as are incomplete ones, and vectors in the data
are not necessarily insights. Besides, contexts remain as important as ever. Last but not least, all machine
learning needs to negotiate the same gap between intension (the attributes an object must feature in order
to fit a concept) and extension (the class of objects referred to) that any policy research encounters. That
is: more abstract concepts generate generic statements that apply to many cases but without specific
detail, and more precise concepts generate more precise outcomes that cover fewer instances (Boisot,
1998; Toshkov, 2016). Consequently, its reliance on sheer volume may render the machine less competent
in the face of complex reality.

Contemporary big data and machine learning repertoires can be useful in digging up patterns as long as
the transformations that take place inside of the machine are understood. Ultimately, those transformations
are simplifications of complex, real-world problems. The most pressing problem lies in the machine’s
opacity – that derives from the self-learning and self-selecting of unsorted and highly diverse data –
when rendering a recommendation that leads to a decision that leads to a material change. It can’t
be expected from administrators to first develop deep knowledge about machine learning in order to
work with the recommendations that the machine has generated. Likewise, it can’t be expected that the
machine will function as an accountable (and perhaps even better) partner in administrative decision
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making (Hofstetter, 2014). Of course, the machine will become rather more enmeshed than less, which
implies that the challenges identified here are likely to become more prominent in the future. The positive
feedback loop central to machine learning and the normalization of situations when machine learning is
enacted in actual policy analysis and policy making means that scholars are looking at a reality partially
generated by the machine itself. With the machine in the loop, reality becomes recursive. Administrations
better be prepared for this.
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