
INFORMATICA, 2024, Vol. 35, No. 4, 687–719 687
© 2024 Vilnius University
DOI: https://doi.org/10.15388/24-INFOR572

On the Improvements of Metaheuristic
Optimization-Based Strategies for Time Series
Structural Break Detection

Mateusz BURCZANIUK, Agnieszka JASTRZĘBSKA∗

Faculty of Mathematics and Information Science, Warsaw University of Technology,
ul. Koszykowa 75, Warsaw, 00-662, Poland
e-mail: Mat.Burczaniuk@gmail.com, A.Jastrzebska@mini.pw.edu.pl

Received: October 2023; accepted: September 2024

Abstract. Structural break detection is an important time series analysis task. It can be treated as
a multi-objective optimization problem, in which we ought to find a time series segmentation such
that time series theoretical models constructed on each segment are well-fitted and the segments
are long enough to bear meaningful information. Metaheuristic optimization can help us solve this
problem. This paper introduces a suite of new cost functions for the structural break detection task.
We demonstrate that the new cost functions allow for achieving quantitatively better precision than
the cost functions employed in the literature of this domain. We show particular advantages of each
new cost function. Furthermore, the paper promotes the use of Particle Swarm Optimization (PSO)
in the domain of structural break detection, which so far has relied on the Genetic Algorithm (GA).
Our experiments show that PSO outperforms GA for many analysed time series examples. Last but
not least, we introduce a non-trivial generalization of the top-performing state-of-the-art approach to
the structural break detection problem based on the Minimum Description Length (MDL) rule with
autoregressive (AR) model to MDL ARIMA (autoregressive integrated moving average) model.
Key words: time series, structural break, ARIMA, Genetic Algorithm, Particle Swarm
Optimization, Ant Colony Optimization„ Minimum Description Length.

1. Introduction

Structural break detection is a time series analysis problem aiming to detect change points
in a sequence of observations forming the time series. It is of particular value for areas
such as economics or incident detection, in which we are interested in analysing time
series in segments, and we need an algorithm to partition the data.

The structural break detection problem can be naturally formulated as an optimization
task, where we wish to minimize a specific cost function defined for the produced time se-
ries segments. The rough idea is that each produced segment should represent a sequence
of observations without a change point. This is typically measured using residuals of a

∗Corresponding author.

https://doi.org/10.15388/24-INFOR572

688 M. Burczaniuk, A. Jastrzębska

theoretical model built on a segment and real time series values, which should be as small
as possible. Unfortunately, simplifying the problem into just such an assumption leads to
segments composed of single observations. Thus, the problem of structural break detec-
tion is typically formulated as a balance between two conflicting criteria: we wish to split
the time series into segments without change points and, at the same time, maximize the
length of the segments.

We may divide the existing structural break detection approaches into two groups.
One uses predominantly statistical procedures. A prominent representative of this group
is Bai and Perron (1998, 2003), which is widely utilized despite its simplicity. It uses
linear regression as the base model for produced segments and a supplemental statistical
test to determine the number of structural breaks. The second group fuses metaheuristic
optimization with statistical procedures. Statistical procedures are responsible for eval-
uating the goodness of fit of theoretical models on time series segments. Metaheuristic
optimization carries the entire process forward. The approach was presented by Davis et
al. (2016, 2006, 2008), Davis and Yau (2013). Later studies, for example, Woody et al.
(2021), Shi et al. (2022a) elaborated on the application of Davis’s method, but essentially,
on the methodological level, left it untouched.

In this paper, we present novel contributions to the domain of structural break detection
using metaheuristic optimization. In particular:

1. We present a suite of new cost functions to be used for structural break detection.
2. We present a new methodology for cost function construction that assumes that the

cost function value should contain a proportional weight for the variance of residual
errors and take into account the relation between segment order and its length.

3. We present a generalization of Davis’s approach to the MDL with the ARIMA model.
This generalization at the first sight may seem trivial compared to the initial Davis’s
model based on AR. However, when broken down into parts, it required introducing
model-specific optimizations to manage the computational complexity. The general-
ized model allowed for increasing accuracy of break detection in comparison to the
AR-based approach.

4. To the best of our knowledge, this is also the first paper demonstrating the application of
Ant Colony Optimization and Particle Swarm Optimization algorithms in conjunction
with the Minimum Description Length rule to detect structural breaks in time series.
In particular, we show that Particle Swarm Optimization typically slightly outperforms
Genetic Algorithm. In addition, we show that PSO is easier to tune for the structural
break detection problem than GA since the tunable hyperparameters are real numbers.
We have also enriched PSO with an additional hyperparameter internally limiting the
maximal number of detected intervals.

The essential contribution addressed in this paper is the new cost functions. We may
summarize them as follows:

• A new function, termed Elastic Minimum Description Length (EMDL), which is an
extension of the classical Minimum Description Length (MDL) cost function. It allows
the user to incorporate expert knowledge into the cost function. No other cost function
provides such a possibility.

Metaheuristic Optimization for Structural Break Detection 689

• Two new cost functions based on the penalty cost function. Our extensions allow to
produce better results for real-world time series by including a penalty for the structural
break count, a penalty for the number of fitted model parameters, and emphasize the
importance of model residuals.

• An extension applicable to all the cost functions that adds a weight controlling the min-
imal allowed segment length. The literature of the domain reports that the techniques
available so far employ strict rules concerning the minimal segment length. We pro-
pose to relax this approach. In the paper, we demonstrate that, in consequence, we gain
flexibility because we eliminate the non-intuitive additional parameter that has to be set
by a user.

• An extension applicable to all the cost functions that punishes deviations from a linear
trend which helps to detect shifts in data with the trend. Experiments have proven that
this method works well also for data with a nonlinear trend. We show that including
this extension allows detecting the exact point of trend shift (of inflection), even if the
underlying theoretical time series model is not sensitive to it.
Proposed framework for structural break detection was tested using a suite of syn-

thetic and real-world time series. In the paper, we address the properties of the proposed
approach and compare it with the existing methods.

The remainder of the paper is structured as follows. Section 2 addresses relevant liter-
ature positions on the structural break detection problem. Section 3 outlines elementary
notions concerning time series models and metaheuristic algorithms that we used. Sec-
tion 4 addresses the approach introduced in this paper. Section 5 addresses a series of
empirical experiments conducted to evaluate the quality of methods introduced in this
paper. Section 8 concludes our study.

2. Literature Review on Time Series Structural Break Detection

2.1. Earlier Papers on Time Series Structural Break Detection

The problem of detecting structural breaks in time series is well-recognized in the litera-
ture. There are two base variants: online and offline, the use of which is determined by the
practical setting in which we need to execute this task. There were many works devoted to
the online variant such as these by Tartakovsky (2019) or Huang et al. (2020). However,
the online processing is outside the scope of our interest. We are only focusing on the
offline processing mode.

Offline structural break detection has its own subvariants. The most classical division
of available methods is into two groups. The first group aims at finding at most one change-
point (AMOC) detection, where the aim is to state if a time series contains one structural
break and, subsequently, where it is located. The popular methods include cumulative
sums (CUSUM) (Yang and Zhang, 2022), (SCUSUM) (Shi et al., 2022b) and likelihood
ratio tests (LRT) (Bai et al., 2024). Nonetheless, in this article we will focus on multiple
structural breaks detection problem.

We can also divide the existing structural break detection methods according to how
the structural break is defined and found. The most straightforward approach is a canonical

690 M. Burczaniuk, A. Jastrzębska

segmentation problem, where the only parameter analysed during breakpoint detection is
time series mean. Numerous works have been dedicated to this approach, and they have
been thoroughly discussed by Cho and Kirch (2024). The more advanced approaches con-
sider changes in time series variance or model data with the use of one of the common
time series modelling methods. When it comes to the latter aspect, we shall underline that
different models may be used for this purpose, for example, the autoregressive model (AR)
(Behrendt, 2021) or the GARCH model (Cho and Korkas, 2022). Many papers are dedi-
cated to simple and very narrow problem modelling. For instance, Romano et al. (2022)
use AR(1) model.

This article is devoted to multiple structural break detection in an offline manner, so let
us describe analogous leading and popular methods used for the task. As Shi et al. (2022b)
say, we can distinguish two categories of methods for solving the task. First are methods
using recursive partitioning of a time series into smaller segments or other approaches
utilizing AMOC methods. Second are methods analysing the entire time series.

A distinct category can be assigned to the methods which sequentially analyse time
series and are able to increasingly add new structural breaks, such as the method proposed
by Bai and Perron (1998), which is still recognized as the baseline method in economics
(for example, Lee et al., 2022). This approach, commonly known as the Bai-Perron method
will be mentioned later in this paper.

The first mentioned family of approaches (recursive one) generally uses AMOC meth-
ods to detect one structural breaks and later run the same AMOC method for chunked data.
The base method in the area is binary segmentation (BS) (Scott and Knott, 1974). It was
later extended by Fryzlewicz (2014), who proposed wild binary segmentation (WBS).
There are still works in this direction and new modified variants of binary segmentation
were being proposed, such as WBS2 (Fryzlewicz, 2020) or seeded binary segmentation
(SBS) by Kovács et al. (2023). Another interesting approach of this kind is Classification
Score Profile (ClaSP) presented by Ermshaus et al. (2023).

Many different approaches were proposed that can be described as general meth-
ods that jointly analyse entire time series. Some are using Bayesian learning or other
probability-theory-based techniques for changepoint detection. In this line of research, the
algorithms typically employ recursion to partition the data into segments. We envision that
the changepoints of interest separate these segments. Bayesian approaches use different
methods to solve the problem. Another technique was delivered by Li et al. (2019a) using
a linear regression model, AR in particular. Yet other studies use the Markov chain Monte
Carlo sampling, specifically the Metropolis-Hastings algorithm, to search for structural
breaks. Shaochuan (2020) studied the use of hidden Markov models with continuous-
time FFBS and continuous-time Viterbi algorithm. Casini and Perron (2024) proposed a
Laplace-based (Quasi-Bayes) procedure utilizing the Monte Carlo method.

Another notable way to solve the problem of locating multiple structural breaks in a
time series is Cumulative Sums of Squares (CUSUM), studied by Inclan and Tiao (1994).
Among more recent studies considering the CUSUM approach, we can mention the works
of Madrid Padilla et al. (2022), Kim et al. (2022) or Borzykh and Yazykov (2020). The
CUSUM approach passes through the time series to search for points where the sum of
squares of previous and present values changes.

Metaheuristic Optimization for Structural Break Detection 691

Other approach to the problem was moving sum (MOSUM) procedure. Their method
is essential in canonical segmentation problem. It was recently used, for instance, by Cho
and Kirch (2022) or Meier et al. (2021). MOSUM was utilized also for more advanced
segmentation problems such as in the work of Kirch and Reckruehm (2024).

It is vital to notice that many of known approaches use constraint on the minimum
distance between two consecutive structural changes. The approach is very popular and
was used, for example, by Davis et al. (2016), Doerr et al. (2017) or Yan et al. (2021).

As a side note, we have observed a growing number of papers elaborating on the ben-
efits of including a structural break detection step in time series forecasting procedures.
Among researchers focusing on this aspect, we find Smith (2023), Safikhani et al. (2022),
and Altansukh and Osborn (2022). Another substantive stream of studies emerged when
the existing changepoint detection methods were adapted to temporal panel data, as indi-
cated by Bardwell et al. (2019).

2.2. Evolutionary Methods in Structural Break Detection Problem

The last group of methods for solving the task we want to discuss are evolutionary al-
gorithms. In particular, it is worth mentioning the works of Davis et al. (2016, 2006,
2008), Davis and Yau (2013), who conducted several studies on the application of the
genetic algorithm in the discussed context. They have referred to their new method as
Auto-PARM. The chromosome in this algorithm contained information about whether a
structural change was present at a given location. The method uses relatively simple muta-
tion, various crossover variants, and proportional selection. In addition, the island model
of the genetic algorithm was employed to improve the results.

The genetic algorithm was also considered in the works of Doerr et al. (2017). As al-
ready mentioned, their algorithm was constructed for long time series up to one million
data points. The results of this study indicated that using both single-point and uniform
crossover simultaneously improves the quality of the results. Furthermore, the effective-
ness of enhancing the algorithm by using multi-start and champions league strategies was
noted. A similar outcome was documented by Suárez-Sierra et al. (2023). On the other
hand, Lim et al. (2020) presented a memetic algorithm for multivariate time series seg-
mentation dedicated to long time series.

Éltetö et al. (2012) proposed using the highly acclaimed CMA-ES (Covariance Matrix
Adaptation Evolution Strategy) algorithm. They divided their method into two steps. The
first step aims at finding the number of structural changes. The second step optimizes
the locations of each structural change. They did this by analysing solutions for different,
algorithmically chosen numbers of breakpoints. CMA-ES operates in a continuous space,
while the change point detection problem is embedded in a discrete space. Therefore,
it was necessary to move the problem to another space, which was done by processing the
structural change locations and rounding them for solution evaluation.

2.3. The Issue of the Target Function Definition

Many of the methods used for structural break detection require an objective function that
allows comparing particular structural change positions. Choosing an appropriate objec-

692 M. Burczaniuk, A. Jastrzębska

tive function is not easy because of the need to simultaneously fit the data model and
minimize the number of model parameters, as state (Shi et al., 2022b). Different objective
functions were used in the literature. Some were very simple and failed to reflect the nu-
ances of model fitting. This was due to various reasons. In some cases, the computational
complexity was decisive, as it was in the approach of Doerr et al. (2017).

Penalty function methods have been analysed as well. For example, Hall et al. (2013)
used a penalty function in which three parameters of a time series segment model corre-
sponded to one structural change. Another variant of the penalty function was considered
by Doerr et al. (2017), whose penalty function was the sum of the penalty for the number
of detected breakpoints and the penalty for the fitting error calculated separately for each
segment of the time series as the area of a rectangle whose sides were: the beginning and
the end of the studied segment, and the minimum and maximum value of the series on
the given segment.

For more complex approaches, a fairly obvious choice was to check known informa-
tion criterion models. Akaike Information Criterion (AIC), Bayesian Information Crite-
rion (BIC), or modified Bayesian Information Criterion (mBIC) can be employed (Zhang
and Siegmund, 2007). An intensive comparison of these criteria and MDL (see next para-
graph) was delivered by Shi et al. (2022b).

In recent years, the principle of Minimum Description Length (MDL) formulated by
Rissanen (1978) has gained substantial popularity in this field. It was applied to the prob-
lem of structural change detection by Davis et al. (2006). This solution was originally
adapted for use together with the time series autoregressive (AR) model. Later works
made it possible to transfer this method to other time series models: Generalized Au-
toRegressive Conditional Heteroskedasticity (GARCH) (Davis et al., 2008), periodic AR
(Lu et al., 2010) or AutoRegressive Moving Average (ARMA) (Davis and Yau, 2013).
As mentioned, Li et al. (2019b) formulated a modification of the MDL method known
as the Bayesian Minimum Description Length rule. The cost function based on the MDL
principle was later used in many different works, such as by Ditzen et al. (2021) or Lan
et al. (2022). A modification of the MDL rule was also shown in Bayesian Minimum
Description Length (BMDL) method proposed by Li et al. (2019a).

3. Preliminaries

In this section, we provide basic information related to the background knowledge behind
the proposed approach.

3.1. ARIMA for Time Series Modelling

Time series can be simply described as a sequence of values observed in time. There are
many different ways to model time series. One of the very popular is the use of mod-
els from the AutoRegressive Integrated Moving Average (ARIMA) family. The simplest
model belonging to this family is the autoregressive model (AR), which can be written as

yt = c + β1yt−1 + β2yt−2 + · · · + βpyt−p + εt , (1)

Metaheuristic Optimization for Structural Break Detection 693

where:

• c, β1, . . . , βp – model parameters,
• εt – white noise,
• p – order of the AR model.

The second important model is moving average (MA), given as

yt = c + φ1εt−1 + φ2εt−2 + · · · + φqεt−q + εt , (2)

where:

• c, φ1, . . . , φq – model parameters,
• q – order of the MA model.

If we join the AR and MA models, we get the ARMA model. If we add a differencing
operation to the model, we get the ARIMA model. The differencing operation is performed
on time series d times, where d usually equals 0, 1, or 2. Thus, by putting together the
described components of ARIMA, we obtain the following model formulation:

yt = c+β1yt−1 +β2yt−2 +· · ·+βpyt−p +φ1εt−1 +φ2εt−2 +· · ·+φqεt−q +εt . (3)

The model can be briefly expressed as ARIMA(p, d, q), where p is the order of the au-
toregressive part, d is the degree of differencing, and q is the order of the moving average
part.

A time series structural break is a place in the time series where data changes its char-
acteristics. It can be a change in the time series mean, variance, or a point where a trend
has emerged or disappeared. The most often-mentioned definition says that it is a place in
the time series where the time series model or one of its parameters changes (for example,
Cheng et al., 2022). Obviously, time series can have several structural breaks or not have
them at all.

3.2. Metaheuristic Algorithms

In this work, we use metaheuristic optimization-based algorithms to solve the problem of
time series structural break detection. We selected Ant Colony Optimization (ACO), Parti-
cle Swarm Optimization (PSO), and Genetic Algorithm (GA). The algorithms mentioned
are all metaheuristics, which means that they do not guarantee that an optimal solution will
be found. However, they can find a good-enough solution in a relatively short time. This
property makes them indispensable in many engineering applications, see Abdel-Basset
et al. (2018).

ACO, PSO, and GA are based on an analogous idea that the algorithm operates on
a collection of candidate solutions called population. The procedure is iterative. In each
iteration, the population undergoes specific modifications, and in this manner, candidate
solutions are constructed or modified. An essential part of these algorithms is a cost func-
tion that evaluates how good a particular candidate solution is. Since these are heuristic
optimization approaches, termination criteria concern either a count of performed itera-
tions or a count of iterations without any improvement.

694 M. Burczaniuk, A. Jastrzębska

3.3. Ant Colony Optimization

ACO is a method proposed and developed by Dorigo and Stützle (2019). It is patterned
on the behaviour of ants. The population of the algorithm is interpreted as a swarm of
ants that create solutions by walking on a graph. All solutions found in a given iteration
are evaluated, and ants put pheromones on the edges of a graph used in these solutions
according to their fitness.

Ants construct solutions in a probabilistic, step-wise manner. If we have an iteration t

and an ant, which built a part of a solution and is in a vertex i, the probability of the ant’s
move from the ith to the j th vertex is given as

pk
ij (t) =

⎧⎨
⎩

(τij (t))α ·ηβ
ij∑

a∈N(τia(t))α ·ηβ
ia

, j ∈ N,

0, j /∈ N,

(4)

where:

• τij (t) – pheromone count between vertices i and j at the moment t ,
• ηij – heuristic cost of i–j edge,
• N – neighbourhood of the vertex i,
• α, β – algorithm parameters.

It is important to note that the ACO algorithm works in a discrete space. It is perfect for
graph-based problem representations.

The general scheme of ACO is presented in Algorithm 1.

Algorithm 1 General schema of ACO
1: Initialize pheromone τij (1), i = 1, . . . , n.
2: while stop condition is not fulfilled do
3: for each ant k = 1, . . . , m do
4: Set ant’s path to empty set: Sk(t) = ∅.
5: for all decision points i = 1, . . . , n do
6: Select an edge according to Eq. (4).
7: Add the selected edge to the ant’s path Sk(t).
8: end for
9: end for

10: Evaluate fitness function for Sk , for k = 1, . . . , m.
11: Update pheromone paths.
12: end while

3.4. Particle Swarm Optimization

PSO is patterned on the behaviour of birds’ flocks or schools of fish. In contrast to ACO,
the algorithm operates in a continuous space. The population is interpreted as a collection

Metaheuristic Optimization for Structural Break Detection 695

of particles. Each particle has its own location, memory, and velocity. The location of
a particle i is denoted as xi , the velocity is denoted as vi , the best solution found by the
particle is denoted as si , and the best global solution is denoted as sb. During each iteration
the velocity and location of each particle are modified according to the formula:

vi(k) = ωvi(k −1)+ c1r1
[
si(k −1)−xi(k −1)

]+ c2r2
[
sb(k −1)−xi(k −1)

]
, (5)

where:

• ω – inertia coefficient,
• c1 – best local solution influence coefficient,
• c2 – best global solution coefficient,
• r1, r2 – random numbers, where r1, r2 ∈ [0, 1], they can be different for each iteration

and each particle.

The location of a particle is updated according to:

xi(k) = xi(k − 1) + vi(k). (6)

The general flow of the PSO is presented in Algorithm 2.

Algorithm 2 General schema of PSO
1: Initialize the location and velocity of each particle.
2: Initialize si to null value (best solution).
3: while stop condition is not fulfilled do
4: for each particle i do
5: Evaluate the fitness value of particle i.
6: if the fitness value of particle i is better than sb then
7: Set current fitness as si .
8: end if
9: end for

10: Choose the particle with si as sb (best particle).
11: for each particle i do
12: Update particle velocity.
13: Update particle location.
14: end for
15: end while

3.5. Genetic Algorithm

GA is a long-known evolutionary algorithm that uses a population of solutions. Each solu-
tion is represented by a chromosome, which consists of genes. The population is modified

696 M. Burczaniuk, A. Jastrzębska

by three fundamental operations: selection, crossover, and mutation, which are performed
during each iteration. These operations are defined very generally. Thus, so many variants
of the GA have arisen. The first operation is selection, which aims to pick the best individ-
uals from the population. The two most common selection mechanisms are proportional
selection and tournament selection. A mutation usually makes a minor change to the solu-
tion. For example, in the popular bit flip mutation for binary encoded chromosomes, one
or more bits are randomly selected and inverted. There are other types of mutations, such
as swap mutation, truncation mutation, or inversion mutation. Crossover initially results
in several parent solutions that combine to form one or more offspring. Popular crossover
methods are uniform crossover, one-point crossover, or multi-point crossover. In many sit-
uations, applying standard mutation or crossover methods is impossible, and the need to
modify them or create custom, problem-specific crossover or mutation operators arises.

The general scheme of the GA is presented in Algorithm 3.

Algorithm 3 Pseudocode of GA
1: Generate the initial population randomly.
2: while stop condition is not fulfilled do
3: Select a subset of individuals to create a new population.
4: Set the number of crossover nc operations to perform.
5: for i = 1, . . . , nc do
6: Randomly select individuals for crossover.
7: Generate a new individual by applying the crossover operation.
8: Save the new individual for the new generation.
9: end for

10: Set the number of mutation nm operations to perform.
11: for i = 1, . . . , nm do
12: Randomly select an individual.
13: Perform mutation.
14: Save the mutated individual for the new generation.
15: end for
16: Evaluate the new population.
17: end while

3.6. Island Model in Heuristic Optimization

The island model is one of the approaches to perform multi-population optimization. In
the model, there are several populations located on several islands. After every t iterations,
we perform a migration that allows replacing the worst solutions from one population with
the best solutions from another population. The count of iterations between migrations,
population size, and the count of migrated elements are parameters of the model.

The island model is a simple, yet effective method to get good results fast. It is often
used with the genetic algorithm but can also be applied to other evolutionary algorithms.

Metaheuristic Optimization for Structural Break Detection 697

3.7. Cost Functions Used in the Literature to Optimize Structural Break Count

Selecting a cost function to measure the quality of solutions is a critical problem in meta-
heuristic optimization. Constructing a suitable cost function for the structural break de-
tection problem is difficult because we need to minimize the model errors and the number
of structural breaks and balance the two.

The literature offers various solutions to this problem; more information is available
from Farsi et al. (2020). One of the most acclaimed ones was the use of the minimum
description length (MDL) rule. This rule states that a model is only as good as long as it
needs little space to save its data. We can write it as

CL(y) = CL(M) + CL(e|M), (7)

where CL is a code length, y is the analysed time series, M is the model describing it, and
e|M is the error of fitting M to y. CL(M) is simple to calculate compared to CL(e|M).
Rissanen (1978) proposed to calculate it using the log-likelihood function:

CL(e|M) = − log L(M). (8)

Davis et al. (2016) introduced an adaptation of the MDL technique to the problem of
structural breaks detection for the AR model:

MDL
(
m,p0, (τ1, p1), . . . , (τm, pm)

)
= log2 m + m log2 n +

m∑
i=0

log2 pi +
m∑

i=0

pi + 2

2
log2 ni

+
m∑

i=0

ni + ni log2(2πσ 2
i)

2
, (9)

where:

• m – structural change count,
• n – time series length,
• τ1, . . . , τm – structural change locations,
• p1, . . . , pm – orders of AR model on successive segments,
• σ 2

i – variation of model error on segment number i.

4. Proposed Approach

Let us recall the key contributions of this paper:

• a generalization of Davis’s approach to the MDL with the ARIMA model,
• new cost functions: Elastic MDL – a variant of MDL giving more flexibility to the user

and new functions based on penalty cost suitable to process real-world time series,

698 M. Burczaniuk, A. Jastrzębska

• including a weight for punishing (controlling) minimal allowed interval length,
• an extension of the cost function that takes into account deviations from a linear trend

observed on time series segments,
• new cost functions using relations between segment’s order and length,
• in this study, PSO and ACO algorithms, in conjunction with the Minimum Description

Length rule, are used for the first time in the task of structural break detection in time
series.

In the following subsections, we present them in detail.

4.1. Generalization of the Approach: Using the New MDL Function with the ARIMA
Model

Let us define the MDL function for the ARIMA model based on Eqs. (7) and (8) as

MDL
(
m, (τ1, p1, q1), . . . , (τm, pm, qm)

)
= log2 m + m log2 n +

m∑
i=0

log2(pi + di + qi)

+
m∑

i=0

pi + di + qi + 2

2
log2 ni − max

i
log L(Mi), (10)

where log L(Mi) is the log-likelihood function.
The defined function in Eq. (10) relies on the addition of four components. The first

component (log2 m) represents the number of structural breaks. It is a natural number.
The logarithm is used to represent this value in terms of bits, according to the idea of the
original MDL function. The second component is m log2 n. It represents the space needed
to save the location of each structural break. Each location is kept as a natural number
that is not larger than the series length n. The third component represents the ARIMA
specification (p, d, q) for each segment in the time series. The final component keeps the
values of ARIMA model parameters for each segment. These values are computed based
on ni elements.

4.2. Introducing New Cost Functions for the Optimization Problems Dealing with
Structural Break Detection

In this subsection, we address new cost functions. Each of them was defined in two vari-
ants – for the AR and ARIMA model.

4.2.1. Penalty Function, Modification #1
This extension relies on penalties for structural breaks count, model parameter count, and
variation of model fitting error. The version for the AR model is defined as:

SPF1AR

(
m, (τ1, p1), . . . , (τm, pm)

) = μm2 +
m∑

i=1

(
σ 2

i + νp2
i

)
, (11)

Metaheuristic Optimization for Structural Break Detection 699

where

• μ – parameter describing structural change count impact on model choice,
• ν – parameter describing parameter count impact on model choice.

The cost function proposed for the ARIMA model is

SPF1ARIMA
(
m, (τ1, p1, d1, q1), . . . , (τm, pm, dm, qm)

)
= μm2 +

m∑
i=1

(
si + ν(pi + ρdi + qi)

2), (12)

where ρ describes the differencing count impact on model choice, and si is a sum of the
squared estimate of errors (SSE) for the segment fitting.

4.2.2. Penalty Function, Modification #2
We defined the second cost function to give residual errors higher importance. The variant
delivered for the AR model looks as follows:

SPF2AR(m,
(
τ1, p1, . . . , (τm, pm)

) = μm2 +
m∑

i=1

(
σ 4

i + νp2
i

)
, (13)

while for the ARIMA model it is

SPF2ARIMA
(
m, (τ1, p1, d1, q1), . . . , (τm, pm, dm, qm)

)
= μm2 +

m∑
i=1

(
s2
i + ν(pi + ρdi + qi)

2). (14)

The rationale was to partition the time series such that the segments are as long as
possible, but short enough to fit the theoretical model well. The shorter the segment, the
easier it is to fit a theoretical model. At the same time, for practical reasons, too many
segments may not be helpful.

These conflicting goals (long segments with good theoretical models) were coded dif-
ferently by means of different objective functions.

4.2.3. Elastic MDL
The third idea was to use the MDL function to give users more flexibility and allow them
to tune it to their preferences. The version for the AR model is defined as:

EMDLAR

(
m,p0, (τ1, p1), . . . , (τm, pm)

)
= log2 m + m log2 n + μ

m∑
i=0

(
log2 pi + pi + 2

2
log2 ni

)

+ ν

m∑
i=0

ni + ni log2(2πσ 2
i)

2
, (15)

700 M. Burczaniuk, A. Jastrzębska

and for ARIMA model as:

EMDLARIMA
(
m, (τ1, p1, q1), . . . , (τm, pm, qm)

)
= log2 m + m log2 n + μ

m∑
i=0

log2(pi + di + qi)

+
m∑

i=0

pi + di + qi + 2

2
log2 ni − ν max

i
log L(Mi). (16)

4.2.4. Division Cost Function
The following cost function is based on the assumption that structural break selection
is satisfactory when the variance of residual errors is small, and the orders of assigned
models are small compared to the adjusted segment’s length. The version for AR was
defined as

DCFAR

(
m,p0, (τ1, p1), . . . , (τm, pm)

)
= log2 m +

m∑
i=0

log2

(
μ

(
pi

ni

)δ

+ 1

)
+ ν

m∑
i=0

log2
(
σ 2

i

)
, (17)

where δ is a parameter. The formula for ARIMA is defined as

DCFARIMA
(
m, (τ1, p1, q1), . . . , (τm, pm, qm)

)
= log2 m +

m∑
i=0

[
log2

((
μ

pi + di + qi

ni

)δ

+ 1

)
− ν max

i
log L(Mi)

]
. (18)

4.2.5. Penalty-Division Cost Function
The final cost function is a combination of penalty and division cost functions. We defined
it for the AR model as

PDCFAR

(
m,p0, (τ1, p1), . . . , (τm, pm)

) = m2 +
m∑

i=0

(
μ

(
pi

ni

)δ

+1+ν log2
(
σ 2

i

))
,

(19)

and for the ARIMA model as

PDCFARIMA
(
m, (τ1, p1, q1), . . . , (τm, pm, qm)

)
= m2 +

m∑
i=0

(
μ

(
pi + di + qi

ni

)δ

− ν max
i

log L(Mi)

)
. (20)

Comparing this cost function with the plain MDL (see Eq. (9)), the key difference
is that it includes the possibility of influencing the outcome by leveraging the introduced
parameters. It can be particularly beneficial when the user has domain-specific knowledge.

Metaheuristic Optimization for Structural Break Detection 701

4.3. Extensions of Cost Functions Used to Solve Structural Break Detection Problem

We proposed two extensions to the cost functions that can increase their capabilities.
The first extension is a weight for enforcing minimal allowed interval length. A com-

mon pitfall of structural break detection algorithms is that they find too short, insignificant
time series segments. So far, the problem has mostly been solved by inserting a strict ban
on generating time series segments shorter than a certain threshold. Such a tough, binary
solution is not clear and justified. Thus, we propose a new attempt to solve this problem.
We suggest adding to cost functions a penalty term defined as follows:

PFS(si) =
{

(b − ni)
2, ni < b,

0, ni � b,
(21)

where:

• PFS(si) – function value for a segment si ,
• ni – length of si segment,
• b – a threshold.

The use of weight in the cost function gives more flexibility than the use of a strict thresh-
old.

The second extension was dedicated to the methods that do not account for trends.
We propose to solve this deficiency by adding a weight to a cost function to estimate the
deviation from a linear trend. We can define it as

MSE(si) =
ni−1∑
j=0

(sij − aj − b), (22)

where

• sij – j -th element of i-th time series segment,
• a, b – parameters of resulting linear regression applied to the segment.

Both extensions can be applied with the use of additional parameters, giving them
suitable impact.

4.4. New Adaptations of Metaheuristic Algorithms to the Problem of Structural Break
Detection

4.4.1. Ant Colony Optimization Adaptations
To implement the ACO algorithm for the structural break detection problem, we have
modified the rule of ranking possible edges from that presented in Eq. (4) to the form:

pk
ij (t) =

⎧⎪⎨
⎪⎩

(τij (t))α∗c
β
ij ∗d

γ
ij∑

a∈N(τia(t))α∗c
β
ia∗d

γ
ij

, j ∈ N,

0, j /∈ N,

(23)

702 M. Burczaniuk, A. Jastrzębska

where:

• cij – cost function value for the segment that starts at the i-th time series element and
ends at the j -th element, calculated with a given cost function,

• dij – count of structural breaks in solution,
• β, γ are parameters.

The crucial issue is that we shall know how many structural breaks will occur after choos-
ing j . We can not specify it exactly, since we select the next structural break location with
some randomness, but we can estimate it. Let us denote the count of time series segments
generated after the k-th time series element as v(k). Let us use the letter n to denote the
length of the time series. The v(k) function is defined for k in the range from 0 to n + 1,
where the letter is the element after the last element of the time series. It is apparent that
v(n+ 1) = 0. Similarly, v(n) = 1. Later, after the (n− 1)-th element, we can add a struc-
tural break at the data point in n or cease adding more structural breaks. We can assume
that these two events are equally probable. So, E[v(n−1)] = 1+ 1

2E[v(n)]+ 1
2E[v(n+1)].

This way, we can formulate the method to estimate v(k) value.

E
[
v(k)

] =
{

0, k = n + 1,

1 + 1
(n+1)−k

∑n+1
i=k+1 E[v(i)], k < n + 1.

(24)

The method allows estimating the count of structural breaks after the k-th time series
element in time O(n).

4.4.2. Particle Swarm Optimization Adaptations
Since PSO is an algorithm operating in a continuous space, its application to the structural
break detection problem requires adaptations. We have solved this problem by creating an
upper limit on the produced structural breaks (k) count. A solution was represented as a list
of k structural break locations. A similar solution to the problem was presented by Éltetö et
al. (2012), but they restricted that elements in the array will always be different and sorted.
We did not add such a limitation. It gave us the advantage that our PSO implementation
could detect fewer structural breaks, even zero.

4.4.3. Genetic Algorithm Adaptation
We used the traditional genetic algorithm formulation with tournament selection, with
two-point crossover. We used mutation similar to bit flip mutation, where each bit de-
scribed if an i-th point of time series is a structural break. Still, there was a minor mod-
ification because the probability to change 0 to 1 and 1 to 0 could not be equal – we
proposed a parameter which was promoting mutations that removed structural breaks and
discouraging mutations that were adding structural breaks.

4.5. Time Complexity of Analysed Algorithms

While designing the new solutions, we paid a lot of attention to the issue of computational
complexity. It was critical since the problem at hand involved intensive computations. The

Metaheuristic Optimization for Structural Break Detection 703

algorithms we used needed information about cost function value linked with time series
segments. The information could be calculated dynamically during the computation of a
structural break or eager (earlier) before the computation. The second strategy seems more
straightforward as we divide our task into two sub-tasks: computation of a cost function for
all possible segments and finding structural breaks. It is viable only for short time series
because executing it for long time series would induce many redundant calculations.

Let us address in more detail the computational complexity of finding structural breaks.
We will mark population size as P , iteration count as N , length of time series as n, and
time needed to get cost function for the segment as C. If we use precalculated values for it,
C is constant. In PSO, two procedures: modification of the solution and its evaluation, are
performed in each iteration. The time complexity of modification is proportional to the
maximum count of structural breaks in the solution, which is a parameter of the algorithm,
and we will denote it as K . So, the time complexity of evaluation is proportional to the
product of K and C. Thus, the time complexity of PSO can be expressed as:

tPSO = O(P · N · K · C). (25)

In each iteration, GA performs selection, mutation, crossover, and evaluation. The time
complexity of two-point crossover and mutation is O(n) and the time complexity of tour-
nament selection is O(T), where T is a tournament size. The time series evaluation cost
is K · C. However, K is not constant, but it is a number not larger than n. Thus, the time
complexity of GA is given as:

tGA = O
(
P · N · (T + n · C)

)
. (26)

ACO performs three operations: construction of a new solution, evaluation, and up-
dating pheromone trace in each iteration. During solution construction, an ant calculates
probabilities and needs knowledge of cost function at analysed time series segments,
which is done in O(n · C) time. The maximum count of detected structural breaks is
O(n). Thus, the construction of a single solution is calculated in O(n2 · C) time. The
solution evaluation is in O(n ·C) time. The update of the pheromone trace is made for all
ants together and has three important parts:

1. Sorting solutions calculated by ants in time O(P 2).
2. Pheromone evaporation in O(n2) time.
3. Putting new pheromone int time O(B · n), where B is the count of ants putting

pheromone (we know that B < P).

Thus, the pessimistic complexity of the ant algorithm is given as:

tACO = O
(
N · P · n2 · C + N · (P 2 + n2 + B · n)) = O

(
P · N · (n2 · C + P

))
. (27)

704 M. Burczaniuk, A. Jastrzębska

5. Experimental Evaluation

5.1. Experiment Methodology

In this section, we present the experiments’ outcomes to validate the quality of the pro-
posed novel methods. The scope of the study covered both artificial and real-world time
series representing different situations. Most of the analysed time series were relatively
short, since conventional structural break detection tasks are executed for such cases. We
analysed eight synthesized time series, which included instances with different numbers of
structural breaks, appearing and disappearing trends, and changing time series mean and
variance. There was also an example of a white noise time series with added variation, in
which the algorithms should not detect any structural breaks. We have defined “test cases”
of synthetic time series. We assumed some underlying time series properties for each test
case and then generated each test case multiple times, maintaining the same underlying
properties but with some random noise. This entailed that the experiments were repeated
multiple times for each test case. Specific differences between particular time series in-
stances within a single “case” arise only because we draw values, but the parameters of
distributions we use stay the same.

On top of ten synthetic series, we used two real-world time series representing the
power demand of a fridge freezer in a kitchen. They come from the Electrical Load Mea-
surement dataset by Murray et al. (2015).1 Example time series from the synthetic test
cases are displayed in Fig. 1. Processed real-world time series are illustrated in Fig. 2.

Let us list and briefly discuss synthetic test cases:

1. Time series composed of two segments with the same segment variance but different
segment mean (an example is given in Fig. 1(a)).

2. Time series composed of two segments with the same mean and different segment
variance (an example is given in Fig. 1(b)).

3. Time series composed of two segments generated with the use of different AR models
(yt = 0.9yt−1 + εt and yt = −0.9yt−1 + εt). In the first three examples, two segments
have equal length (like in Fig. 1(c)).

4. Test case without structural breaks. It is a white noise series with a small random dis-
tortion (example is in Fig. 1(d)).

5. Test case where time series start with a long and low-variance segment, but at the end
there is a short, but intense, rise of values (example is in Fig. 1(e)).

6. Time series composed of three segments, where the first and the third segments are
identical and have a fixed mean and variance. The segment in the middle has a larger
variance than the other two segments (see Fig. 1(f)).

7. Test case, which follows a parabolic pattern with low variance of data points. An ex-
ample is given in Fig. 1(g)).

1The dataset is available at https://www.timeseriesclassification.com/description.php?Dataset=FreezerRegular
Train

https://www.timeseriesclassification.com/description.php?Dataset=FreezerRegularTrain
https://www.timeseriesclassification.com/description.php?Dataset=FreezerRegularTrain

Metaheuristic Optimization for Structural Break Detection 705

Fig. 1. Example time series coming from artificial test cases analysed in the paper.

8. Time series generated using the AR model based on the equation:

yt =

⎧⎪⎪⎨
⎪⎪⎩

0.9yt−1 + εt , 0 � t � 512,

1.69yt−1 − 0.81yt−2 + εt , 512 � t < 768,

1.32yt−1 − 0.81yt−2 + εt , 768 � t < 1024

(28)

(example is in Fig. 1(h)).

706 M. Burczaniuk, A. Jastrzębska

Fig. 2. Two real-world time series describing fridge freezer power demand.

To eliminate the possible bias arising due to the randomness of the empirical method-
ology of this study, we have been performing multiple repetitions of the experiments. For
each synthesized test case, we generated 10 time series instances with different random
number generator seeds. Experiments were executed for each generated time series. As a
result, we performed 10 repetitions of each experiment for each test case. Our motivation
was to ensure a reasonable variability of the data by maintaining the same data generation
process that relies on drawing from distributions. To keep the same level of objectivity
in result evaluation, in the case of the real-world time series, we were also repeating the
experiments 10 times.

The outcomes of the experiments that were conducted involving different algorithms
were compared with each other and with the outcomes obtained by other researchers. We
assume three state-of-the-art methods, which we use for such comparisons. The first is
the method proposed by Bai and Perron (1998), Bai and Perron (2003), and the second is
ClaSP by Ermshaus et al. (2023). The third is the method by Davis et al. (2016), which can
be seen as the immediate predecessor of the approach introduced in this paper. In the first
two cases, we run the algorithm to produce the results, but in the third case, we compare
our results to those presented by Davis et al. (2006) using analogous time series examples.

We propose two metrics for the evaluation of the outcomes of structural break detection
procedures:

• break point difference (BPD) – absolute value of the difference between the found and
correct count of structural breaks,

• score value (SC):

SC =
√√√√k ∗ BPD2 + max(tm − m, 0) · 1

4
+

m∑
i=0

(
xi − c(xi)

n

)2

, (29)

where:
– k is a user parameter, which in our experiments was set to 4 based on our experience

with this measure,
– tm is the target count of structural breaks,
– xi are locations of consecutive structural breaks,
– c(xi) is a function that returns location of correct structural break closest to xi .

Metaheuristic Optimization for Structural Break Detection 707

The proposed method of results evaluation is our novel contribution, which is introduced
in this paper.

5.2. Experimental Evaluation of Analysed Cost Functions

At first, we compared results obtained with the MDL, SPF1, SPF2, EMDL, DCF, and
PDCF cost functions. We used both the AR and ARIMA models and both versions of the
cost function: with and without a weight for deviation from a linear trend. The experiments
concerned seven synthetic time series and two real-world time series. The only omitted
case is Fig. 1(h), which will be discussed in detail in Section 7.

Experiments were performed using PSO with parameters C11: ω = −0.1832, c1 =
0.5287, c2 = 3.1913, population size 47. These parameters come from Hvass Pedersen
(2010). We have tested 188 variants of cost functions: 164 for the AR model and 22 for
the ARIMA model. In principle, we have employed a grid search of procedure parameters
for SPF1, SPF2, EMDL, DCF, and PDCF functions with the AR model. In the case of
ARIMA, we have performed fewer tests due to a more considerable computational com-
plexity – we tested a subset of configurations close to the configurations, for which results
for the corresponding functions with the AR model were good.

A detailed discussion on optimization algorithms hyperparameters and their fitting is
provided in Section 6.

Our results were evaluated with the use of BPD and SC metrics and conclusions
attained with use of both were very similar. The best results (assessed with the use of
BPD and SC metrics) were obtained consecutively for configurations: EMDLAR (μ = 3,
ν = 1), EMDLAR (μ = 3, ν = 1), MDLARIMA, all without involvement of the MSE
modification. There were also other cost functions which led to noteworthy results. The
most interesting configurations are presented in Table 1 and Table 2.

Let us discuss the behaviour of various cost functions in more detail. For the simplest
cases, analysed functions perform very well. For test case 1(a) most of the cost functions
in almost each run correctly detect places where the average value of time series changes.

Table 1
BPD score for the best-performing cost functions.

Cost function Test case
MSE 1(a) 1(b) 1(c) 1(d) 1(e) 1(f) 1(g) 2(a) 2(b) Mean

EMDLARIMA (μ = 3, ν = 1) – 0.0 0.0 0.0 0.0 0.0 0.0 1.0 1.1 0.3 0.27
EMDLAR (μ = 3, ν = 1) – 0.0 0.0 0.0 0.0 0.0 0.1 1.0 1.2 0.3 0.29
MDLARIMA – 0.1 0.0 0.0 0.0 0.0 0.1 1.0 1.3 0.2 0.30
MDLAR – 0.0 0.0 0.0 0.0 0.0 0.0 2.5 1.2 0.5 0.47
DCFARIMA (μ = 1, ν = 0.1, δ = 0.5) – 0.0 0.0 0.0 0.9 0.0 0.0 0.8 2.0 1.0 0.52
PDCFARIMA (μ = 10, ν = 0.1, δ = 2) – 0.0 0.0 0.0 1.0 0.0 0.0 0.7 2.0 1.0 0.52
SPFAR (μ = 0.1, ν = 1) – 0.8 1.0 0.3 0.0 1.0 2.0 0.4 0.5 0.1 0.68
SPF2AR (μ = 0.1, ν = 10) – 0.0 1.0 0.2 0.0 0.5 2.0 2.8 0.3 0.0 0.76
SPFAR (μ = 10, ν = 10) + 0.2 0.7 0.8 0.1 1.4 0.4 3.7 0.0 0.0 0.81
SPF2AR (μ = 10, ν = 1) + 0.1 0.9 0.8 0.1 1.0 0.8 3.9 0.0 0.1 0.86

708 M. Burczaniuk, A. Jastrzębska

Table 2
SC score for the best-performing cost functions.

Cost function Test case
Type MSE 1(a) 1(b) 1(c) 1(d) 1(e) 1(f) 1(g) 2(a) 2(b) Mean

EMDLARIMA (μ = 3, ν = 1) – 0.019 0.001 0.007 0.000 0.013 0.004 2.062 2.265 1.203 0.619
EMDLAR (μ = 3, ν = 1) – 0.006 0.001 0.009 0.000 0.011 0.224 2.036 2.465 1.181 0.659
MDLARIMA – 0.225 0.001 0.007 0.000 0.028 0.218 2.062 2.673 1.051 0.659
MDLAR – 0.019 0.001 0.009 0.000 0.006 0.013 5.023 2.465 1.432 0.996
DCFARIMA (μ = 1, ν = 0.1 δ = 0.5) – 0.050 0.008 0.009 1.800 0.060 0.010 1.679 4.062 2.062 1.082
PDCFARIMA (μ = 10, ν = 0.1, δ = 2) – 0.050 0.008 0.008 2.000 0.081 0.018 1.473 4.062 2.062 1.085
SPFAR (μ = 0.1, ν = 1) – 1.652 2.062 0.624 0.000 2.062 4.062 1.087 1.042 0.293 1.431
SPF2AR (μ = 0.1, ν = 10) – 0.006 2.062 0.505 0.000 1.045 4.062 5.659 0.630 0.000 1.552
SPFAR (μ = 10, ν = 10) + 0.421 1.517 1.639 0.200 2.866 0.891 7.418 0.010 0.000 1.662
SPF2AR (μ = 10, ν = 1) + 0.215 1.902 1.640 0.200 2.015 1.699 7.844 0.009 0.217 1.749

The exception was SPFAR (μ = 0.1, ν = 1) with no MSE modification, which did not
find any structural break.

Most of analysed methods correctly find the place where the variance changes (test
case 1(b)). Problems have only SPF and SPF2 methods. They generally did not detect
a break in such a case. The SPFAR (μ = 10, ν = 10) with MSE is an exception, because
it finds structural breaks but locates them in incorrect places.

Most of presented cost functions detect change between two different AR models very
well (case 1(c)). The exception are methods involving MSE modification. They detect
usually two structural breaks and only small part of them is close to correct structural
break location.

Most of presented cost functions correctly solved the task of processing white noise
time series (case 1(d)). The expected outcome in this scenario is not to return any structural
breaks. The only cost functions which almost always failed the test are the PDCF and DCF
cost functions.

Test case 1(e) contained series composed of two segments: white noise and a segment
with a trend. In this scenario, the classical MDL and the elastic MDL rule produced ex-
cellent outcomes. PDCF and DCF cost functions were less precise, but they detected one
structural break near the expected location (slightly too early). Methods based on penalty
cost function in most cases returned more than one structural break. Usually one of them
was in the expected location (with the exception of configuration SPFAR (μ = 0.1, ν = 1)
without MSE where no structural breaks were found.

Result obtained for the test cases composed of three segments of the same length
(case 1(f)) were generally good. Only SPF and SPF2 cost functions had problems. The
configurations did not detect any structural break or detected (often more than one) in
incorrect places.

The next test case concentrated on a rather theoretical example, where time series was
the shape of a parabola (see Fig. 1(g)). The parabola case is very difficult as there are many
viable locations of structural breaks. In this test case, the introduced BPD and SC scores
are not very informative and a valid evaluation must be manual. The experiments have
shown, that the methods including the MSE modification and SPF2AR (μ = 0.1, ν = 10)

Metaheuristic Optimization for Structural Break Detection 709

detected too many structural breaks and were not very practical. Conversely, cost functions
employing the ARIMA model had a strong tendency not to detect any structural change.
Results generated by SPFAR (μ = 0.1, ν = 1) also were very impractical (one structural
break detected closely to start or end of time series). Other cost functions usually allowed
for detecting a few structural changes near the 1

4 th and the 3
4 th of the time series length.

The best results were obtained with the EMDLAR (μ = 3, ν = 1) model.
The last two examples were the real-world time series describing fridge freezer power

demand. We analysed two examples. First, where the freezer was turned on and turned off
after some time (case 2(a)). Second, where the freezer was turned on and was working
until the end of the time series (case 2(b)). The best results were obtained for chosen
configurations of SPF and SPF2 methods. For case 2(a) they allowed for a correct detection
of both structural breaks and for case 2(b) the same methods returned one structural break
in the correct location. It is worth to say that cost function variants using MSE modification
give more reliable results for case 2(a). All other cost functions listed in the tables did
not find any structural break or found one near to the end of the time series. The latter
behaviour is a result of a phenomenon which will be discussed in the next subsection.

We have observed that the proposed cost functions enhance time series processing ca-
pabilities for structural break detection algorithms. Noteworthy, for all of the proposed
cost functions, we can find a set of parameters that works very well for various test cases.
Furthermore, we will demonstrate in Section 7 that the proposed cost functions are gen-
erally better performing than the state-of-the-art MDLAR cost function. Promising results
have been achieved with the use of the SPF and SPF2 cost functions. Their superiority
was the clearest when we processed real-world time series. Their only weakness is that
they may tend to output incorrect structural break count – too many or too few, more often
too many, especially when the methods are used with MSE modification.

The empirical experiments have shown that the cost functions using the ARIMA model
are very good, and in many cases, they are better than the ones using the AR model. Their
weak point is computational complexity, which is higher, and this difference grows as the
time series length increases. For example, it took only 0.3s for the AR model to calculate
MDL cost function partial values for all possible time series segments for the test case with
50 data points and 190.0s for ARIMA. In contrast, for a case with 100 data points, it took
1.4s and 937.7s, respectively. This shows that cost functions using the ARIMA model are
helpful for short time series. In practice, it is not a severe limitation for many real-world
domains applying break detection methods (such as economics), in which relatively short
time series are of interest.

The proposed objective functions punish for deviations from theoretical models con-
structed on developed segments. Therefore, if these models cannot reflect the underlying
data well, there is no reasonable justification to apply this model. If the data contains a
clearly visible and changing trend, the recommended choice is an objective function that
punishes deviations from theoretical models. The component that punishes for short in-
tervals should we weighted as less important. Punishing for deviations from a theoretical
model is a lousy strategy for high-variance time series or if variance is the crucial distinc-
tion for subsequent segments. In this case, punishing for short segments and diminishing
the punishment for deviations from theoretical models is much better.

710 M. Burczaniuk, A. Jastrzębska

6. Parameter Fitting and a Comparison Between PSO, GA, and ACO

In this section, we present a study on the impact of hyperparameters on the heuristic algo-
rithms. We performed these experiments with the use of classical AR MDL cost function
without the MSE modification due to its good reputation and long presence in literature.
The objective of these experiments was to demonstrate technical validity of parameter
selection for the optimizers. Such a study is necessary in methods utilizing heuristic ap-
proaches. While it does not deliver new results concerning the algorithmic level, it shows
the behaviour of the procedure and allows to verify its stability and robustness.

6.1. PSO

We performed tests for 3 configurations of PSO:

• C11: ω = −0.1832, c1 = 0.5287, c2 = 3.1913 with population size 47 (these parame-
ters come from Hvass Pedersen, 2010),

• C12: ω = 0.8, c1 = 2, c2 = 2 (used by Charalampakis and Dimou, 2010) with popula-
tion size 20,

• C13: ω = 0.5, c1 = 1.8, c2 = 2.29 with population size 40, being an own modification
of the previous set of parameters.

All the experiments were performed with maximal limit of 10 detected structural
breaks. Tables 3 and 4 present results for these configurations.

According to the two presented metrics, the best results achieved using PSO were for
the parameter configuration C11. All tested configurations produced excellent results for
the first six case studies (1(a)–1(f)).

The most interesting observations were made for the real-world time series. All named
configurations did not locate structural breaks in the correct locations and found none or

Table 3
BPD score for different PSO configurations.

Config. Test case
1(a) 1(b) 1(c) 1(d) 1(e) 1(f) 1(g) 2(a) 2(b) Mean

C11 0.0 0.0 0.0 0.0 0.0 0.0 2.5 1.2 0.5 0.467
C12 0.0 0.0 0.0 0.0 0.0 0.0 2.6 1.7 0.9 0.578
C13 0.0 0.0 0.0 0.0 0.0 0.0 2.6 1.9 1.0 0.611

Table 4
SC score for different PSO configurations.

Config. Test case
1(a) 1(b) 1(c) 1(d) 1(e) 1(f) 1(g) 2(a) 2(b) Mean

C11 0.019 0.001 0.009 0.000 0.006 0.013 5.023 2.465 1.432 0.996
C12 0.019 0.001 0.009 0.000 0.006 0.018 5.224 3.463 1.936 1.186
C13 0.019 0.001 0.009 0.000 0.006 0.014 5.222 3.862 2.062 1.244

Metaheuristic Optimization for Structural Break Detection 711

one structural break close to the end of the time series. The detection of such structural
breaks (near or precisely at the end of a sequence) is a side effect of the algorithm’s op-
erations. During the optimization procedure, each structural break location is treated as
a variable, and it can change its position in time series. A variable at the end of the time
series is treated as if the structural break did not exist. This, however, may result in the
observed adverse effect. If a time series is challenging, we may end up with incorrectly
identified structural breaks near the end. The described behaviour did not occur for con-
figuration C13, but it appeared for C12, where the population count was smaller (20), and
for C11, probably due to the negative inertia.

6.2. GA

For the GA we ran the experiments on a grid of parameters. We have tested mutation
probabilities from the set {0.0125, 0.0083, 0.0033}, crossover probabilities from the set
{0.2, 0.5, 0.8}, tournament sizes {2, 8}, population size 40 and using small direction mod-
ification (0.2) or not.

Both metrics indicated the same best-performing parameter configurations listed be-
low:
• C21: mutation probability: 0.0083, crossover probability: 0.5, tournament size: 8, pop-

ulation size: 40, no direction modification,
• C22: mutation probability: 0.0125, crossover probability: 0.5, tournament size: 8, pop-

ulation size: 40, no direction modification,
• C23: mutation probability: 0.0083, crossover probability: 0.2, tournament size: 8, pop-

ulation size: 40, no direction modification,
• C24: mutation probability: 0.0033, crossover probability: 0.5, tournament size: 8, pop-

ulation size: 40, no direction modification.

The results calculated for listed configurations are in Tables 5 and 6.

Table 5
BPD score for different GA configurations.

Config. Test case
1(a) 1(b) 1(c) 1(d) 1(e) 1(f) 1(g) 2(a) 2(b) Mean

C21 0.0 0.0 0.0 0.0 0.0 0.0 1.5 2.0 1.0 0.500
C22 0.1 0.0 0.0 0.0 0.1 0.0 1.5 2.0 1.0 0.522
C23 0.1 0.0 0.2 0.0 0.0 0.0 1.4 2.0 1.0 0.522
C24 0.1 0.0 0.1 0.0 0.0 0.0 1.6 2.0 1.0 0.533

Table 6
SC score for different GA configurations.

Config. Test case
1(a) 1(b) 1(c) 1(d) 1(e) 1(f) 1(g) 2(a) 2(b) Mean

C21 0.029 0.030 0.012 0.000 0.049 0.067 3.027 4.062 2.062 1.038
C22 0.235 0.018 0.021 0.000 0.249 0.053 3.028 4.062 2.062 1.081
C23 0.245 0.041 0.417 0.000 0.065 0.081 2.827 4.062 2.062 1.089
C24 0.244 0.028 0.211 0.000 0.039 0.054 3.230 4.062 2.062 1.103

712 M. Burczaniuk, A. Jastrzębska

The analysis showed that it was generally better not to use the direction modification.
The average value of the SC metrics of the results concerning the direction modification
was 1.467, while the average for the results without it was 1.187. For various values of
mutation probability, crossover probability, and tournament size, mean SC metrics fluctua-
tions were very little, especially compared to concerning mutation modification influence.

Qualitative analysis of the experiments’ results showed that the outcomes were quite
similar for all tested GA parameters. There were minor differences in the count of detected
structural breaks in a few cases.

6.3. ACO

The experiments with ACO were conducted for a grid of parameters. We tested different
combinations of parameters assuming the following sets of values of interest: the evapo-
ration parameter {0.5, 0.9}, importance of pheromone count {1, 1.5}, importance of frag-
ment rank {2, 5}, and estimated break count {1, 2}, count of elitist ants used to correct
pheromone data {2, 4}, importance of count of pheromone updated at one time {0.05, 0.2}
and the limit of detected structural breaks {4, 10}. The best results were obtained for the
following configurations:
• C32: evaporation parameter: 0.9, pheromone count parameter: 1, fragment rank param-

eter: 2, estimated break count parameter: 2, elitist ants count: 4, updated pheromone
count: 0.05, detected structural break limit: 4,

• C31: evaporation parameter: 0.9, pheromone count parameter: 1, fragment rank param-
eter: 2, estimated break count parameter: 2, elitist ants count: 4, updated pheromone
count: 0.05, detected structural break limit: 10,

• C33: evaporation parameter: 0.9, pheromone count parameter: 1.5, fragment rank pa-
rameter: 2, estimated break count parameter: 2, elitist ants count: 4, updated pheromone
count: 0.05, detected structural break limit: 4.

Results obtained for the listed parameter configurations them are presented in Tables 7
and 8.

Table 7
SC score for different ACO configurations.

Config. Test case
1(a) 1(b) 1(c) 1(d) 1(e) 1(f) 1(g) 2(a) 2(b) Mean

C31 0.0 0.0 0.0 0.0 0.0 0.0 1.8 2.0 1.0 0.53
C32 0.0 0.0 0.1 0.0 0.0 0.0 1.8 2.0 1.0 0.54
C33 0.0 0.0 0.0 0.0 0.0 0.0 1.9 2.0 1.0 0.54

Table 8
SC score for different ACO configurations.

Config. Test case
1(a) 1(b) 1(c) 1(d) 1(e) 1(f) 1(g) 2(a) 2(b) Mean

C31 0.029 0.001 0.011 0.000 0.006 0.014 3.625 4.062 2.062 1.090
C32 0.013 0.001 0.211 0.000 0.006 0.024 3.629 4.062 2.062 1.112
C33 0.029 0.003 0.009 0.000 0.006 0.031 3.823 4.062 2.062 1.114

Metaheuristic Optimization for Structural Break Detection 713

Subsequently, we looked into each parameter and analysed its role in the achieved
outcomes. As BPD and SC metrics usually give similar conclusions, but the SC metric
provides more information, the discussion below refers to the average value of the SC.
The results showed that:

• a more favourable value for the evaporation coefficient is 0.9 (SC 1.289) than 0.5 (SC
1.383),

• a slightly better value of importance of the pheromone parameter is 1.0 (SC 1.335) than
1.5 (SC 1.337),

• 2 is a slightly better value than 5 for the weight of fragment rank (achieving the average
SC of 1.321, in comparison to 1.350),

• for the importance of estimated break count parameter value 2 (SC 1.292) is a better
choice than 1 (SC 1.379),

• increasing the count of elitist ants had a little contribution towards the improvement of
the score (SC 1.345 for value 2 and 1.327 for 4),

• a better value of scale of the pheromone update parameter was 0.05 (SC 1.324) than
0.2 (SC 1.348),

• better results were obtained with the use of a limit of 10 maximum detected structural
changes (SC 1.319) than with the use of a limit of 4 (SC 1.353).

The most significant conclusion refers to the structural break count limit. This limit
allows for accelerating calculations and achieving better results for test cases where the
desirable structural break count is less than this limit. The experiments showed that more
favourable results were obtained with a bigger limit, which indicates that the algorithm can
very well generalize and detect fewer breaks than this limit, which is an essential feature
for many possible real-world applications of structural break detection methods.

7. Comparison with Baseline and State-of-the-Art Methods

The proposed approaches were compared with two selected state-of-the-art methods: Bai
and Perron (1998, 2003), ClaSP by Ermshaus et al. (2023) and Davis et al. method (Davis
et al., 2016, 2006, 2008; Davis and Yau, 2013; Davis et al., 2005). The comparison is
divided into three parts. First, we compare with the Bai-Perron method, and next with
ClaSP. It was performed using cases 1(a)–2(b) without case 1(h). Next, we address the
time series used by Davis et al. (2005) in their work, denoted in this paper as case 1h. For
this time series, we compare our results with those of the Bai-Perron, ClaSP, and Davis
methods.

7.1. Comparison with the Bai-Perron Method (Baseline)

We performed experiments using the Bai-Perron method with the same test cases as in
previous tests. Mean BPD and SC for these examples and general mean are presented in
Table 9.

714 M. Burczaniuk, A. Jastrzębska

Table 9
BPD and SC results for the Bai-Perron method.

Test case
1(a) 1(b) 1(c) 1(d) 1(e) 1(f) 1(g) 2(a) 2(b) Mean

BPD 0.1 0 0.7 0.2 0 0.4 4.1 1.0 4.0 1.167
SC 0.335 0.081 1.492 0.400 0.066 0.864 8.214 2.020 8.058 2.392

We can see that the Bai-Perron method was substantially worse than the presented
methods. Qualitative analysis showed that the Bai-Perron method achieved moderately
satisfying results for cases 1(c), 1(e), or 1(f). However, even in these cases, the structural
breaks were inexact. The Bai-Perron method produced even worse outcomes for the re-
maining test cases, confirming results for individual test cases. It is worth highlighting
that the method had problems with real-world cases where it detected too many struc-
tural breaks. The experiments proved that the methods presented in this paper guarantee
better results than the baseline Bai-Perron method (please compare with Tables 1 and 2
concerning our results).

7.2. Comparison with ClaSP Algorithm

We compared our work also to the state-of-the-art ClaSP algorithm by Ermshaus et al.
(2023). We run the algorithm on our examples. The obtained results were very poor. They
are presented in Table 10. The method found any structural breaks rarely. The only ex-
ample from set 1(a)–2(b) where structural break was detected was example 1(c), but the
precision also was not ideal.

The results covered in Table 10 (ClaSP) may be compared with Table 1 and 2 concern-
ing our results. The advantage of the proposed approach is visible.

7.3. Experiments Using Real-World Time Series

Contrary to previous experiments, to process the real-world dataset published by Davis et
al., we used the island model (40 islands, 20 migrations, 5 iterations between migrations,
small population size 40) to make our settings similar to the settings employed by Davis
et al. (2005).

Table 11 presents mean precision of detected structural break locations and associated
standard deviations. Particular hyperparameter configurations used with our optimizers
are noted with letter C, and their explanation is provided in Section 6.

Table 10
BPD and SC results for the ClaSP method.

Metric 1(a) 1(b) 1(c) 1(d) 1(e) 1(f) 1(g) 2(a) 2(b) Mean

BPD 1.0 1.0 0.1 0.0 1.0 2.0 1.0 2.0 1.0 1.011
SC 2.062 2.062 0.235 0.000 2.062 4.062 2.062 4.062 2.062 2.074

Metaheuristic Optimization for Structural Break Detection 715

Table 11
Comparison with the state-of-the-art methods for case 1h. Mean 1 and Std 1 refer to the mean precision and
standard deviation for the first (out of two) true structural breaks in the time series. Mean 2 and Std 2 refer to
the mean precision and standard deviation concerning detecting the second true structural break. Results for

Bai-Perron and ClaSP algorithms concern only experiments where two structural breaks were detected.

Algo. Config. Cost Function Mean 1 Std 1 Mean 2 Std 2

Davis et al. – MDLAR 0.50000 0.00200 0.74200 0.00700
Bai-Perron – – 0.49898 0.07827 0.73511 0.03329
ClaSP – – 0.62666 0.16288 0.73706 0.00674
PSO C11 EMDLARIMA (μ = 3, ν = 1) 0.50020 0.00373 0.75039 0.00050
PSO C11 ARIMA MDL 0.50127 0.00291 0.75000 0.00159
GA C27 EMDLARIMA (μ = 3, ν = 1) 0.50068 0.00252 0.75000 0.00260
PSO C11 PDCFARIMA (μ = 10, ν = 0.1, δ = 2) 0.50068 0.00412 0.74932 0.00393

Davis et al. (2005) delivered a method that returned two structural breaks for every
experiment. Our algorithms also found two structural breaks for every performed test.

Subsequently, we compared our results against those calculated using Bai-Perron’s and
ClaSP methods. They are also given in Table 11. Please note “Std” values, which show
the efficiency of the compared methods (the smaller the better).

It is essential to state that the means and standard deviations presented in Table 11
are calculated only for experiments where two structural breaks were detected. Notably,
Davis’s algorithm and our configurations consistently detected two breaks each time we
ran them. That was the expected behaviour. However, the Bai-Perron method detected
two breaks in 80% of repetitions, while ClaSP detected two breaks only in 40% of rep-
etitions. That information is sufficient to claim that both Bai-Perron and ClaSP methods
work worse than the other analysed methods.

Still, to provide a deeper analysis, Table 11 presents the results achieved by all four
approaches limited to the cases when two structural breaks were detected (which promotes
Bai-Perron and ClaSP, as we skipped the cases when these two returned other breaks
numbers).

First and foremost, Table 11 allows comparing our results and those of Davis et al. In
both cases, two (out of two) structural breaks were always detected. However, using our
method, the second structural break was detected much better than in Davis’s work, while
the first was slightly worse. If we take an average of standard deviations for the location
of the first and the second structural break, we see that the average for Davis’s work is
0.0045, and the average of the best variant of our method is 0.00212. The latter average
(our approach) is two times better than the Davis’s. This shows that the method presented
in this article outperforms the one given by Davis et al.

Our approach is very good in comparison with state-of-the-art methods. In our opinion,
it is also more versatile and customizable. We have delivered not a single method but a
suite of methods. Finally, we may emphasize that our results are much better than those
obtained with Bai-Perron’s and ClaSP methods. These two algorithms struggle to find two
structural breaks. Even if they find two structural breaks, they locate them inaccurately.

716 M. Burczaniuk, A. Jastrzębska

8. Conclusion

The discussed experiments have proven the key statements from the introductory section
of this paper. In our studies, we have delivered a suite of new cost functions to be used for
structural break detection with the help of metaheuristic optimization.

The experimental procedure was designed to ensure that a satisfying number of rep-
etitions of a model construction process was performed. We have paid attention to the
three aspects in which properties influence the processing outcome. To eliminate chances
of drawing unfounded conclusions, we applied the following schema:

• We have drawn 10 (different) time series for each synthetic time series case. The gen-
erative process stayed the same within one case, but time series-specific values were
different.

• For real-world time series, each experiment was repeated 10 times.
• We have fixed the metaheuristic methods’ hyperparameters to a selected configuration

and run the same configuration for different specifications of the break detection algo-
rithm to test one aspect.

• We have fixed the structural break detection algorithm specification for a few configu-
rations and tested the impact of metaheuristic algorithm hyperparameters.

The introduced changes allowed us to improve the qualitative and quantitative out-
comes of the structural break detection task. In particular, concerning the state-of-the-art
algorithms, we managed to:

• improve numerical accuracy of the results, especially when analysing time series con-
taining trend,

• show that ACO and PSO methods are not worse at solving the task than GA,
• give more flexibility to the experts (potential users of our method) by allowing, option-

ally, to set parameters that control the count of detected structural breaks.

Each new cost function or modification presented in this paper targeted a different
new property. The Elastic MDL method guarantees results similar to the state-of-the-art
techniques but introduces the possibility of adapting the model’s shape to the user’s pref-
erences. Methods using a penalty for deviation from a linear trend work well for real-world
time series. DCF and PDCF cost functions capture the new understanding of cost func-
tions designed for structural break detection problems. Let us recall that these two take
into account the variance of residuals.

The experiments have shown that using ARIMA often helps to achieve better results
than AR. Thanks to the use of metaheuristic approaches, in such cases, the optimization
procedure adjusts the model’s shape and allows us to obtain more accurate results.

Our studies in this area can be continued. The most interesting future research area is
extending this approach to time series with multiple variables.

There is a straightforward solution to this task because the proposed formulas are ad-
ditive, cf. equations (10)–(20). Because of that, we can simply add more components to
these formulas to account for multiple variables – they will be represented with their own

Metaheuristic Optimization for Structural Break Detection 717

AR/ARIMA models for the same segments. The issue with this simple solution is that
the formulas’ complexity grows. Consequently, such an objective function may become
more challenging to optimize, even for a heuristic method. However, we cannot evaluate
the actual influence of this complexity without appropriate empirical tests.

An alternative path worthy of further inspection when working with multivariate time
series could be to reduce time series dimensionality (perhaps even to one dimension)
and proceed with the approach presented in this paper. The potential problem that may
arise when working with such a solution is that the procedure may become intangible. We
would have to employ an external algorithm whose properties will heavily influence the
processing outcome. Analysing the performance of such a data processing pipeline will
be more complex, as we need to cover this additional algorithm.

Finally, the most advanced solution would be to replace ARIMA/AR, predominantly
for univariate time series, with a model suitable for dealing with multiple variables. VAR
(Vector Autoregression) can be fused to the proposed framework in such a case.

Funding

This research was supported by the Warsaw University of Technology within the Ex-
cellence Initiative: Research University (IDUB) programme.

References

Abdel-Basset, M., Abdel-Fatah, L., Sangaiah, A.K. (2018). Metaheuristic algorithms: a comprehensive re-
view. In: Computational Intelligence for Multimedia Big Data on the Cloud with Engineering Applications,
pp. 185–231.

Altansukh, G., Osborn, D.R. (2022). Using structural break inference for forecasting time series. Empirical
Economics, 63, 1–41.

Bai, J., Perron, P. (1998). Estimating and testing linear models with multiple structural changes. Econometrica,
66(1), 47–78.

Bai, J., Perron, P. (2003). Computation and analysis of multiple structural change models. Journal of Applied
Econometrics, 18(1), 1–22.

Bai, J., Duan, J., Han, X. (2024). The likelihood ratio test for structural changes in factor models. Journal of
Econometrics, 238(2), 105631.

Bardwell, L., Fearnhead, P., Eckley, I.A., Smith, S., Spott, M. (2019). Most recent changepoint detection in panel
data. Technometrics, 61(1), 88–98.

Behrendt, S. (2021). Structural breaks in Box-Cox transforms of realized volatility: a model selection perspec-
tive. Quantitative Finance, 21(11), 1905–1919.

Borzykh, D.A., Yazykov, A.A. (2020). On the practical applicability of three cusum-methods for structural
breaks detection in EGARCH-models. Vestnik of Saint Petersburg University. Applied Mathematics. Com-
puter Science. Control Processes, 16(1), 19–30.

Casini, A., Perron, P. (2024). Change-point analysis of time series with evolutionary spectra. Journal of Econo-
metrics, 242(2), 105811.

Charalampakis, A., Dimou, C. (2010). Identification of Bouc–Wen hysteretic systems using particle swarm op-
timization. Computers & Structures, 88(21), 1197–1205.

Cheng, Y., Yi, J., Yang, X., Lai, K.K., Seco, L. (2022). A CEEMD-ARIMA-SVM model with structural breaks
to forecast the crude oil prices linked with extreme events. Soft Computing, 26, 8537–8551.

Cho, H., Kirch, C. (2022). Two-stage data segmentation permitting multiscale change points, heavy tails and
dependence. Annals of the Institute of Statistical Mathematics, 74(4), 653–684.

718 M. Burczaniuk, A. Jastrzębska

Cho, H., Korkas, K.K. (2022). High-dimensional garch process segmentation with an application to value-at-
risk. Econometrics and Statistics, 23, 187–203.

Cho, H., Kirch, C. (2024). Data segmentation algorithms: univariate mean change and beyond. Econometrics
and Statistics, 30, 76–95.

Davis, R.A., Yau, C.Y. (2013). Consistency of minimum description length model selection for piecewise sta-
tionary time series models. Electronic Journal of Statistics, 7, 381–411.

Davis, R., Lee, T., Rodriguez-Yam, G. (2005). Structural breaks estimation for non-stationary time series signals.
In: IEEE Workshop on Statistical Signal Processing Proceedings, Vol. 2005, pp. 233–238.

Davis, R.A., Lee, T.C.M., Rodriguez-Yam, G.A. (2006). Structural break estimation for nonstationary time series
models. Journal of the American Statistical Association, 101(473), 223–239.

Davis, R.A., Lee, T.C.M., Rodriguez-Yam, G.A. (2008). Break detection for a class of nonlinear time series
models. Journal of Time Series Analysis, 29(5), 834–867.

Davis, R.A., Hancock, S.A., Yao, Y.-C. (2016). On consistency of minimum description length model selection
for piecewise autoregressions. Journal of Econometrics, 194(2), 360–368.

Ditzen, J., Karavias, Y., Westerlund, J. (2021). Testing and Estimating Structural Breaks in Time Series and
Panel Data in Stata. Discussion Papers 21-14, Department of Economics, University of Birmingham.

Doerr, B., Fischer, P., Hilbert, A., Witt, C. (2017). Detecting structural breaks in time series via genetic algo-
rithms. Soft Computing, 21, 4707–4720.

Dorigo, M., Stützle, T. (2019). Ant Colony Optimization. MIT Press, Cambridge, MA.
Éltetö, T., Hansen, N., Germain-Renaud, C., Bondon, P. (2012). Scalable structural break detection. Applied Soft

Computing, 12(11), 3408–3420.
Ermshaus, A., Schäfer, P., Leser, U. (2023). ClaSP: parameter-free time series segmentation. Data Mining and

Knowledge Discovery, 37(3), 1262–1300.
Farsi, N., Mahjouri, N., Ghasemi, H. (2020). Breakpoint detection in non-stationary runoff time series under

uncertainty. Journal of Hydrology, 590, 125458.
Fryzlewicz, P. (2014). Wild binary segmentation for multiple change-point detection. The Annals of Statistics,

42(6).
Fryzlewicz, P. (2020). Detecting possibly frequent change-points: wild binary segmentation 2 and steepest-drop

model selection. Journal of the Korean Statistical Society, 49(4), 1027–1070.
Hall, A.R., Osborn, D.R., Sakkas, N. (2013). Inference on structural breaks using information criteria. The

Manchester School, 81(S3), 54–81.
Huang, S.-H., Shih, W.-Y., Lu, J.-Y., Chang, H.-H., Chu, C.-H., Wang, J.-Z., Huang, J.-L., Dai, T.-S. (2020).

Online structural break detection for pairs trading using wavelet transform and hybrid deep learning model.
In: 2020 IEEE International Conference on Big Data and Smart Computing (BigComp), pp. 209–216.

Hvass Pedersen, M.E. (2010). Good Parameters for Particle Swarm Optimization. In technical report
No. HL1001. Hvass Laboratories.

Inclan, C., Tiao, G.C. (1994). Use of cumulative sums of squares for retrospective detection of changes of vari-
ance. Journal of the American Statistical Association, 89(427), 913–923.

Kim, K., Park, J.H., Lee, M., Song, J.W. (2022). Unsupervised change point detection and trend prediction for
financial time-series using a new CUSUM-based approach. IEEE Access, 10, 34690–34705.

Kirch, C., Reckruehm, K. (2024). Data segmentation for time series based on a general moving sum approach.
Annals of the Institute of Statistical Mathematics, 76, 393–421.

Kovács, S., Bühlmann, P., Li, H., Munk, A. (2023). Seeded binary segmentation: a general methodology for fast
and optimal changepoint detection. Biometrika, 110(1), 249–256.

Lan, N., Geyer, M., Chemla, E., Katzir, R. (2022). Minimum description length recurrent neural networks. Trans-
actions of the Association for Computational Linguistics, 10, 785–799.

Lee, T.H., Parsaeian, S., Ullah, A. (2022). Efficient combined estimation under structural breaks. Advances in
Econometrics, 43A, 119–142.

Li, Y., Cezeaux, R., Yu, D. (2019a). Automating data monitoring: detecting structural breaks in time series data
using Bayesian minimum description length.

Li, Y., Lund, R., Hewaarachchi, A. (2019b). Multiple changepoint detection with partial information on change-
point times. Electronic Journal of Statistics, 13(2), 2462–2520.

Lim, H., Choi, H., Choi, Y., Kim, I.-J. (2020). Memetic algorithm for multivariate time-series segmentation.
Pattern Recognition Letters, 138, 60–67.

Lu, Q., Lund, R., Lee, T.C.M. (2010). An MDL approach to the climate segmentation problem. The Annals of
Applied Statistics, 4(1), 299–319.

Metaheuristic Optimization for Structural Break Detection 719

Madrid Padilla, O.H., Yu, Y., Wang, D., Rinaldo, A. (2022). Optimal nonparametric multivariate change point
detection and localization. IEEE Transactions on Information Theory, 68(3), 1922–1944.

Meier, A., Kirch, C., Cho, H. (2021). mosum: a package for moving sums in change-point analysis. Journal of
Statistical Software, 97(8), 1–42.

Murray, D., Liao, J., Stankovic, L., Stankovic, V., Hauxwell-Baldwin, R., Wilson, C., Coleman, M., Kane, T.,
Firth, S. (2015). A data management platform for personalised real-time energy feedback. In: Proceedings of
the 8th International Conference on Energy Efficiency in Domestic Appliances and Lighting.

Rissanen, J. (1978). Modeling by shortest data description. Automatica, 14(5), 465–471.
Romano, G., Rigaill, G., Runge, V., Fearnhead, P. (2022). Detecting abrupt changes in the presence of local

fluctuations and autocorrelated noise. Journal of the American Statistical Association, 117(540), 2147–2162.
Safikhani, A., Bai, Y., Michailidis, G. (2022). Fast and scalable algorithm for detection of structural breaks in

big VAR models. Journal of Computational and Graphical Statistics, 31(1), 176–189.
Scott, A.J., Knott, M. (1974). A cluster analysis method for grouping means in the analysis of variance. Biomet-

rics, 30(3), 507–512.
Shaochuan, L. (2020). Bayesian multiple changepoints detection for Markov jump processes. Computational

Statistics, 35(3), 1501–1523.
Shi, X., Beaulieu, C., Killick, R., Lund, R. (2022a). Changepoint detection: an analysis of the Central England

temperature series. Journal of Climate, 35(19), 2729–2742.
Shi, X., Gallagher, C., Lund, R., Killick, R. (2022b). A comparison of single and multiple changepoint techniques

for time series data. Computational Statistics & Data Analysis, 170, 107433.
Smith, S.C. (2023). Structural breaks in grouped heterogeneity. Journal of Business & Economic Statistics, 41,

752–764.
Suárez-Sierra, B.M., Coen, A., Taimal, C.A. (2023). Genetic algorithm with a Bayesian approach for the detec-

tion of multiple points of change of time series of counting exceedances of specific thresholds. Journal of the
Korean Statistical Society, 52, 982–1024.

Tartakovsky, A. (2019). Sequential Change Detection and Hypothesis Testing. Chapman and Hall/CRC.
Woody, J., Xu, Y., Dyer, J., Lund, R., Hewaarachchi, A.P. (2021). A statistical analysis of daily snow depth trends

in North America. Atmosphere, 17(7) 820.
Yan, Q., Liu, Y., Liu, S., Ma, T. (2021). Change-point detection based on adjusted shape context cost method.

Information Sciences, 545, 363–380.
Yang, Q., Zhang, Y. (2022). Change-point detection for the link function in a single-index model. Statistics &

Probability Letters, 186, 109468.
Zhang, N.R., Siegmund, D.O. (2007). A modified Bayes Information Criterion with applications to the analysis

of comparative genomic hybridization data. Biometrics, 63(1), 22–32.

M. Burczaniuk received the BSc degree in computer science and the MSc degree in
computer science and information systems from the Warsaw University of Technology,
Warsaw, Poland, in 2020 and 2021, respectively. His research interests include machine
learning, evolutionary computation and swarm intelligence.

A. Jastrzębska received the BSc degree in information technology from the University of
Derby, Derby, UK, in 2009, the MScEng degree in computer engineering from the Rzes-
zow University of Technology, Rzeszow, Poland, in 2010, the MA degree in economics
from the University of Rzeszow, Rzeszow, in 2011, and the PhD and DSc degrees from
the Warsaw University of Technology, Warsaw, Poland, in 2016 and 2021, respectively.
She is associate professor with the Faculty of Mathematics and Information Science, War-
saw University of Technology. Her research interests include machine learning and fuzzy
modeling. She serves as an associate editor of Applied Soft Computing journal.

	Introduction
	Literature Review on Time Series Structural Break Detection
	Earlier Papers on Time Series Structural Break Detection
	Evolutionary Methods in Structural Break Detection Problem
	The Issue of the Target Function Definition

	Preliminaries
	ARIMA for Time Series Modelling
	Metaheuristic Algorithms
	Ant Colony Optimization
	Particle Swarm Optimization
	Genetic Algorithm
	Island Model in Heuristic Optimization
	Cost Functions Used in the Literature to Optimize Structural Break Count

	Proposed Approach
	Generalization of the Approach: Using the New MDL Function with the ARIMA Model
	Introducing New Cost Functions for the Optimization Problems Dealing with Structural Break Detection
	Penalty Function, Modification #1
	Penalty Function, Modification #2
	Elastic MDL
	Division Cost Function
	Penalty-Division Cost Function

	Extensions of Cost Functions Used to Solve Structural Break Detection Problem
	New Adaptations of Metaheuristic Algorithms to the Problem of Structural Break Detection
	Ant Colony Optimization Adaptations
	Particle Swarm Optimization Adaptations
	Genetic Algorithm Adaptation

	Time Complexity of Analysed Algorithms

	Experimental Evaluation
	Experiment Methodology
	Experimental Evaluation of Analysed Cost Functions

	Parameter Fitting and a Comparison Between PSO, GA, and ACO
	PSO
	GA
	ACO

	Comparison with Baseline and State-of-the-Art Methods
	Comparison with the Bai-Perron Method (Baseline)
	Comparison with ClaSP Algorithm
	Experiments Using Real-World Time Series

	Conclusion

