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Abstract. A proper CNC machine selection problem is an important issue for manufacturing com-
panies under competitive market conditions. The selection of an improper machine tool can cause
many problems such as production capabilities and productivity indicators considering time and
money industrially and practically. In this paper, a comprehensive solution approach is presented
for the CNC machine tool selection problem according to the determined criteria. Seven main and
thirteen sub-criteria were determined for the evaluation of the seven alternatives. To purify the se-
lection process from subjectivity, instead of a single decision-maker, the opinions of six different
experts on the importance of the criteria were taken and evaluated using the Best-Worst method. Ac-
cording to the evaluations, the order of importance of the main criteria has been determined as cost,
productivity, flexibility, and dimensions. After the weighting of the criteria, three different ranking
methods (GRA, COPRAS, and MULTIMOORA) were preferred due to the high investment costs of
the selected alternatives. The findings obtained by solving the problem of selection of the CNC ma-
chine are close to those obtained by past researchers. As a result, using the suggested methodology,
effective alternative decision-making solutions are obtained.
Key words: machine tool selection, BWM, GRA, COPRAS, MULTIMOORA.

1. Introduction

Companies need to have many plans related to marketing, financing, and production in to-
day’s competitive markets. On the other hand, companies, based on these strategies, have
to take a series of decisions, especially at the stage of establishment and when making
growth decisions. One of these decisions is the selection of machines and equipment to
be used in manufacturing. Identifying the appropriate machine or equipment from among
the alternatives available is also a very important decision which, in the long run, af-
fects the efficiency of the production system. The use of suitable machinery improves
the manufacturing process, ensures the effective use of manpower, increases productivity,
and enhances the versatility of the system (Dağdeviren, 2008). Also, the characteristics
of the chosen machine have a considerable effect on prices, efficiency, and performance
numbers, which are the key objectives of the production strategy.
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Generally, computer numerical control (CNC) machines, which can be used with high
precision to perform repetitive, challenging, and unsafe production jobs, are considered
cost-effective equipment (Athawale and Chakraborty, 2010). CNC machines are regarded
as cost-effective instruments that can be used to perform routine, demanding, and danger-
ous manufacturing tasks by offering a high degree of precision to eliminate human errors.
CNC machines are also used in innovative fields such as the production of molds for phase
change material (PCM) (Lim et al., 2018). A very complex decision problem is the pur-
chase of such a technological machine tool, as it requires a large investment and has many
alternative and selection criteria. There is a large amount of data to be analysed by the
decision-maker and many features to consider for an appropriate and effective evaluation
of the selection of machine tools. To choose the most suitable one, the decision-maker
must be an expert or be familiar with the technical specifications of the machines (Rao,
2006).

The scope of this paper, which is based on these needs, is to select a proper machine
tool using Best-Worst weighted GRA, COPRAS, and MULTIMOORA methods. These
methods are used to determine the order of priority with managerial insights and impli-
cations. However, this paper tries to answer the following questions:

(1) What are the criteria of the most used features in the CNC machine tool selection
process?

(2) Which alternative CNC machine tool may be more suitable under variable weighted
uncertainties?

(3) How different weights of expert opinions will affect this selection problem on the
Best-Worst methodology?

The rest of this study is organized as follows: a related literature review is given in Sec-
tion 2. In Section 3, at first, the problem definition is given and then, Best-Worst, Grey Re-
lational Analysis (GRA), COPRAS, and MULTIMOORA methodologies are explained.
The proposed solution approach and its implementation are placed in Section 4 with the
numerical case study. In Section 5, the conclusion and discussions are presented for con-
sidering future studies.

2. Literature Review

For several years, machine tool selection has been an important decision problem for man-
ufacturing firms. The primary explanation for this is that there are several issues with the
selection of an inappropriate machine that affects overall efficiency and production capa-
bilities in the long run (Taha and Rostam, 2012). A detailed literature review is given in
Table 1 and some selected studies are summarized in the following.

Since there is more than one criterion, Multi-Criteria Decision Making (MCDM)
methods are widely used in the solution of the Machine Tool Selection (MTS) problem.
Several options and criteria are evaluated in these studies to decide the best alternative.
It is considered as the most suitable option for the decision-maker who, after rating the
alternatives, gets the highest score (Ayağ and Özdemir, 2006). The researchers have used
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various approaches to solve the MTS problem until today. The Analytical Hierarchy Pro-
cess (AHP) and TOPSIS Method are the most commonly used methods among these tech-
niques.

Due to uncertainties in the decision-maker’s decisions, a fuzzy AHP instead of tradi-
tional AHP was used for the evaluation and justification of an advanced production sys-
tem (Ayag and Ozdemir, 2006) with developing a software (Durán and Aguilo, 2008).
To analyse the structure of the equipment selection problem and evaluate the weights of
the parameters, Dağdeviren (2008) suggested an integrated approach using AHP and the
PROMETHEE approach for obtaining the final rating and conducting sensitivity analy-
sis by adjusting weights. Önüt et al. (2008) suggested a fuzzy TOPSIS based approach
for the evaluation and selection of vertical CNC machining centres, where weights were
determined by fuzzy AHP.

Moreover, in order to measure the level of benefit provided by using fuzzy numbers in
multi-criteria decision models, Yurdakul and Ic (2009) solved the problem of MTS and
compared the solutions of TOPSIS and Fuzzy TOPSIS techniques. The TOPSIS method
was used by Athawale and Chakraborty (2010) to evaluate CNC machines in terms of
system features and costs. Then, as the consecutive studies, fuzzy numbers were used for
pairwise comparison with an Analytic Network Process (ANP) which was proposed to
improve the imprecise ranking of the company’s requirements which is based on the con-
ventional ANP for machine tool selection problem. The proposed methodology was devel-
oped to eliminate the effects of vagueness and uncertainty on the judgments of a decision-
maker (Ayağ and Özdemir, 2011). The next one is TOPSIS and ANP methods which are
commonly used MCDM methods for performance analysis on the machine tool selection
problem (Ayağ and Özdemir, 2012). Similarly, Fuzzy ANP and Fuzzy PROMETHEE-II
techniques were integrated by Samanlioglu and Ayağ (2016) to solve the problem of ma-
chine tool selection. Chen et al. (2021) proposed an approach consisting of DEMANTEL,
ULOWA, and PROMETHEE methods for mechanical product optimization design based
on meta-action reliability. An example of the application and feasibility of their pro-
posed method is demonstrated with an automatic pallet changer (APC) of a CNC machine
tool.

Methods such as SAW (Patel et al., 2012; Özdağoğlu et al., 2017), Multi-Moora-
Interval Value Grey Number Sets (IVGN) (Sahu et al., 2014), MOORA-MOOSRA
(Sarkar et al., 2015), VIKOR (Jing et al., 2015), Fuzzy ANP-Promethee (Özceylan et al.,
2016), QFD (Perçin and Min, 2013; Prasad and Chakraborty, 2015), Axiomatic Design
(Kulak et al., 2005; Cakir, 2018), a neutrosophic MOORA method (Zaied et al., 2019)
and entropy weighted fuzzy DEMATEL with VIKOR defuzzification (Li et al., 2020)
were used for the selection problem in the literature in addition to these studies. In addi-
tion to the studies with details, the studies in the literature regarding machine selection,
tool selection, and technology selection are shown in Table 1.

In this study, a new solution approach is proposed where criteria weights are deter-
mined by the Best-Worst method, and rankings are determined by considering with GRA,
COPRAS, and MULTIMOORA methods. Within the scope of the study, a new solution
approach in which weighting and ranking methods are used together has been tried to be
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Table 1
Detailed literature review.

Application area Method Uncertainty
Source Machine

selection
Tool
selection

Technology
selection

MCDM
Method

Integrated
method

Others Crisp Fuzzy

Arslan et al. (2004) √ √ √
Yurdakul (2004) √ √ √
Kulak et al. (2005) √ √ √
Ayağ and Özdemir (2006) √ √ √
Ayağ (2007) √ √ √
Çimren et al. (2007) √ √ √
Dağdeviren (2008) √ √ √
Önüt et al. (2008) √ √ √
Durán and Aguilo (2008) √ √ √
Yurdakul and Ic (2009) √ √ √
Rao and Parnichkun (2009) √ √ √
Athawale and Chakraborty (2010) √ √ √ √
Qi (2010) √ √ √
Özgen et al. (2011) √ √ √ √
Paramasivam et al. (2011) √ √ √
Ayağ and Özdemir (2011) √ √ √
İç et al. (2012) √ √ √
Ayağ and Özdemir (2012) √ √ √ √
Taha and Rostam (2012) √ √ √
İç (2012) √ √ √
Samvedi et al. (2012) √ √ √
Ilangkumaran et al. (2012) √ √ √
Aghdaie et al. (2013) √ √ √
Perçin and Min (2013) √ √ √
Tho et al. (2013) √ √ √ √
Sahu et al. (2014) √ √ √ √
Vatansever and Kazancoglu (2014) √ √ √ √
Prasad and Chakraborty (2015) √ √ √
Izadikhah (2015) √ √ √
Nguyen et al. (2015) √ √ √ √
Sahu et al. (2015a) √ √ √
Sahu et al. (2015b) √ √ √
Sarkar et al. (2015) √ √ √
Jing et al. (2015) √ √ √
Kumar et al. (2015) √ √ √
Kumru and Kumru (2015) √ √ √
Samanlioglu and Ayağ (2016) √ √ √
Özceylan et al. (2016) √ √ √ √
Wu et al. (2016) √ √ √
Karim and Karmaker (2016) √ √ √ √
Chakraborty and Boral (2017) √ √ √
Özdağoğlu et al. (2017) √ √ √
Cakir (2018) √ √ √
Liu et al. (2018) √ √ √ √
Zaied et al. (2019) √ √ √
Li et al. (2020) √ √ √ √
Chen et al. (2021) √ √ √ √ √
Villa Silva et al. (2021) √ √ √ √

put forward. The methods used are powerful methods that have not been used before in
the machine tool selection problem and their effectiveness has been shown in previous
studies in the literature and this study.
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3. Material and Methods

3.1. Problem Definition (CNC Machine Selection Process)

In the machine tool market, there are hundreds of CNC machine alternatives. In the first
step, machine tool alternatives that can satisfy the company’s needs should be identified.
In the second stage, the defined alternatives are evaluated using any decision model. When
comparing various machine tools, decision-makers use a set of criteria. These criteria are
generally related to the technological features of the machine, but they also include cri-
teria such as productivity, flexibility, cost, maintenance, and service. Ayağ and Özdemir
(2006), as well as Ayağ (2007), defined 8 key criteria and 19 sub-criteria for machine tool
selection. Productivity, flexibility, space adaptability, precision, reliability, safety and en-
vironment, and maintenance and service are the main criteria used in these studies. Taha
and Rostam (2012) used literature information and expert opinion to develop 5 key and
27 sub-criteria that represent the technological characteristics of a machine tool. In their
fuzzy-based decision-support system, Özceylan et al. (2016) used “cost”, “quality”, “flex-
ibility”, and “performance” as the main criteria. These four criteria are subdivided into
15 sub-criteria. Due to differences in manufacturing facilities and decision makers’ view-
points, different criteria have been used in machine tool selection in previous research.
As shown by the examples in this section, technological features and cost elements are
commonly used in machine selection.

3.2. Methods

In this paper, the Best-Worst method is applied for determining the criteria weights using
the mean of the expert opinions via taking advantage of pairwise comparison from best to
worst. This method has been preferred for reasons such as making less and more consistent
comparisons, being able to be used with other methods to be used for sorting, and not
having to deal with fractional numbers. On the other hand, the choice of CNC machine
tool is one of the decision problems that require a very high investment. For this reason,
alternatives and decisions can be compared by using more than one method rather than
a single method for ranking the alternatives. As for the choice of alternatives, GRA is
selected with reference series, COPRAS is also selected to evaluate the performance of
each alternative, taking into account the contradictory situations, and MULTIMOORA is
preferred to apply dominance solution in terms of the subordinate ranking methods for this
study. These alternative selection methods are used with the determined criteria weights
from the Best-Worst method. Consequently, the whole solution procedure is designed for
the proper decision-making process on the CNC selection research problem.

3.2.1. Best-Worst Method
The method proposed by Rezaei (2015) is a multi-criteria decision-making method based
on pairwise comparison. In areas such as supplier selection (Rezaei et al., 2016), assess-
ment of the social sustainability of supply chains (Ahmadi et al., 2017), evaluation of ser-
vice quality in the aviation industry (Gupta, 2018), and evaluation of companies’ RandD
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performance (Salimi and Rezaei, 2018) applications have been made. The steps of the
method are presented below (Kheybari et al., 2019).

Step 1: Evaluation criteria [c1, c2, . . . , cn] are determined.

Step 2: The best (most important) and the worst (least important) criteria are determined.

Step 3: A pairwise comparison is made between the best criterion and other criteria using
a scale of 1-9 and the BO vector AB = (aB1, aB2, . . . , aBj , . . . , aBn) is obtained. (Here
1 means equally important, 9 means much more important.)

Step 4: A binary comparison is made between the other criteria and the worst criterion,
again using the scale 1–9, and the OW vector (Aw = (a1w, a2w, . . . , ajw, . . . , anw)) is
obtained.

Step 5: Optimal weights (w∗
1, w∗

2, . . . , w∗
n) are calculated for each criterion.

Here, the status wB

wj
= aBj and wj

ww
= ajw must be provided for each pair of wB/wj and

wj/wjw. The following mathematical model has been created to minimize the maximum
differences (|wB

wj
− aBj | and | wj

ww
− ajw|) for all j ’s.

max
min

j

{∣∣∣∣wB

wj

− aBj

∣∣∣∣,
∣∣∣∣ wj

ww

− ajw

∣∣∣∣
}

(1)

st:
n∑

j=1

wj = 1, (2)

wj � 0, for all j.

Then the expressions here are converted into the mathematical model shown below:

min ξ (3)
s.t.:∣∣∣∣wB

wj

− aBj

∣∣∣∣ � ξ, for all j, (4)
∣∣∣∣ wj

ww

− ajw

∣∣∣∣ � ξ, for all j, (5)

n∑
j=1

wj = 1, (6)

wj � 0, for all j.

With the solving of the model, the value of the optimal weights is obtained that is
the criterion that shows how consistent the evaluations are. If this value is close to zero,
it means that a consistent evaluation has been made.
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3.2.2. Grey Relational Analysis (GRA)
An essential approach of the grey system theory (GST) used in the decision-making pro-
cess and measuring the changes of similarities and differences between its factors over
time is called Grey Relational Analysis (GRA) (Feng and Wang, 2000; Aydemir et al.,
2013). This method is used in the elimination and analysis of ambiguous relationships
between criteria and options, examination of integrated circuit marking process (Jiang
et al., 2002), restoration planning of power distribution systems (Chen et al., 2005), re-
cruitment decisions (Olson and Wu, 2006), damage assessment (He and Hwang, 2007),
a causal decision-making model (Tseng, 2009), determination of critical path through a
network (Zhongmin and Xizu, 2009), supplier selection (Yang and Chen, 2006; Özdemir
and Deste, 2009; Zavadskas et al., 2010; Hashemi et al., 2015; Cakir and Akel, 2017),
stock market forecasts and portfolio selection (Huang and Jane, 2009), optimization of
turning parameters (Yilmaz and Gungor, 2010; Ramesh et al., 2016; Prakash et al., 2020;
Lakshmanan et al., 2021), evaluation of e-commerce system security (Liu, 2011), er-
gonomics (Akay, 2011), evaluation of the performance of enterprises (Tayyar et al., 2014;
Aydemir and Sahin, 2019), risk and quality analysis (Baynal et al., 2018; Yazdani et al.,
2019), product analysis (Chan and Tong, 2007; Sahin and Aydemir, 2019), and social net-
works (Weng et al., 2021).

In the method, when the decision-maker has no information, that is, when the infor-
mation is black, the greyness of a process is done. In most decision problems with in-
sufficient and/or incomplete information, the GRA method is used to select, rank, and
evaluate (Chan and Tong, 2007; Yildirim, 2014; Aydemir, 2020). In the solution process,
logical and numerical measurements between two decision series are called grey relational
degrees, and values are assigned between 0–1. The method consists of three steps: nor-
malization, grey relational coefficient calculation, and grey relational degree calculation.
In the first step, the data of the alternatives are transformed into comparison sequences by
the normalization process. In the GRA method, the normalization process is performed us-
ing Eqs. (7)–(9), respectively, according to benefit, cost, and optimality (Feng and Wang,
2000; Yildirim, 2014; Sahin and Aydemir, 2019):

x∗
i = xi(j) − minj xi(j)

maxj xi(j) − minj xi(j)
, (7)

x∗
i = maxj xi(j) − xi(j)

maxi xi(j) − mini xi(j)
, (8)

x∗
i = xi(j) − xob(j)

mini xi(j) − xob(j)
, (9)

here:
xi(j): The value of criteria j for alternative i;
minj xi(j): the smallest value for criteria j ;
maxj xi(j): the greatest value for criteria j ;
xob(j): the reference series (ideal sequence) value for criteria j .
After the normalization process, all values take values between 0–1. A decision alter-

native (i) getting a value close to 1, and 1 for a criterion (j ) means that the alternative
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is one of the best alternatives for that criteria. It is uncommon in practice that any deci-
sion alternative provides the best value for all criteria. Therefore, the closest alternative
to a reference series should be determined (Kuo et al., 2008). For this process, the abso-
lute differences between the reference series values and the normalized benchmark value
are calculated using Eq. (10) and thus the absolute difference matrix is created (Yildirim,
2014).

�0i (j) = ∣∣x∗
o (j) − x∗

i (j)
∣∣, (10)

here:
x∗
o (j): the normalized value of reference value for criteria j ;

x∗
i (j): the normalized value alternative i for criteria j .

In the following step, the relationship between the desired and actual experimental data
is determined by calculating the grey relational coefficient from the absolute difference
matrix. Grey coefficients (γ01(j)) are calculated with the help of Eq. (11). �min and �max

in the equation are the smallest and largest values in the absolute difference matrix, �0i is
the reference series value and expresses the absolute difference between the value of the
alternative j . The discriminant coefficient (ζ ) is the discriminant coefficient that can take
values between 0 and 1 and generally takes 0.5 (Ho and Lin, 2003).

γ0i (j) = �min + ζ�max

�0i (j) + ζ�max
. (11)

In the last step, the grey relational degree is calculated by taking the average of the
grey relational coefficients and the ranking is performed according to this value. Grey
relational degrees (γi) are determined by Eq. (12) by dividing the sum of the grey relational
coefficients calculated by Eq. (11) by the number of criteria (n), that is, for the case where
the criteria are equally weighted (Lin et al., 2002). Also, if the criteria have weights in
terms of the decision-maker (wj ), grey relational degrees (γi) are determined by Eq. (13).
The order of suitability and/or preference of the alternatives is obtained with the order of
the calculated grey relational degrees in descending order.

γi = 1

n

n∑
j=1

γ0i (j), (12)

γi =
n∑

j=1

[
wj ∗ γ0i (j)

]
. (13)

3.2.3. COPRAS Method
The COPRAS method developed by Zavadskas et al. (1994) applies a stepwise ranking
procedure to evaluate the performance of each alternative, taking into account the contra-
dictory situations. It is a frequently preferred method especially for ranking processes in
subjects such as evaluation of road design solutions (Zavadskas et al., 2007), supplier se-
lection (Keshavarz Ghorabaee et al., 2014; Yildirim and Timor, 2019), investment project



A Comprehensive Solution Approach for CNC Machine Tool Selection Problem 89

selection (Popović et al., 2012), and analysis of the basic factors of sustainable architecture
(Amoozad Mahdiraji et al., 2018).

The COPRAS method assumes a direct and proportional dependence of the degree of
importance and utility of decision options on a system of criteria that adequately defines
the alternatives and the values and weights of the criteria. Determining the importance,
priority order, and degree of use of alternatives is carried out in five stages (Kaklauskas
et al., 2005, 2006):

Step 1: The weighted normalized decision matrix (D) is created. The aim is to take non-
dimensional weighted values from comparative indices. For this, the following equation
is used:

dij = xij qi∑n
j=1 xij

, i = 1,m; j = 1, n. (14)

The sum of the dimensionless weighted index values is equal to “qij ”, which is the
weight value of each criteria

qi =
n∑

j=1

dij , i = 1,m; j = 1, n. (15)

Step 2: The sum of the weighted normalized indices defining the alternative j is calculated.
The index of the criteria trying to be minimized is shown as “S−j ” and the index of the
criteria trying to be maximized is shown as “S+j ”. The lower the value of indices such as
total cost and implementation time (S−j ) is, the larger the value of indices calculated for
criteria such as utility and strategy fit (S+j ), the better the goals are achieved. Based on
this, the total value of the indices is calculated with the following equation:

S+ =
n∑

j=1

S+j =
m∑

i=1

n∑
j=1

d+ij ,

S− =
n∑

j=1

S−j =
m∑

i=1

n∑
j=1

d−ij .

(16)

Step 3: The degree of importance of comparative alternatives (Qj ) is determined by the
following equation:

Qj = S+j + S− min
∑n

j=1 S−j

S−j

∑n
j=1(S− min/S−j )

, j = 1, n. (17)

The larger the value of Qj , the higher the priority of the alternative. The alternative
with the highest Qj value will be the one that meets the demands and targets the most.

Step 4: The utility degree of the alternative j (Nj ) is calculated using equation (18):

Nj =
(

Qj

Qmax

)
∗ 100(%). (18)
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Step 5: The order of the alternatives is determined according to the degree of use (Nj ).
The alternative with this value of 100 is the best.

3.2.4. MULTIMOORA Method
The Multi-Objective Optimization Based on Ratio Analysis (MOORA) method proposed
by Brauers and Zavadskas (2006) was later developed as MULTIMOORA by Brauers and
Zavadskas (2010) with the addition of the “Full Multiplicative Form of Multiple Objec-
tives” method. MOORA plus the full Multiplicative form, which consists of three subor-
dinate methods: full multiplicative, reference point, and full multiplicative.

MULTIMOORA is mostly used as a multi-criteria decision-making technique in fields
such as industry, economy, environment, health services, and information technologies
as practical applications. In this section, we first explain the MULTIMOORA method in
terms of the subordinate ranking methods. The first step also involves generating a decision
matrix and weight vector, as seen below, with xij ratings for m alternatives and n criteria.

X =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c1 · · · cj · · · cn

x11 · · · x1j · · · x1n

...
...

...

xi1 · · · xij · · · xin

...
...

...

xm1 · · · xmj · · · xmn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

A1

...

Ai

...

Am

, (19)

W = [
w1 · · · wj · · · wn

]
.

Also, on the MCDM problems, the ratings of alternatives may have different dimen-
sions generally, so, the normalized ratings should be required and for this, Van Delft and
Nijkamp normalization approach is used in MULTIMOORA application considering the
most robust choice and proving by Brauers et al. (2008) for the denominator in the ratio
system:

x∗
ij = xij

/√√√√ m∑
i=1

(xij )2. (20)

In certain cases, the triple subordinate methods are also known as the ratio, complete
multiplicative, and reference point forms, and they are used to solve the exits problem. The
ratio method should be used as a completely compensatory model if the problem has any
independent criteria. The ratio system is computed by Eq. (21), where g is the number
of useful criteria and yi is the utility value. The best alternative solution by using the
ratio system is applied to select the maximum utility yi in descending order with Eq. (22)
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(Hafezalkotob et al., 2019):

yi =
g∑

j=1

wjx
∗
ij −

n∑
j=g+1

wjx
∗
ij , (21)

RRS = {
Ai|maxi yi

� · · · � Ai|mini yi

}
. (22)

The reference point approach, on the other hand, is a conservative method for measur-
ing and comparing the ratio system and complete multiplicative form with Eqs. (23)–(25).
Initially, the maximal objective reference point (MORP) vector is defined as Eq. (23),
where rj represents the utility value (Hafezalkotob et al., 2019):

rj = {
max

i
x∗
ij , j � g, min

i
x∗
ij , j > g

}
. (23)

Eq. (24) defines the distance between the weighted value of the vector members and the
weighted alternative rating, and the efficiency of the Reference Point Approach is obtained
by maximizing the distance introduced in Eq. (25):

dij = ∣∣wjrj − wjx
∗
ij

∣∣, (24)

zi = max
J

dij . (25)

The best alternative found by the Reference Point Approach has the least benefit (zi),
and the approach’s order is provided by Eq. (26):

RRPA = {Ai|mini zi
� · · · � Ai|maxi zi

}. (26)

Although Brauers and Zavadskas (2012) demonstrated that using weights as multip-
liers in the full multiplicative form is meaningless, it is mentioned that the weights deter-
mined in the developed MULTIMOORA method proposed by Hafezalkotob and Hafeza-
lkotob (2016) can be calculated as shown in Eq. (27):

ui =
g∏

j=1

(
x∗
ij

)wj

/ n∏
j=g+1

(
x∗
ij

)wj . (27)

The maximum utility alternative is the best alternative based on the Full Multiplicative
Form, and the sequence of this technique is obtained by equation (28) in descending order:

RFMF = {Ai|maxi ui
� · · · � Ai|mini ui

}. (28)

Using these subordinate ranks, we also should decide the final ranking of the alter-
natives in the final phase. The aggregating multiple subordinate rankings are presented
by Brauers and Zavadskas (2012) to obtain a final ranking list that is more robust than
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each ranking list of the subordinate methods. Dominance-based principles, mathemati-
cal operators, MCDM methods, and programming approaches are examples of these ap-
proaches. Using the principle of dominance, the original MULTIMOORA incorporates
MOORA with the exact multiplicative form. At this point, it is obvious that Dominance
Theory (Brauers and Zavadskas, 2011) is the most widely applied method; but, in recent
years, other tools with potential success have been used instead of this theory (Brauers and
Zavadskas, 2006; Hafezalkotob et al., 2019). As a result, the dominance theory is used in
this analysis to produce a unified final ranking list.

4. Results

One of the most important decisions in the design and construction of a competitive man-
ufacturing environment is the selection of the appropriate machine tools. This chapter
contains the application of the proposed method to solve the machine tool selection prob-
lem. The basic framework of the methods proposed within the scope of the study and
detailed in Section 3.2 is shown in Fig. 1. The method starts with determining the crite-
ria to be used. After the literature review and the determination of the criteria by taking
the expert opinion, the criteria weights were determined with the BWM, details of which
are specified in Section 3.2.1. The determined weighted criteria are used as inputs to the
GRA, COPRAS, and MULTIMOORA methods used in the ranking of machine alterna-
tives. Final rankings were obtained as a result of the calculations made separately with
these methods.

4.1. Determination of Criteria and Weighting

According to the consumer specifications, the appropriate machine should be selected
from the existing database. At the beginning of the research, 4 main and 13 sub-criteria
were determined to be used in the solution of the problem, taking into account the literature
research and expert opinions. Dimensions (C1), Flexibility (C2), Productivity (C3), and
Cost (C4) criteria, whose sub-criteria are shown in Table 2, were determined as the main
criteria.

The determined weights can be used with equal weight or they can be weighted dif-
ferently according to the needs of the company. The importance of the criteria was de-
termined by using the Best-Worst method, details of which are given in Section 3.2.1,
as a result of the interviews with six experts. BWM is a method based on testing the im-
portance level of criteria. Also, BWM emerges as a method that is being used frequently
in scientific and industrial situations. The criterion weights determined as a result of the
calculations made with the BO and OW vectors created as a result of expert opinions are
shown in Tables 3, 4 and 5, respectively.

The weights of all the main and sub-criteria are shown in Table 6, and the values taken
by the alternatives for these criteria (decision matrix) are shown in Table 7. The weight
calculations of the sub-criteria are presented in Appendix A.
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Fig. 1. The basic framework of the proposed method.

After determining the decision alternatives and criteria weights, the ranking process
was started with the GRA, COPRAS, and MULTIMOORA methods. The following sec-
tion explains the details of the sorting process with the aforementioned methods.
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Table 2
The main and sub-criteria.

Main criteria Sub-criteria Objective Unit

Dimensions (C1) Table load (C11) Max kg s
Main travel (C12) Max mm
Table size (C13) Max m2

Machine weight (C14) Min kg s
Flexibility (C2) Spindle rate (C21) Max rpm

Spindle power (C22) Max kw
Max. tool weight (C23) Max kg s

Productivity (C3) Feed rate (axis x, y and z) (C31) Max mm/min s
Tool magazine capacity (C32) Max set
Cutting feed rate (C33) Max mm/min s

Cost (C4) Procurement price (C41) Min $
Operation cost (C42) Min $
Maintenance cost (C43) Min $

Table 3
BO vectors for main criteria.

Experts no. Best Dimensions (C1) Flexibility (C2) Productivity (C3) Cost (C4)

Experts 1 Cost (C4) 6 4 2 1
Experts 2 Cost (C4) 5 3 2 1
Experts 3 Cost (C4) 7 4 2 1
Experts 4 Cost (C4) 6 5 3 1
Experts 5 Cost (C4) 6 2 4 1
Experts 6 Cost (C4) 6 2 4 1

Table 4
OW vectors for main criteria.

Experts No. Worst Dimensions (C1) Flexibility (C2) Productivity (C3) Cost (C4)

Experts 1 Dimensions (C1) 1 2 4 6
Experts 2 Dimensions (C1) 1 2 3 5
Experts 3 Dimensions (C1) 1 2 3 7
Experts 4 Dimensions (C1) 1 2 2 6
Experts 5 Dimensions (C1) 1 3 2 6
Experts 6 Dimensions (C1) 1 4 2 6

Table 5
The weights of the main criteria.

Criteria Weights of criteria Mean
Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 Exp. 6

Dimensions (C1) 0.0784 0.0923 0.0784 0.0879 0.0811 0.0709 0.0815
Flexibility (C2) 0.1373 0.1692 0.1373 0.1255 0.2703 0.2196 0.1765
Productivity (C3) 0.2745 0.2538 0.2549 0.2092 0.1351 0.1318 0.2099
Cost (C4) 0.5098 0.4846 0.5294 0.5774 0.5135 0.5777 0.5321
Ksi 0.0392 0.0231 0.0196 0.0502 0.0270 0.0811 0.0400
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Table 6
The final weights of criteria.

Main criteria The weight of
main criteria

Sub-criteria The weight of
sub-criteria

Final
weights

Dimensions (C1) 0.0815 Table load (C11) 0.197 0.016
Main travel (C12) 0.558 0.046
Table size (C13) 0.153 0.012
Machine weight (C14) 0.092 0.007

Flexibility (C2) 0.1765 Spindle rate (C21) 0.222 0.039
Spindle power (C22) 0.591 0.104
Max. tool weight (C23) 0.187 0.033

Productivity (C3) 0.2099 Feed rate (C31) 0.159 0.033
Tool magazine capacity (C32) 0.581 0.122
Cutting feed rate (C33) 0.261 0.055

Cost (C4) 0.5321 Procurement price (C41) 0.719 0.382
Operation cost (C42) 0.169 0.090
Maintanance cost (C43) 0.113 0.060

Table 7
The data of the alternatives (decision matrix).

C1 C2 C3 C4

C11 C12 C13 C14 C21 C22 C23 C31 C32 C33 C41 C42 C43

Units kg s mm m2 kg s rpm kw kg s mm/min s set mm/min s $ $ $

Goal Max Max Max Min Max Max Max Max Max Max Min Min Min

Alt.
Weights 0.016 0.046 0.012 0.007 0.039 0.104 0.033 0.033 0.122 0.055 0.382 0.090 0.060

A1 400 687 0.465 5800 8000 7.5 7 28.0 24 10.0 206250 25800 5150
A2 400 720 0.500 6000 8000 5.5 6 26.7 24 12.0 262500 32000 5800
A3 800 710 0.720 8000 15000 7.5 10 27.9 32 1.2 318750 39800 7000
A4 300 600 0.550 3300 10000 10.1 3 52.0 21 30.0 335750 41000 8000
A5 1600 953 0.975 11000 8000 11 6 18.3 24 5.0 412500 51500 10300
A6 250 567 0.336 3800 12000 5.5 6 48.0 25 15.0 262500 31250 5470
A7 3000 980 1.000 12500 8000 11 15 19.3 20 10.0 487500 58000 11000
Min 250 566.67 0.336 3300 8000 5.5 3 18.333 20 1.2 206250 25800 5150
Max 3000 980 1.000 12500 15000 11 15 52 32 30 487500 58000 11000

4.2. Sorting the Alternatives Using GRA

The method consists of three basic steps: normalization, grey relational coefficient calcu-
lation, and grey relational degree calculation. In the first step, the data of the alternatives
are transformed into comparison sequences by normalizing the criteria according to the
benefits, cost, and optimality of the criteria. Normalized versions of the data presented in
Table 7 are shown in Table 8.

After the normalization process, the absolute value table is created by using the equa-
tion shown in equation (10). The values in the absolute value table correspond to the abso-
lute value of the difference between the reference series and the criteria value. The absolute
values calculated are shown in Table 9.
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Table 8
The normalized decision matrix.

C1 C2 C3 C4

C11 C12 C13 C14 C21 C22 C23 C31 C32 C33 C41 C42 C43

Alt.
Ref. serie 1.000 1.000 1.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000 0.000 0.000 0.000

A1 0.055 0.290 0.194 0.728 0.000 0.364 0.333 0.287 0.333 0.306 1.000 1.000 1.000
A2 0.055 0.371 0.247 0.707 0.000 0.000 0.250 0.248 0.333 0.375 0.800 0.807 0.889
A3 0.200 0.347 0.578 0.489 1.000 0.364 0.583 0.284 1.000 0.000 0.600 0.565 0.684
A4 0.018 0.081 0.322 1.000 0.286 0.836 0.000 1.000 0.083 1.000 0.540 0.528 0.513
A5 0.491 0.935 0.962 0.163 0.000 1.000 0.250 0.000 0.333 0.132 0.267 0.202 0.120
A6 0.000 0.000 0.000 0.946 0.571 0.000 0.250 0.881 0.417 0.479 0.800 0.831 0.945
A7 1.000 1.000 1.000 0.000 0.000 1.000 1.000 0.030 0.000 0.306 0.000 0.000 0.000

Table 9
The absolute value table.

C1 C2 C3 C4

C11 C12 C13 C14 C21 C22 C23 C31 C32 C33 C41 C42 C43

Alt.
Goal Max Max Max Min Max Max Max Max Max Max Min Min Min

A1 0.945 0.710 0.806 0.728 1.000 0.636 0.667 0.713 0.667 0.694 1.000 1.000 1.000
A2 0.945 0.629 0.753 0.707 1.000 1.000 0.750 0.752 0.667 0.625 0.800 0.807 0.889
A3 0.800 0.653 0.422 0.489 0.000 0.636 0.417 0.716 0.000 1.000 0.600 0.565 0.684
A4 0.982 0.919 0.678 1.000 0.714 0.164 1.000 0.000 0.917 0.000 0.540 0.528 0.513
A5 0.509 0.065 0.038 0.163 1.000 0.000 0.750 1.000 0.667 0.868 0.267 0.202 0.120
A6 1.000 1.000 1.000 0.946 0.429 1.000 0.750 0.119 0.583 0.521 0.800 0.831 0.945
A7 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.970 1.000 0.694 0.000 0.000 0.000

�min = 0 / �max = 1 / The discriminant coefficient (ζ ) = 0.500.

Grey coefficients (γ01(j)) are calculated with the help of equation (11). Then, the
grey relational degrees (γi) to be used in the ranking are determined by dividing the total
weighted grey coefficients value by the number of criteria as shown in Table 10. As a re-
sult of the sorting made with the grey relational analysis method, the order of preference
of the alternatives was determined as A7 � A5 � A3 � A4 � A6 � A2 � A1.

4.3. Sorting the Alternatives Using COPRAS

The second method used to sort the alternatives is the COPRAS method. This method
starts with the formation of the weighted decision matrix with the help of Eq. (14). The
matrix obtained with this equation is shown in Table 11.

After calculating the normalized decision matrix, the sum of the criteria values to
be minimized for each alternative (S−j ) and the sum of the criteria values to be maxi-
mized (S+j ) is calculated. Depending on the S−j and S+j values, the importance degrees
of the alternatives (Qj ) are calculated using Eq. (17). Then, the utility degree of the al-
ternatives (Nj ) are calculated by writing the obtained “Qj ” values into Eq. (18). In the
last step, the order of alternatives is obtained in descending order of the utility degree of
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Table 10
The absolute value table.

C1 C2 C3 C4

γi
Weighted
rank

C11 C12 C13 C14 C21 C22 C23 C31 C32 C33 C41 C42 C43

Goal Max Max Max Min Max Max Max Max Max Max Min Min Min
Weights 0.016 0.046 0.012 0.007 0.039 0.104 0.033 0.033 0.122 0.055 0.382 0.090 0.060

A1 0.346 0.413 0.383 0.407 0.333 0.440 0.429 0.412 0.429 0.419 0.333 0.333 0.333 0.0286 7
A2 0.346 0.443 0.399 0.414 0.333 0.333 0.400 0.399 0.429 0.444 0.385 0.382 0.360 0.0298 6
A3 0.385 0.434 0.542 0.505 1.000 0.440 0.545 0.411 1.000 0.333 0.455 0.469 0.422 0.0411 3
A4 0.337 0.352 0.425 0.333 0.412 0.753 0.333 1.000 0.353 1.000 0.481 0.486 0.494 0.0402 4
A5 0.495 0.886 0.930 0.754 0.333 1.000 0.400 0.333 0.429 0.365 0.652 0.712 0.807 0.0493 2
A6 0.333 0.333 0.333 0.346 0.538 0.333 0.400 0.808 0.462 0.490 0.385 0.376 0.346 0.0314 5
A7 1.000 1.000 1.000 1.000 0.333 1.000 1.000 0.340 0.333 0.419 1.000 1.000 1.000 0.0645 1

Table 11
The weighted normalized decision matrix for the COPRAS method.

C1 C2 C3 C4

C11 C12 C13 C14 C21 C22 C23 C31 C32 C33 C41 C42 C43

Alt.
Goal Max Max Max Min Max Max Max Max Max Max Min Min Min

A1 0.0010 0.0060 0.0013 0.0009 0.0046 0.0135 0.0044 0.0042 0.0172 0.0066 0.0345 0.0083 0.0059
A2 0.0010 0.0063 0.0014 0.0009 0.0046 0.0099 0.0037 0.0040 0.0172 0.0079 0.0439 0.0103 0.0066
A3 0.0019 0.0062 0.0020 0.0012 0.0085 0.0135 0.0062 0.0042 0.0229 0.0008 0.0533 0.0128 0.0080
A4 0.0007 0.0052 0.0015 0.0005 0.0057 0.0181 0.0019 0.0079 0.0151 0.0197 0.0562 0.0132 0.0091
A5 0.0038 0.0083 0.0027 0.0016 0.0046 0.0197 0.0037 0.0028 0.0172 0.0033 0.0690 0.0165 0.0117
A6 0.0006 0.0049 0.0009 0.0006 0.0068 0.0099 0.0037 0.0073 0.0179 0.0099 0.0439 0.0100 0.0062
A7 0.0071 0.0086 0.0027 0.0019 0.0046 0.0197 0.0094 0.0029 0.0143 0.0066 0.0816 0.0186 0.0125

Table 12
Calculations of the COPRAS method.

Alternatives S+j S−j Smin
∑n

j=1 S−j S− min/S−j

∑
S− min/S−j Qj Nj Order of

alternatives

A1 1.059 0.395 0.395 4.000 1.000 5.258 1.8195 86 4
A2 1.038 0.458 0.862 1.6936 80 7
A3 1.278 0.573 0.689 1.8020 85 5
A4 1.376 0.511 0.774 1.9647 93 2
A5 1.337 0.778 0.508 1.7236 82 6
A6 1.147 0.406 0.974 1.8877 90 3
A7 1.766 0.878 0.451 2.1089 100 1

the alternatives (Nj ). The alternative with a Nj value of 100 is the best alternative. The
S−j , S+j , “Qj ” and Nj values calculated for the alternatives and the priority order of
the alternatives are shown in Table 12. The order obtained with the COPRAS method is
A7 � A4 � A6 � A1 � A3 � A5 � A2.
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Table 13
Normalized decision matrix.

Alternatives C1 C2 C3 C4

C11 C12 C13 C14 C21 C22 C23 C31 C32 C33 C41 C42 C43

Goal Max Max Max Min Max Max Max Max Max Max Min Min Min

Weights 0.0160 0.0455 0.0125 0.0075 0.0393 0.1042 0.0330 0.0333 0.1219 0.0547 0.3825 0.0897 0.0599

A1 0.1120 0.3410 0.2540 0.2780 0.2970 0.3300 0.3160 0.3130 0.3700 0.2590 0.2300 0.2360 0.2480
A2 0.1120 0.3580 0.2730 0.2870 0.2970 0.2420 0.2710 0.2980 0.3700 0.3100 0.2930 0.2930 0.2800
A3 0.2250 0.3530 0.3930 0.3830 0.5570 0.3300 0.4510 0.3120 0.4930 0.0310 0.3560 0.3640 0.3380
A4 0.0840 0.2980 0.3000 0.1580 0.3710 0.4440 0.1350 0.5820 0.3230 0.7760 0.3750 0.3750 0.3860
A5 0.4490 0.4740 0.5330 0.5270 0.2970 0.4840 0.2710 0.2050 0.3700 0.1290 0.4600 0.4710 0.4970
A6 0.0700 0.2820 0.1840 0.1820 0.4460 0.2420 0.2710 0.5370 0.3850 0.3880 0.2930 0.2860 0.2640
A7 0.8430 0.4870 0.5460 0.5980 0.2970 0.4840 0.6770 0.2160 0.3080 0.2590 0.5440 0.5310 0.5300

Table 14
Calculations of the ratio system.

C1 C2 C3 C4
yi OrderC11 C12 C13 C14 C21 C22 C23 C31 C32 C33 C41 C42 C43

Alt.
Goal Max Max Max Min Max Max Max Max Max Max Min Min Min

A1 0.002 0.016 0.003 0.002 0.012 0.034 0.010 0.010 0.045 0.014 0.088 0.021 0.015 0.020 1
A2 0.002 0.016 0.003 0.002 0.012 0.025 0.009 0.010 0.045 0.017 0.112 0.026 0.017 −0.018 4
A3 0.004 0.016 0.005 0.003 0.022 0.034 0.015 0.010 0.060 0.002 0.136 0.033 0.020 −0.024 5
A4 0.001 0.014 0.004 0.001 0.015 0.046 0.004 0.019 0.039 0.042 0.143 0.034 0.023 −0.016 3
A5 0.007 0.022 0.007 0.004 0.012 0.050 0.009 0.007 0.045 0.007 0.176 0.042 0.030 −0.087 6
A6 0.001 0.013 0.002 0.001 0.017 0.025 0.009 0.018 0.047 0.021 0.112 0.026 0.016 −0.001
A7 0.014 0.022 0.007 0.004 0.012 0.050 0.022 0.007 0.038 0.014 0.208 0.048 0.032 −0.106

4.4. Sorting the Alternatives Using MULTIMOORA

The first step of the MULTIMOORA method also includes creating a decision matrix and
weight vector with xij ratings for m alternatives and n criteria, as seen below. As in the
other methods, in the first step of this method, the normalization process is carried out by
using Eq. (20). The normalized decision matrix obtained by Eq. (20) is shown in Table 13.

After the normalized decision matrix is created, the alternative ranking is determined
according to the decreasing order of the calculated yi value. Alternative ranking obtained
with the Ratio System (RS) is “A1 � A6 � A4 � A2 � A3 � A5 � A7” as shown in
Table 14.

In the Reference Point Approach (RPA), which is a conservative method, first of all, the
absolute difference (distance) between the rj values obtained by Eq. (23) and the normal-
ized value (x∗

ij ) is determined. The decreasing order of “z” values obtained using Eq. (25)
determines the order of the alternatives. The calculations of the Reference Point Approach
are shown in Table 15 and alternative ranking obtained with the Reference Point Approach
is “A7 � A5 � A4 � A3 � A2 = A6 � A1”.
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Table 15
Calculations of the reference point approach.

C1 C2 C3 C4
zi OrderC11 C12 C13 C14 C21 C22 C23 C31 C32 C33 C41 C42 C43

Alt.
Goal Max Max Max Min Max Max Max Max Max Max Min Min Min

A1 0.012 0.007 0.004 0.002 0.010 0.016 0.012 0.009 0.015 0.028 0.120 0.026 0.017 0.1201 7
A2 0.012 0.006 0.003 0.002 0.010 0.025 0.013 0.009 0.015 0.025 0.096 0.021 0.015 0.0961 5-6
A3 0.010 0.006 0.002 0.002 0.000 0.016 0.007 0.009 0.000 0.041 0.072 0.015 0.012 0.0720 4
A4 0.012 0.009 0.003 0.003 0.007 0.004 0.018 0.000 0.021 0.000 0.065 0.014 0.009 0.0648 3
A5 0.006 0.001 0.000 0.001 0.010 0.000 0.013 0.013 0.015 0.035 0.032 0.005 0.002 0.0353 2
A6 0.012 0.009 0.005 0.003 0.004 0.025 0.013 0.001 0.013 0.021 0.096 0.022 0.016 0.0961 5-6
A7 0.000 0.000 0.000 0.000 0.010 0.000 0.000 0.012 0.023 0.028 0.000 0.000 0.000 0.0283 1
rj 0.014 0.022 0.007 0.004 0.022 0.050 0.022 0.019 0.060 0.042 0.208 0.048 0.032

Table 16
Calculations of the full multiplicative form.

C1 C2 C3 C4
ui OrderC11 C12 C13 C14 C21 C22 C23 C31 C32 C33 C41 C42 C43

Alt.
Goal Max Max Max Min Max Max Max Max Max Max Min Min Min

A1 0.966 0.952 0.983 0.990 0.953 0.891 0.963 0.962 0.886 0.929 0.570 0.879 0.920 1.28132 1
A2 0.966 0.954 0.984 0.991 0.953 0.862 0.958 0.961 0.886 0.938 0.625 0.896 0.927 1.10843 3
A3 0.976 0.954 0.988 0.993 0.977 0.891 0.974 0.962 0.917 0.827 0.674 0.913 0.937 0.99529 5
A4 0.961 0.946 0.985 0.986 0.962 0.919 0.936 0.982 0.871 0.986 0.687 0.916 0.945 1.06753 4
A5 0.987 0.967 0.992 0.995 0.953 0.927 0.958 0.949 0.886 0.894 0.743 0.935 0.959 0.90819 6
A6 0.958 0.944 0.979 0.987 0.969 0.862 0.958 0.979 0.890 0.950 0.625 0.894 0.923 1.15174 2
A7 0.997 0.968 0.992 0.996 0.953 0.927 0.987 0.950 0.866 0.929 0.792 0.945 0.963 0.89015 7

In the Full Multiplicative Form (FMF), the multiplication values of the criteria in the
normalized decision matrix, which are in the direction of maximization, are divided by the
multiplication value of the criteria to be minimized, and “ui” values for each alternative
are calculated. The order made according to the decreasing value of the “ui” values of the
alternatives will give the final ranking. The calculations of the FMF Approach are shown
in Table 16. The order obtained with the full multiplicative form is “A1 � A6 � A2 �
A4 � A3 � A5 � A7”.

At the last stage, the rankings found as a result of the calculations above have been
converted into a single line with the theory of dominance. The final ranks were determined
by taking the average of the rankings. The final rankings determined by applying the theory
of dominance in the MULTIMOORA method are given in Table 17. The order obtained
in the last step is “A1 � A6 � A4 � A2 � A3 � A5 � A7”.

As a result, the different sequences shown in Table 18 and Fig. 2 were determined.
The sequences obtained with the COPRAS and MULTIMOORA methods are similar.
The rankings obtained by grey relational analysis differ from the other two methods. Due
to the dominant ranking, decision-makers may consider Alternative 1 as the best option.
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Table 17
Calculations of the full multiplicative form.

Alternatives RS RPA FMF Mean Final order

A1 1 7 1 3.00 1
A2 4 6 3 4.33 4
A3 5 4 5 4.67 5
A4 3 3 4 3.33 3
A5 6 2 6 4.67 6
A6 2 5 2 3.00 2
A7 7 1 7 5.00 7

Table 18
Rankings obtained by different methods.

Alternatives GRA COPRAS MULTIMOORA

A1 7 1 1
A2 6 4 4
A3 3 5 5
A4 4 3 3
A5 2 7 6
A6 5 2 2
A7 1 6 7

Fig. 2. The final rankings obtained by different methods.

5. Discussion and Conclusions

The abundance of machine alternatives, the difficulty in accessing reliable information,
and the lack of experts in evaluating machine features make machine tool selection a diffi-
cult and important problem. In addition, it is known that an unsuitable machine selection
adversely affects the efficiency, sensitivity, and flexibility of the entire production system.
When all these situations are taken into consideration, it is seen that the right information
should be made by the right people and using the appropriate methods for the selection
of a proper machine tool. When the studies in the literature are examined, many different
methods provide different solutions. In this context, many studies have been conducted in
which the uncertainty situation, as well as deterministic methods, are taken into account.
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The important thing here is to make the right decision by evaluating the opinions of more
than one expert working in the production environment with different methods, rather than
a single method and a single expert’s opinion.

In this paper, a new framework is proposed to examine the performance of different
methods using the same criteria weights for a suitable machine tool (CNC machine) se-
lection problem. Weights of the criteria determined by BWM were used for weighting de-
cision matrices for the sorting methods in this new framework. Using seven alternatives,
four main, and thirteen sub-criteria in the problem, machine alternatives were evaluated
with GRA, COPRAS, and MULTIMOORA methods. To create a reliable final ranking
in the MULTIMOORA method, the theory of dominance was used and the final rank-
ings were determined by averaging the different rank values. As a result, it is aimed to
increase the reliability of the final solution with this new approach including BWM as
the criteria weighting method. In the evaluations made for the main criteria, it has been
seen that the cost of the machine tool is the most important criterion, as in the studies of
similar criteria in the literature (Arslan et al., 2004; Önüt et al., 2008), followed by the
productivity, flexibility and dimensions criteria, respectively. In the ranking made using
the criterion weights obtained, it is seen that COPRAS and MULTIMOORA methods give
similar rankings, but the gray relational analysis method offers a different ranking.

The proposed solution procedure is well-designed for the research problem. The CNC
machine selection problem is also studied in many pieces of research. In this way, the se-
lected seven alternatives, four main, and thirteen sub-criteria can also be accepted as the
main research limitation. On the other hand, the obtained results are shown effective and
robust decisions for the problem using comprehensive methods as the main advantage.
In future studies, it may be considered that fuzzy logic-based methods can be used for
the solution in cases where decision-makers express the importance levels of the crite-
ria with linguistic variables. The evaluation of the expert opinions can be considered by
intuitionistic approaches on MCDM methodologies.
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A. Appendix. The Weights of Sub-Criteria

The weight calculation of sub-criteria of dimensions (C1) main criteria.
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Experts No. Best Table load
(C11)

Main travel
(C12)

Table size
(C13)

Machine weight
(C14)

Experts 1 Main travel (C12) 4 1 2 6
Experts 2 Main travel (C12) 3 1 4 7
Experts 3 Main travel (C12) 4 1 5 8
Experts 4 Main travel (C12) 3 1 5 7
Experts 5 Main travel (C12) 2 1 6 4
Experts 6 Main travel (C12) 3 1 5 8

O
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cr
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Experts No. Worst Table load
(C11)

Main travel
(C12)

Table size
(C13)

Machine weight
(C14)

Experts 1 Machine weight (C14) 2 6 3 1
Experts 2 Machine weight (C14) 2 3 2 1
Experts 3 Machine weight (C14) 2 8 2 1
Experts 4 Machine weight (C14) 3 1 5 7
Experts 5 Table size (C13) 2 6 1 2
Experts 6 Machine weight (C14) 3 8 2 1

Th
e

w
ei

gh
ts

of
su
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cr

ite
ria

Sub-criteria Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 Exp. 6 Mean
Table load (C11) 0.135 0.231 0.163 0.208 0.238 0.206 0.197
Main travel (C12) 0.514 0.496 0.630 0.589 0.524 0.598 0.558
Table size (C13) 0.270 0.174 0.130 0.125 0.095 0.124 0.153
Machine weight (C14) 0.081 0.099 0.076 0.079 0.143 0.072 0.092
Ksi 0.027 0.198 0.022 0.034 0.048 0.021 0.058

The weight calculation of sub-criteria of flexibility (C2) main criteria.

BO
ve

ct
or

s
fo

r
su

b-
cr

ite
ria

Experts No. Best Spindle rate
(C21)

Spindle
power (C22)

Max. tool
weight (C23)

Experts 1 Spindle power (C22) 2 1 4
Experts 2 Spindle power (C22) 3 1 5
Experts 3 Spindle power (C22) 3 1 2
Experts 4 Spindle power (C22) 4 1 2
Experts 5 Spindle power (C22) 3 1 2
Experts 6 Spindle power (C22) 3 1 6
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Experts No. Worst Spindle rate
(C21)

Spindle
power (C22)

Max. Tool
Weight (C23)

Experts 1 Max. tool weight (C23) 2 4 1
Experts 2 Max. tool weight (C23) 2 5 1
Experts 3 Spindle rate (C21) 1 3 2
Experts 4 Spindle rate (C21) 1 4 2
Experts 5 Spindle rate (C21) 1 3 2
Experts 6 Max. tool weight (C23) 2 6 1

Th
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Sub-criteria Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 Exp. 6 Mean
Spindle rate (C21) 0.286 0.225 0.167 0.143 0.292 0.222 0.222
Spindle power (C22) 0.571 0.650 0.542 0.571 0.542 0.667 0.591
Max. tool weight (C23) 0.143 0.125 0.292 0.286 0.167 0.111 0.187
Ksi 0.000 0.025 0.042 0.000 0.042 0.000 0.0181
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The weight calculation of sub-criteria of productivity (C3) main criteria.
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Experts No. Best Feed rate

(C31)
Tool magazine
capacity (C23)

Cutting feed rate
(C33)

Experts 1 Tool magazine capacity (C23) 5 1 3
Experts 2 Tool magazine capacity (C23) 4 1 2
Experts 3 Tool magazine capacity (C23) 2 1 3
Experts 4 Tool magazine capacity (C23) 2 1 2
Experts 5 Tool magazine capacity (C23) 5 1 3
Experts 6 Tool magazine capacity (C23) 4 1 2
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Experts No. Worst Feed rate
(C31)

Tool magazine
capacity (C23)

Cutting feed rate
(C33)

Experts 1 Feed rate (C31) 1 5 2
Experts 2 Feed rate (C31) 1 4 2
Experts 3 Cutting feed rate (C33) 2 3 1
Experts 4 Feed (C31) 1 2 1
Experts 5 Feed rate (C31) 1 5 2
Experts 6 Feed rate (C31) 1 4 2
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Sub-criteria Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 Exp. 6 Mean
Feed rate (C31) 0.125 0.143 0.167 0.250 0.125 0.143 0.159
Tool magazine capacity (C32) 0.650 0.571 0.542 0.500 0.650 0.571 0.581
Cutting feed rate (C33) 0.225 0.286 0.292 0.250 0.225 0.286 0.261
Ksi 0.025 0.000 0.042 0.000 0.025 0.000 0.015

The weight calculation of sub-criteria of cost (C4) main criteria.

BO
ve

ct
or

s
fo

r
su

b-
cr

ite
ria

Experts No. Best Procurement price
(C41)

Operation cost
(C42)

Maintenance cost
(C43)

Experts 1 Procurement price (C41) 1 5 8
Experts 2 Procurement price (C41) 1 4 7
Experts 3 Procurement price (C41) 1 6 4
Experts 4 Procurement price (C41) 1 3 5
Experts 5 Procurement price (C41) 1 4 9
Experts 6 Procurement price (C41) 1 5 8
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Experts No. Worst Procurement price
(C41)

Operation cost
(C42)

Maintenance cost
(C43)

Experts 1 Maintenance cost (C43) 8 2 1
Experts 2 Maintenance cost (C43) 7 2 1
Experts 3 Operation cost (C42) 6 1 2
Experts 4 Maintenance cost (C43) 5 2 1
Experts 5 Maintenance cost (C43) 9 2 1
Experts 6 Maintenance cost (C43) 8 2 1

Th
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Sub-criteria Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 Exp. 6 Mean
Procurement price (C41) 0.753 0.717 0.704 0.650 0.736 0.753 0.719
Operation cost (C42) 0.156 0.183 0.111 0.225 0.181 0.156 0.169
Maintanance cost (C43) 0.091 0.100 0.185 0.125 0.083 0.091 0.113
Ksi 0.026 0.017 0.037 0.025 0.014 0.026 0.024
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