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Abstract. We present a proof of strong normalization of proof-reduction in a general system of
natural deduction called truth table natural deduction. In previous work, we have defined truth
table natural deduction, which is a method for deriving intuitionistic derivation rules for a con-
nective from its truth table. This yields natural deduction rules for each connective separately.
Moreover, these rules adhere to a standard format which gives rise to a general notions of detour
and permutation conversion for natural deductions. The aim is to remove all convertibilities and
obtain a deduction in normal form. In general, conversion of truth table natural deductions is
non-deterministic, which makes it more challenging to study. It has already been shown that this
conversion is weakly normalizing. To prove strong normalization, we construct a conversion-
preserving translation from deductions to terms in an extension of simply typed lambda calculus
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which we call parallel simply typed lambda calculus and which we prove to be strongly normal-
izing. This makes it possible to get a grip on the non-deterministic character of conversion in the
intuitionistic truth table natural deduction system.

Keywords: Natural deduction; truth tables; intuitionistic logic; detour conversion; permutation
conversion; strong normalization

1. Introduction

Natural deduction originates from the work by the German mathematician Gerhard Gentzen (1909-
1945): Untersuchungen über das logische Schliessen, 1935 [1], where he studies mathematical foun-
dations and proof theory. His most famous contributions are natural deduction and sequent calculus.
He constructed both logical systems in an attempt to prove the consistency of number theory. He first
defined natural deduction, for which he tried to prove consistency using the cut elimination theorem,
which he called the Hauptsatz. However, he did not manage to prove the Hauptsatz for natural deduc-
tion. Therefore he introduced the sequent calculus for which he proved the Hauptsatz. Later, in 1956,
the Swedish logician Dag Prawitz (born in 1936) gave a direct proof of the cut elimination theorem
for natural deduction in Natural deduction: a proof-theoretical study [2].

The main idea of natural deduction is to capture mathematical reasoning in a formal system of
reasoning rules in a natural way. This results in a system where propositions are derived by applying
deduction rules to a set of assumptions. Gentzen distinguished so-called introduction and elimina-
tion rules, where the elimination rules arise from the introduction rules in a natural manner known
as the inversion principle. The Hauptsatz states that elimination from introduced formulas can be
avoided, which results in ‘normal’ derivations. These normal forms correspond to cut-free derivations
in sequent calculus and normalization corresponds to cut elimination. Since the work of Gentzen and
Prawitz, various other natural deduction systems have been introduced.

This paper provides a further proof-theoretic analysis of the truth table natural deduction system
that has been introduced in [3] by two authors of the present paper. The main idea of this system is that
propositional derivation rules for a connective can be derived in a canonical way from its definition via
a truth table. This results in derivation rules in a ‘standard’ format. We use a tree format with sequents
in the nodes and leaves, where all elimination and introduction rules have the ‘standard’ form:

Γ ` A1 . . . Γ ` An Γ, B1 ` D . . . Γ, Bm ` D
Γ ` D

So if the conclusion of a rule is Γ ` D, then the premises of the rule can be one of the forms:

• Γ, B ` D: we still need to prove D from Γ, but we are now also allowed to use B as additional
assumption. We call B a case.

• Γ ` A: instead of proving D from Γ, we now need to prove A from Γ. We call A a lemma.

Both classical propositional logic and intuitionistic propositional logic can be defined in this way.
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The analysis in this paper focuses on the proof-theoretic properties for intuitionistic logic, and
extends the work in [3] and [4]. The standard form for intuitionistic logic is very suitable for defining
detour conversion (get rid of an introduction rule immediately followed by an elimination rule) and
permutation conversion (get rid of an elimination rule immediately followed by an elimination rule).
The aim is to remove all detour and permutation convertibilities and obtain a normal derivation, where
elimination rules are only applied to assumptions. It has already been shown that conversion is weakly
normalizing: there is a strategy that always converts a deduction to one in normal form. Deductions in
normal form have the subformula property: every formula that occurs in a deduction in normal form
of the judgement Γ ` A is a subformula of A or of a formula in Γ. This implies nice properties such
as consistency of the logic and decidability [3, 4].

The main contribution of this paper is the strong normalization of the combination of detour and
permutation conversion: no matter in which order one converts a deduction, one always reaches a
normal deduction. This is an non-trivial result, because conversion in the intuitionistic truth table
system is non-deterministic: in some detour conversion steps there are choices to be made [3, 4].
Moreover, conversion does not lead to unique normal forms and therefore the system does not satisfy
the Church-Rosser property.

The proof of strong normalization is based on the work of De Groote [5] who has proved strong
normalization for proof-reduction in the Prawitz system of natural deduction. The proof of De Groote
is based on a conversion-preserving translation from the Prawitz system to simply typed lambda cal-
culus, which is strongly normalizing. Conversion in the Prawitz system is easier in the sense that it
is deterministic. For the translation of the truth table system, we introduce an extended variant of the
simply typed lambda calculus, which we call parallel simply typed lambda calculus and which we
prove to be strongly normalizing. This enables us to get a grip on the non-deterministic character of
the conversions.

The paper is structured as follows. Section 2 defines the truth table natural deduction system for
intuitionistic propositional logic. It gives some examples and it recaps some well-known definitions.
It also introduces the notions of detour conversion and permutation conversion, the study of which is
the main topic of this paper. The material presented in Section 2 basically comes from [3] and [4].

Section 3 introduces a term calculus for the truth table natural deduction system. Here, deduc-
tions are interpreted as terms and detour conversion and permutation conversion correspond to term-
reductions. This has been described in [4] and it extends the well-known Curry-Howard formulas-
as-types isomorphism to these new connectives and deduction rules: a deduction of a formula A is
interpreted as a proof-term of type A. Just as in [4], we analyze conversions on deductions by study-
ing reductions on proof-terms.

Sections 4 and 5 contain the main contribution of the paper: a proof of strong normalization of
the combination of detour conversion and permutation conversion. We prove this by analyzing the
corresponding reductions on proof-terms, as defined in Section 3. In Section 4 we present the parallel
simply typed lambda calculus and in Section 5 we give a comprehensive study of the method of
De Groote applied to the intuitionistic truth table natural deduction system in order to prove strong
normalization. We end the paper with a section on related and future work.
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2. The truth table natural deduction system

In this section, we introduce the truth table natural deduction system for intuitionistic propositional
logic developed in [3]. The main idea of the system is that propositional derivation rules for a connec-
tive can be derived in a canonical way from its definition via a truth table. In this way, it is possible
to derive elimination rules and introduction rules, where the introduction rules come in an intuition-
istic and a classical variant. In this paper we focus on the intuitionistic rules and we call the natural
deduction system that we obtain the truth table natural deduction system.

For the well-known connectives, the system is equivalent (the same formulas are derivable) to the
well-known one introduced by Gentzen [1] and studied e.g. by Prawitz [2]. A difference is that the
deduction rules that we derive are in a ‘standard format’ as described in Section 1. This makes it easier
to study generic properties and define general constructions on derivations, like normalization.

This section is basically a recap of the definitions introduced in [3]. For a Kripke semantics of the
intuitionistic system and for information about the classical system we refer to [3] and [4].

We consider an arbitrary set of connectives, each with a fixed arity. Each connective c, say of arity
n, is defined via its truth table tc, which is a function of arity n, tc : {0, 1}n → {0, 1}. The values of
this function can be represented in a table where each row represents an application of the function,
that is, for ai ∈ {0, 1}, we get the row a1 . . . an | tc(a1, . . . , an). If c is an n-ary connective, the
truth table has 2n rows and n+ 1 columns. So ⊥ and > are considered as 0-ary connectives. We will
also look at the well-known connectives ∨,∧,→ (of arity 2) and ¬ (of arity 1). In [3] and [4] other
connectives like the 3-ary connectives if-then-else and most are studied as examples.

The language of the truth table system is built from propositional letters, p0, p1, p2, . . . , and con-
nectives, each with fixed arity, c0, c1, c2, . . . .

Definition 2.1. Let C be a set of connectives, each with a fixed arity. The set PROPC of propositions
over C is the smallest set such that

1. for p a propositional letter, we have p ∈ PROPC ,

2. for c ∈ C of arity n and A1, . . . , An ∈ PROPC , we have c(A1, . . . , An) ∈ PROPC .

We work in propositional logic, but we prefer to speak of formulas instead of propositions. We
write formulas with capital letters A,B,C, etc. For formulas with a special role, we use Greek letters
Φ,Ψ. For connectives⊥ and>,⊥ () and>() are formulas. Since the parentheses are superfluous, we
write ⊥ and > for these formulas.

We now define how to derive intuitionistic natural deduction rules from truth tables defined in [3].

Definition 2.2. Let c be an n-ary connective with a truth table tc. We write φ = c(p1, . . . , pn) where
p1, . . . , pn are proposition letters and we write Φ = c(A1, . . . An) where A1, . . . , An are formulas.
We define a derivation rule for each row in the truth table tc of c. If the truth value of a row in tc equals
0, then we obtain an elimination rule (el). If the row gives a 1, then it gives rise to an introduction
rule (in). The rules are defined in the following way, where the row of the truth table is given on the
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left-hand side.

p1 . . . pn φ

a1 . . . an 0
7→ Γ ` Φ . . . Γ ` Ak . . . . . . Γ, Al ` D . . .

el
Γ ` D

where Ak ranges over all formulas where ak = 1 and Al ranges over all formulas where al = 0.

p1 . . . pn φ

b1 . . . bn 1
7→ . . . Γ ` Aj . . . . . . Γ, Ai ` Φ . . .

in
Γ ` Φ

where Aj ranges over all formulas where bj = 1 and Ai ranges over all formulas where bi = 0.

For an n-ary connective c, there are 2n rules, since there are 2n rows in the truth table. The rules
in Definition 2.2 are given in sequent notation including a set Γ containing auxiliary assumptions. We
only specify Γ when necessary.

In an elimination rule, we call Γ ` Φ the major premise, and the other premises are called minor
premises. Recall the standard form for the derivation rules.

Γ ` A1 . . . Γ ` An Γ, B1 ` D . . . Γ, Bm ` D
Γ ` D

We call the A’s a lemma and the B’s a case. If we look at the rules in Definition 2.2, we see that Aj
occurs as a lemma, if aj = 1 in truth table tc, and Ai occurs as a case, if ai = 0 in tc. This standard
form simplifies the definition and study of properties like normalization, as we will see later. Most of
the well-known natural deduction rules adhere to this standard form, with the implication-introduction
rules being a notable exception. Our introduction rules for implication are different but equivalent, as
shown in [3, 4].

Example 2.3. Consider the truth tables of ∨,→ and ¬.
A B A ∨B A→ B

0 0 0 1
0 1 1 1
1 0 1 0
1 1 1 1

A ¬A
0 1
1 0

We derive the following intuitionistic rules, labeled by their corresponding entries in the rows of
the truth tables. Disjunction ∨ has one elimination rule and three introduction rules.

` A ∨B A ` D B ` D ∨-el00` D
` A B ` A ∨B ∨-in10` A ∨B

A ` A ∨B ` B ∨-in01` A ∨B
` A ` B ∨-in11` A ∨B

Implication→ also has one elimination rule and three introduction rules.

A ` A→ B B ` A→ B →-in00` A→ B
` A→ B ` A B ` D →-el10` D

A ` A→ B ` B →-in01` A→ B
` A ` B →-in11` A→ B
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The introduction and elimination rule for negation are given by:

A ` ¬A ¬-in0` ¬A
` ¬A ` A ¬-el1` D

Note that the introduction rule for ¬ only has a case and the elimination rule only has one minor
lemma. See Appendix A for the rules of the other usual connectives ∧, ⊥ and >.

Definition 2.4. Let C be a set of connectives, each with a fixed arity. We define the intuitionistic truth
table natural deduction system for C, IPCC , as follows.

1. We have the axiom rule
axiom, if A ∈ Γ

Γ ` A
2. IPCC contains the elimination rules and intuitionistic introduction rules for all connectives in C.

We write Γ `IPCC A if Γ ` A is derivable using the rules of IPCC . Usually we will just write
Γ ` A if the set of connectives is clear. A derivation in IPCC is a tree built up using the rules in IPCC
whose leaves are instances of the axiom rule or instances of connective rules without any premises.
We use Greek capital letters Π or Σ to denote derivations. If judgement Γ ` A is the result of an
axiom rule, Γ ` A is called an assumption. If the end-sequent in a derivation Π is of the form Γ ` D
we say that D is derived from Γ.

Often it is possible to reduce the number of rules. In the following we will see the reduced formats
as described in [3]. We first look at two standard lemmas. The first lemma is the weakening property.
The second lemma shows how to put derivations together in one derivation.

Lemma 2.5. (Weakening)
If Π is a derivation of Γ ` A and Γ ⊆ ∆, then Π is also a derivation of ∆ ` A.

Proof:
Proof by simple induction on the derivation of Γ ` A. ut

Lemma 2.6. If Γ ` A and ∆, A ` B, then Γ,∆ ` B.

Proof:
This is proved by induction on the derivation of ∆, A ` B. ut

This lemma can be written in a more suggestive way using proof-trees. If Σ is a derivation of
Γ ` A and Π of ∆, A ` B, then the derivation of Γ,∆ ` B becomes:

Σ
Γ ` A . . .

Σ
Γ ` A

Π
Γ,∆ ` B

This is possible, because the only place in Π where the hypothesis A can be used is an instance of
the axiom rule of the shape ∆′, A ` A for some ∆′ ⊇ ∆. In Π we replace each ∆′, A ` A by the
derivation Σ of ∆′,Γ ` A, which is possible due to weakening.
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The following two lemmas state the reductions to the optimized rules. For proofs see [3]. Note
that Lemma 2.6 is needed for Lemma 2.8.

Lemma 2.7. Two derivation rules of the form

` A1 . . . ` An B1 ` D . . . Bm ` D Φ ` D
` D

,
` A1 . . . ` An ` Φ B1 ` D . . . Bm ` D

` D
are equivalent to the rule

` A1 . . . ` An B1 ` D . . . Bm ` D
` D

.

Lemma 2.8. The following rules are equivalent:

` A1 . . . ` An B ` D
` D

and ` A1 . . . ` An
` B

.

Optimization does not always result in unique optimized rules, but for the usual connectives
∧,∨,→ and ¬ it does.

Example 2.9. In Example 2.3, we saw the rules for ∨,→ and ¬ derived from the truth tables, follow-
ing Definition 2.2. The optimized rules for those connectives are given below. The rules for ¬ are
already in optimized form, therefore we will not repeat them here.

` A ∨B A ` D B ` D ∨-el` D
` A ∨-in1` A ∨B

` B ∨-in2` A ∨B

` A→ B ` A →-el` B
` B →-in1` A→ B

A ` A→ B →-in2` A→ B

The optimized rules for ∨ correspond to the well-known Prawitz rules [2]. Note that the rules for
→ are essentially different from those of Prawitz, but they are proved to be equivalent in the sense that
they prove the same formulas [3, 4]. See Appendix A for the optimized rules of the connectives ∧, ⊥
and >.

We now introduce so-called detour and permutation conversion of intuitionistic derivations which
have already been defined in [4]. In [4], normalization properties have been established, such as strong
normalization for detour conversion and for permutation conversion separately, and weak normaliza-
tion for the combination of the two.

In a normal derivation all major premises of elimination rules are assumptions. A convertibility is a
pattern in a derivation for which a major premise of an elimination rule is not an assumption. These are
also sometimes called cuts, but this terminology is usually reserved for sequent calculus. There are two
different convertibilities, which we call detour convertibilities and permutation convertibilities. (In
[3], they are called direct cuts and indirect cuts respectively, but we prefer to stick to the terminology
of ‘convertibility’, as we have done in [4].)

A detour convertibility is an introduction rule of a formula Φ immediately followed by an elim-
ination rule of Φ. We will see that there are two possibilities circumventing such patterns. Before
giving the definitions, we illustrate it with an example, where we intuitively see why one wants to
avoid detour convertibilities. We also see that detour conversion is non-deterministic.
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Example 2.10. Consider the non-optimized rules for ∨ from Example 2.3. An example of a detour
convertibility of ∨ is.

ΣA
Γ ` A

ΣB
Γ ` B ∨-in11Γ ` A ∨B

ΠA

Γ, A ` D
ΠB

Γ, B ` D ∨-el00
Γ ` D

We see that first introducing A ∨ B and then eliminating it is not necessary and undesirable. Note
also that the derivation does not satisfy the subformula property. It can be replaced by two different
derivations:

ΣA
Γ ` A

ΠA

Γ ` D

or

ΣB
Γ ` B

ΠB

Γ ` D
This means that we can make a choice in the conversion, which means that it is non-deterministic.

Definition 2.11. Let c be an n-ary connective with an elimination rule and an intuitionistic introduc-
tion rule derived from truth table tc. So we have the following rows in the truth table.

p1 . . . pn c(p1, . . . , pn)

a1 . . . an 0

b1 . . . bn 1

A detour convertibility is a pattern in which the consequence of an introduction rule is the major
premise of an elimination rule. This has the following form with subtrees Σj , Σi, Πk and Πl, where
Φ = c(A1, . . . , An).

Σj

. . .Γ ` Aj . . .
Σi

. . .Γ, Ai ` Φ . . .
in

Γ ` Φ

Πk

. . .Γ ` Ak . . .
Πl

. . .Γ, Al ` D . . .
el

Γ ` D
Here, Aj ranges over all formulas where bj = 1 and Ai ranges over all formulas where bi = 0 in

the row of the truth table. Similarly, Ak ranges over all formulas where ak = 1 and Al ranges over all
formulas where al = 0.

Definition 2.12. (Detour conversion)
A detour conversion is the operation of replacing a detour convertibility from Definition 2.11 in a
derivation by one of the following derivations. In general there are several (but at least one) ways to
do this. The two general patters for detour conversion are as follows: (1) when a case of the elimination
rule matches with a lemma of the introduction rule; (2) when a lemma of the elimination matches with
a case of the introduction rule.

1. If j′ = l′ for some j′, l′ which means Aj′ = Al′ :

Σj′

Γ ` Aj′ . . .
Σj′

Γ ` Aj′
Πl′

Γ ` D
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2. If i′ = k′ for some i′, k′ which means Ai′ = Ak′ :

Πk′

Γ ` Ai′ . . .
Πk′

Γ ` Ai′
Σi′

Γ ` Φ

Πk

. . .Γ ` Ak . . .
Πl

. . .Γ, Al ` D . . .
el

Γ ` D

Both diagrams yield correct derivations because of Lemma 2.6.

In the two rows of the truth table, as depicted in Definition 2.11, each m where am 6= bm yields
a ‘matching case’ of Definition 2.12, i.e. a possibility for a detour conversion. So there can be several
‘matching cases’ l′ = j′ or k′ = i′. This means that detour conversion is non-deterministic. In [3] and
[4], the matching cases are just written as j = l and i = k, but in this paper, instead, we write j′ = l′

and i′ = k′ to indicate that j′, l′, i′, k′ are chosen entries.
Detour convertibility and detour conversion can also be defined in the same way for the optimized

rules [3, 4].

Example 2.13. Example 2.10 shows matching case (1) of Definition 2.12. Here we see an example
of matching case (2) with optimized rules for→.

Σ
Γ, A ` A→ B →-in2Γ ` A→ B

Π
Γ ` A →-el

Γ ` B

is replaced by

Π
Γ ` A

Σ
Γ ` A→ B

Π
Γ ` A →-el

Γ ` B

Now we turn to the permutation convertibilities. A permutation convertibility is a pattern in which
the consequence of an elimination rule is the major premise of another elimination rule. It is important
to look at such patterns, because it may block a detour convertibility: between the introduction and
elimination rule can be several other elimination rules. To solve this blockage, we can permute one
elimination rule over the other. This justifies the name of permutation convertibility.

Definition 2.14. Let c be an n-ary connective and let c′ be an n′-ary connective with elimination rules
r and r′ respectively. So we have the following rows in truth tables tc and tc′ :

p1 . . . pn c(p1, . . . , pn)

b1 . . . bn 0

p1 . . . pn′ c′(p1, . . . , pn′)

a1 . . . an′ 0

A permutation convertibility is a pattern of the following form, in which Φ = c(B1, . . . Bn) and
Ψ = c′(A1, . . . , An′).

Σ
Γ ` Ψ

Σj

. . .Γ ` Aj . . .
Σi

. . .Γ, Ai ` Φ . . .
elr′Γ ` Φ

Πk

. . .Γ ` Bk . . .
Πl

. . .Γ, Bl ` D . . .
elrΓ ` D

Here, Aj ranges over all formulas where aj = 1 and Ai ranges over all formulas where ai = 0.
Similarly, Bk ranges over all formulas where bk = 1 and Bl ranges over all formulas where bl = 0.
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For optimized rules, permutation convertibilities are defined in a similar way.

Example 2.15. This example with optimized rules is also stated in [4].

Γ ` A ∨B
Γ, A,C ` C → D →-in2Γ, A ` C → D Γ, B ` C → D

∨-el
Γ ` C → D Γ ` C →-el

Γ ` D

In this example we have a permutation convertibility where the conclusion of ∨-el is the major
premise of→-el. In this derivation, this permutation convertibility blocks the detour convertibility of
the combination of→-in2 and→-el.

Definition 2.16. (Permutation conversion)
A permutation conversion is defined by replacing a permutation convertibility from Definition 2.14 by
the following derivation, where the two elimination rules are permuted.

Σ
Γ ` Ψ

Σj

. . .Γ ` Aj . . .

Σi
Γ, Ai ` Φ

Πk

. . .Γ, Ai ` Bk . . .
Πl

. . .Γ, Ai, Bl ` D . . .. . . elr . . .Γ, Ai ` D
elr′Γ ` D

This is a correct derivation, because of the weakening property, that is, Πk is a derivation of
Γ, Ai ` Bk since it was a derivation of Γ ` Bk. Similarly, Πl is a derivation of Γ, Ai, Bl ` D.

Example 2.17. Now we look at the permutation conversion of the derivation of Example 2.15. We
get the following derivation.

Γ ` A ∨B

Γ, A,C ` C → D →-in2Γ, A ` C → D Γ, A ` C
→-el

Γ, A ` D
Γ, B ` C → D Γ, B ` C

→-el
Γ, B ` D

∨-el
Γ ` D

We observe that we have created a detour convertibility of the combination of →-in2 and →-el.
Consequently, this can be reduced with a detour conversion as in Example 2.13.

Example 2.18. An interesting case is a connective (for example negation) whose truth table has a
row of the form tc(1, . . . , 1) = 0. Such a connective has an elimination rule without any case in
its premises. We observe that in a permutation conversion with this elimination rule, parts of the
derivation disappear in the conversion. This is for instance the case in the following permutation
conversion with ¬.

` ¬B ` B ¬-el` A ∨A A ` A A ` A ∨-el` A
is replaced by ` ¬B ` B ¬-el` A

Definition 2.19. A derivation in IPCC is normal if every major premise of an elimination rule is an
assumption.
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Equivalently, a derivation is normal if it does not contain any detour or permutation convertibilities.
It can be shown that a normal derivation satisfies the subformula property, see [4] for details.

We have defined the detour and permutation conversions for non-optimized rules. It is also possi-
ble to define those conversions for the optimized rules, which is done in [4].

In the definition of detour conversion (Definition 2.12), we saw that detour conversion is poten-
tially non-deterministic: in case there are more ‘matching cases’, there are several ways to eliminate
the detour. This can actually be exploited to show that IPCC does not satisfy the Church-Rosser prop-
erty. The Church-Rosser property says that if derivation Σ converts to Π1 and to Π2, then there is a Π3,
such that both Π1 and Π2 can be converted to Π3. Informally speaking, the Church-Rosser property
says that the order of the conversions does not make a difference to the eventual result. This is also
known as confluence.

The Church-Rosser property fails whenever tc(a1, . . . , an) 6= tc(b1, . . . , bn) for (a1, . . . , an) and
(b1, . . . , bn) that are ‘sufficiently different’, so we need to talk about the distance between two se-
quences of the same length, which we just define by |(a1, . . . , an)− (b1, . . . , bn)| := Σn

i=1|ai − bi|.

Proposition 2.20. Let C be a set of connectives. IPCC satisfies the Church-Rosser property if and
only if for each n-ary connective c in C, and all (a1, . . . , an) and (b1, . . . , bn), we have

|(a1, . . . , an)− (b1, . . . , bn)| ≥ 2 implies tc(a1, . . . , an) = tc(b1, . . . , bn).

The proof is postponed until the next section (Proposition 3.9), where we can give the proof using
proof-terms.

Corollary 2.21. If C contains a non-constant connective of arity 3 or higher, IPCC does not satisfy the
Church-Rosser property.

Proof:
Using Proposition 2.20, it suffices to show that, for any connective c of arity n ≥ 3,

c is constant ⇐⇒ |~a−~b| ≥ 2 implies tc(~a) = tc(~b) for all ~a,~b,

where ~a is short notation for (a1, . . . , an).

The part ⇒ is obvious. For the part ⇐, it suffices to consider a connective of arity 3. We can
depict the rows of the truth table for c in the diagram below, which can be seen as an ordering of the
triples, based on the pointwise ordering 0 ≤ 1, but its main purpose is that all triples that only differ
on one position are connected by a line.

(IV) 1, 1, 1

(III) 1, 1, 0 1, 0, 1 0, 1, 1

(II) 1, 0, 0 0, 1, 0 0, 0, 1

(I) 0, 0, 0
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Now suppose that for all ~a,~b with |~a−~b| ≥ 2 we have tc(~a) = tc(~b). Then all triples on level (I)
and (III) have the same truth value, because |~a − ~b| ≥ 2 for each pair of these triples. Similarly all
triples on levels (II) and (IV) have the same truth value and the two triples on level (I) and (IV) have
the same truth value. As a consequence, all triples have the same truth value and c is constant. ut

It should be remarked that detour and permutation conversion for the well-known Prawitz style
natural deduction is Church Rosser. So, if one optimizes the rules for ∧,∨,→,¬, some of the non-
determinism gets somehow resolved: the non-deterministic choices are fixed so one ends up with a
derivation that has a unique normal form. Also note that there are other connectives, for example
most, where detour conversion is also non-confluent for the optimized deduction rules, and there is
no way to resolve the non-determinism other then fixing an arbitrary ordering upon the arguments of
most. See [4] for more details.

3. The Curry-Howard isomorphism

Following the Curry-Howard isomorphism [6, 7], formulas correspond to types and derivations corre-
spond to proof-terms. So far, we have considered the truth table system in a proof theoretical context.
The short notation of proof-terms for derivation gives the great advantage of studying proof-terms over
derivation trees. In addition, detour and permutation conversions correspond to reductions of terms.
This makes it easier to prove strong normalization in Section 5.

The type system that we define is based on the λ-calculus. For each set of connectives C we
define a system λC , where for each derivation rule in IPCC , we give a typing rule in λC . The types
in λC are exactly the formulas. In addition, we define reductions in λC that correspond to detour and
permutation conversions [4].

Definition 3.1. Let C be a set of connectives. The types in λC are the formulas involving connectives
from C, so each A ∈ PROPC is a type of λC . The abstract syntax for proof-terms in λC is

M ::= x |M ·r [M ; λx.M ] | {M ; λx.M }r

where x ranges over typed variables and r ranges over the rules of all connectives in C. We write M
to mean a finite sequence of terms. For the sake of readability, we prefer to leave out the specific types
of the variables x in abstractions. Let a context Γ be a set of type declarations of the form x : A. The
terms are typed using the derivation rules of IPCC as follows. So the rules are derived from the truth
table, just as in Definition 2.2.

axiom, if x : A ∈ Γ
Γ ` x : A

Γ `M : Φ . . .Γ ` Nk : Ak . . . . . .Γ, xl : Al ` Ol : D . . .
r, el

Γ `M ·r [N ; λx.O ] : D

. . .Γ ` Nj : Aj . . . . . .Γ, yi : Ai `Mi : Φ . . .
r, in

Γ ` {N ; λy.M }r : Φ
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Both in the elimination and introduction rules, we prefer to use capital letter M for terms of type
Φ, where Φ = c(A1, . . . , An) for the concerned connective c. In the elimination rules, N is the
sequence of terms Nk for the 1-entries in the truth table tc and λx.O is the sequence of the λxl.Ol’s
for the 0-entries. To stick to a same terminology, we call the Nk’s a lemma and the λxl.Ol’s a case.
Similarly, for the introduction rules.

If it is clear from the context which rule is applied, we omit r in the elimination and introduction
term. The method of Definition 3.1 can also be applied to the optimized rules in a straightforward
way.

Example 3.2. The typing rules of disjunction are as follows, with their corresponding terms.

`M : A ∨B x : A ` O1 : D y : B ` O2 : D
∨-el`M · [ ;λx.O1, λy.O2] : D

` NA : A y : B `M : A ∨B ∨-in10` {NA ; λy.M} : A ∨B

x : A `M : A ∨B ` NB : B ∨-in01` {NB ; λx.M} : A ∨B
` NA : A ` NB : B ∨-in11` {NA, NB ; } : A ∨B

We see that derivations in IPCC directly correspond to proof-terms in λC . Now we define term
reduction rules that correspond to detour and permutation conversion. In the definition of detour
reduction we use the notion of substituting term N for x in M , writing M [x := N ]. Substitution in
λC is defined in the standard way as it is done in (typed) lambda calculus, so we leave out the formal
definition and turn directly to the definition of detour reduction.

Definition 3.3. (Detour reduction)
Consider a term of a detour convertibility as defined in Definition 2.11. Define detour reduction in λC
as follows. It should be understood that Nj′ is in the sequence N , etc.

1. j′ = l′ for some j′, l′, that is, Nj′ : Aj′ and xl′ : Al′ with Aj′ = Al′ :

{N ; λy.M } · [P ; λx.Q] −→D Ql′ [xl′ := Nj′ ]

2. i′ = k′ for some i′, k′, that is, yi′ : Ai′ and Pk′ : Ak′ with Ai′ = Ak′ :

{N ; λy.M } · [P ; λx.Q] −→D Mi′ [yi′ := Pk′ ] · [P ; λx.Q]

3. and if P −→D R, then

(a) P · [N ; λx.O ] −→D R · [N ; λx.O ]

(b) M · [N ,P, N ′ ; λx.O ] −→D M · [N ,R, N ′ ; λx.O ]

(c) M · [N ; λx.O, λx.P, λx′.O′ ] −→D M · [N ; λx.O, λx.R, λx′.O′ ]

(d) {N ,P, N ′ ; λy.M } −→D {N ,R, N ′ ; λy.M }
(e) {N ; λy.M , λy.P, λy′.M ′} −→D {N ; λy.M , λy.R, λy′.M ′}

Cases (1) and (2) are the base cases of the detour reduction. In these cases, the term on the left is
called the redex. Case (3) represents the extension of the reduction to subterms.
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Example 3.4. There are four detour reductions of terms with disjunction from Example 3.2, namely

{NB ; λx.M}01 ·∨ [ ;λx.O1, λy.O2] −→D O2[y := NB]

{NA ; λy.M}10 ·∨ [ ;λx.O1, λy.O2] −→D O1[x := NA]

{NA, NB; }11 ·∨ [ ;λx.O1, λy.O2] −→D O1[x := NA]

{NA, NB; }11 ·∨ [ ;λx.O1, λy.O2] −→D O2[y := NB]

The last two lines represent the detour conversion of Example 2.10, which shows that the detour
reduction is non-deterministic.

Now we define the permutation reductions.

Definition 3.5. (Permutation reduction)
Consider a term of a permutation convertibility as defined in Definition 2.14. We define permutation
reduction in λC as follows.

1. (M · [N ; λx.O ]) · [P ; λy.Q] −→P M · [N ; λx.(O · [P ; λy.Q])]

2. We extend the definition to subterms in the same way as in Definition 3.3 (3) with −→D
replaced by −→P .

Case (1) is the base case, where we call the left term a redex.

Definition 3.6. A term is in normal form if it contains no redex.

Due to the Curry-Howard isomorphism, normal derivations in IPCC correspond to normal forms
in λC . We have the following lemma about normal forms [4].

Lemma 3.7. Term P is in normal form if one of the following holds.

1. P = x, where x is a variable,

2. P = x · [N ; λx.O ] with all Nk and Ol in normal form and x a variable,

3. P = {N ; λy.M } with all Nj and Mi in normal form.

We also summarize the main results that have been proved about weak and strong normalization
in [4].

Theorem 3.8. In λC we have the following normalization results.

1. The reduction −→P is strongly normalizing.

2. The reduction −→D is strongly normalizing.

3. The union of −→P and −→D is weakly normalizing.
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In the rest of this paper we will prove that the union of −→P and −→D is strongly normalizing.
From the above results we will only use the simplest one, that reduction −→P is strongly normalizing.

We now prove that, under certain precise conditions, the union of −→P and −→D is Church
Rosser, thereby proving Proposition 2.20. In the proof, we use that the union of −→P and −→D is
strongly normalizing (which we will actually prove in the rest of this paper).

Proposition 3.9. Let C be a set of connectives and let −→P and −→D be the term-reductions defined
from that following Definitions 3.3 and 3.5. These reductions satisfy the Church-Rosser property if
and only if for each n-ary connective c in C, and all (a1, . . . , an) and (b1, . . . , bn), we have

|(a1, . . . , an)− (b1, . . . , bn)| ≥ 2 implies tc(a1, . . . , an) = tc(b1, . . . , bn).

Proof:
Suppose we have an n-ary connective c and~a = (a1, . . . , an) and~b = (b1, . . . , bn) with |~a−~b| ≥ 2 and
tc(a1, . . . , an) 6= tc(b1, . . . , bn). We show that the Church-Rosser property fails. Let 1 ≤ g < h ≤ n
be such that ag 6= bg and ah 6= bh. Consider the proof-term

{N ; λy.M } · [P ; λx.Q] : Φ

arising from an introduction of Φ = c(A1, . . . , An) and then an elimination of Φ with conclusion Φ.
(So we take D := Φ in the elimination rule.) Make sure that each Ql is a different term in normal
form not containing xl. The easiest way to do this is by letting them all be variables of the appropriate
type, declared in Γ. Let the Mi also all be different variables of the appropriate type, declared in Γ,
different from all the Ql. Take the Pk and the Nk also in normal form. Now, the above term reduces
in two of the ways below, depending on what ag and ah are exactly.

{N ; λy.M } · [P ; λx.Q] −→D Qg[xg := Ng]

{N ; λy.M } · [P ; λx.Q] −→D Qh[xh := Nh]

{N ; λy.M } · [P ; λx.Q] −→D Mg[yg := Pg] · [P ; λx.Q]

{N ; λy.M } · [P ; λx.Q] −→D Mh[yh := Ph] · [P ; λx.Q]

Each of these is a term in normal form, and they are all different. So Church-Rosser fails.
The other way around, we rely on standard theory from the field of Term Rewriting (see [8]). If

for each connective c and all ~a and~b, with |~a−~b| ≥ 2 we have tc(a1, . . . , an) = tc(b1, . . . , bn), then
the only critical pairs arise through an overlap of −→D and −→P and an overlap of −→P and
−→P . Each of these is easily solvable, which yields weak-Church-Rosser, and thereby Churh-Rosser
because we have strong normalization. See [8] for the details on critical pairs, weak-Church-Rosser
and how it implies Church-Rosser. ut

4. Parallel simply typed λ-calculus

In Section 5, we prove strong normalization of reduction (the combination of detour and permutation)
in λC by generalizing the proof of strong normalization by De Groote [5] for Prawitz natural deduction.
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The proof of De Groote uses a translation to simply typed lambda calculus, λ→. As the truth table
natural deduction system is not confluent, we have extended λ→ with an extra term-constructor to
make it possible to easily keep track of different choices. The parallel calculus makes it possible to
combine different proofs of a formula. These proofs will stand parallel to each other, which justifies
the name parallel simply typed λ-calculus. So in the present section we define and study the parallel
simply typed lambda calculus, denoted by pλ→. As the simply typed lambda calculus λ→ is a very
well-known system, we will not repeat its definition and the basic results about λ→, but refer to
standard literature like [7, 9].

Definition 4.1. (Parallel simply typed λ-calculus)
The types in the parallel simply typed λ-calculus are of the form A ::= a | A → A, where a ranges
over the atomic types. The abstract syntax for proof-terms in the parallel simply typed λ-calculus is

M ::= x | (MM) | λx.M | (M1|| . . . ||Mn) for (n > 1)

where x ranges over variables. The terms are typed using the following derivation rules with context
Γ. The axiom rule, application and abstraction are the same for λ→.

if xi : Ai ∈ Γ, axiom
Γ ` xi : Ai

Γ `M : A→ B Γ ` N : A application
Γ `MN : B

Γ, x : A `M : B
abstraction

Γ ` λx.M : A→ B

Γ `M1 : A . . . Γ `Mn : A
n > 1, parallel

Γ ` (M1|| . . . ||Mn) : A

We use the following terminology and notations. We use capital lettersA,B,C to represent types.
We reserve capital letters M,N,O, P,Q for terms in pλ→. When M is of the form (M1|| . . . ||Mn),
we call M a parallel term.

Parallel terms can be used to store all information of a proof. For instance, it may be the case that
a formula can be proved in several ways, and one wants to record those different proofs.

Example 4.2. In a proof of A → B → (A → C) → (B → C) → C one can apply the information
from A or the information from B to conclude C. A ‘parallel proof’ that records both options would
look like this, written in a notation where formulas in brackets indicate discharged assumptions.

[A→ C] [A]

C

[B → C] [B]

C
C 4 abstractions

A→ B → (A→ C)→ (B → C)→ C

In IPC, this is not a valid derivation, as it combines the two sub-derivations of C in one, for
which there is no rule in IPC. The proof-term that would correspond to this derivation tree in pλ→ is
M := λx.λy.λz.λw.(zx||wy), where we see that the two options for proving C are both recorded.

Just as in λ→, we can define substitution in the usual way and we can show that the substitution
lemma holds in pλ→. The substitution lemma is proved by induction on derivations, like many other
lemmas in this section.
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Lemma 4.3. (Substitution lemma)
Assume that Γ, x : B,∆ `M : A and Γ ` N : B, then Γ,∆ `M [x := N ] : A.

For pλ→ we extend β-reduction with a rule for parallel terms.

Definition 4.4. (β||-reduction)
The β||-reduction in pλ→ is defined by adding to the well-known β-rule of λ→ the following reduction
step

(M1|| . . . ||Mn)N →|| (M1N || . . . ||MnN)

and extend to subterms. As usual, terms of the form (λx.M)N and (M1|| . . . ||Mn)N are β||-redexes.
If M reduces in zero, one or more steps to N , we write M �β|| N . This means that �β|| is the

reflexive and transitive closure of →β|| . If M reduces in one or more steps we write M +→β|| N ,
which is the transitive closure of→β|| .

Strong normalization of pλ→ can be proved in different ways. It can be proved directly, by con-
structing a model using the well-known saturated sets method of Tait [10]. This is an adaptation of the
well-known proof of strong normalization for λ→ and can be found in detail in [11]. Another proof
proceeds by translating pλ→-terms to λ→ in a reduction preserving way, and then we conclude strong
normalization for pλ→ from strong normalization for λ→. We follow this approach. To define the
translation, we need enough constants, which we can just assume without a problem, as it does not
affect the meta-theory.

Convention 4.5. For each atomic type a and n ≥ 1 we assume a constant cna : a → . . . → a → a,
where the type contains exactly n+ 1 occurrences of a. So cna expects n terms of type a to produce a
term of type a.

Definition 4.6. We define the following translation F (−) from well-typed pλ→-terms to well-typed
λ→-terms. F (x) := x, F (MN) := F (M)F (N), F (λx.M) := λx.F (M) and

F ((M1|| . . . ||Mn)) := λx1 . . . xm.c
n
a(F (M1)~x) . . . (F (Mn)~x)

if M1 : A1 → . . .→ Am → a.

In this definition, ~x denotes the vector x1 . . . xm. The definition makes use of the fact that every
λ→-type is of the form A1 → . . . Am → a for some atomic type a. So, the arguments to cna are all of
atomic type a.

Lemma 4.7. The translation F (−) preserves types and reduction steps. That is, if Γ ` M : A in
pλ→, then Γ ` F (M) : A in λ→ and moreover, if M →β|| N in pλ→, then F (M)→β F (N) in λ→.

Proof:
The proof of the first part is a straightforward induction on the derivation of Γ ` M : A in pλ→. The
second is by induction on the definition of M →β|| N in pλ→ (Definition 4.4). The only interesting
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case is when M = (M1|| . . . ||Mn)P →β|| (M1P || . . . ||MnP ) = N . Then

F ((M1|| . . . ||Mn)P ) = (λy.λx1 . . . xm.c
n
a(F (M1)y~x) . . . (F (Mn)y~x))F (P )

→β λx1 . . . xm.c
n
a(F (M1)F (P )~x) . . . (F (Mn)F (P )~x) = F ((M1P || . . . ||MnP )).

ut

The following theorem is an immediate consequence of Lemma 4.7 and the fact that λ→ is strongly
normalizing.

Theorem 4.8. (Strong normalization for pλ→)
In parallel simply typed lambda calculus, β||-reduction is strongly normalizing.

The following proposition is checked by induction on the derivation. See [11] for the details.

Proposition 4.9. (Subject reduction property)
Parallel simply typed lambda calculus satisfies the subject reduction property. That is, if Γ ` M : A
and M →β|| N , then Γ ` N : A.

In pλ→, one can record a number of terms of the same type as a ‘tupled term’, but one cannot
select a term from such a tuple. Therefore, the parallel simply typed lambda calculus also satisfies the
Church-Rosser property. A proof can be given by adapting the well-known method that Takahashi has
developed to prove the Church-Rosser property in λ→ [12]. The proof of Church-Rosser is detailed
in [11].

To translate λC-terms and their reductions to pλ→-terms and reductions on these, we need to
consider parallel subterms of pλ→-terms.

Definition 4.10. We write M ′ v M to denote that M ′ is parallel subterm of M . Relation v is
inductively defined by the following rules.

1. M vM ,

2. If N vMi for some i, then N v (M1|| . . . ||Mn),

3. If Ni vMi for all i, then (N1|| . . . ||Nn) v (M1|| . . . ||Mn),

4. If P v Q, then λx.P v λx.Q,

5. If P v Q and M v N , then PM v QN .

Example 4.11. Recall the proof-term M = λx.λy.λz.λw.(zx||wy) in Example 4.2. It has the fol-
lowing parallel subterms: the term itself, λx.λy.λz.λw.zx and λx.λy.λz.λw.wy. So note that being
a parallel subterm is really different from being a subterm: zx is a subterm of M but not a parallel
subterm. On the other hand, λx.λy.λz.λw.zx is not a subterm of M .

Lemma 4.12. The relation v is a partial order, that is, v is reflexive, antisymmetric and transitive,
and it commutes with substitution: if M v N and P v Q, then M [x := P ] v N [x := Q].
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Proof:
Reflexivity is immediate and for transitivity – the main property that we will use – if M v N and
N v P , one proves M v P by induction on the definition of N v P . Full details can be found in
[11]. That v commutes with substitution is proved by induction on M v N . ut

The following lemma states that reduction can be extended to ‘parallel superterms’.

Lemma 4.13. Let M , N and P be pλ→-terms. If M →β|| N and M v P , then there is a pλ→-term

Q such that P +→β|| Q and N v Q.

Proof:
The proof is by induction on the definition of M v P . The interesting case is when M = M1M2 =
(λx.M ′)M2 is a β||-redex itself. If P = M or P is a parallel term containing M it is clear. For
P = P1P2 with M1 v P1, M2 v P2 and M = (λx.M ′)M2 →β|| M

′[x := M2] = N , there are two
interesting cases for M1 v P1.

• Case (4) in Definition 4.10. Then P1 = λx.P ′ for some P ′, define Q = P ′[x := P2]. Then we
have P = (λx.P ′)P2 →β|| Q and N = M ′[x := M2] v Q, because M ′ v P ′ and M2 v P2

(and we have the substitution property in Lemma 4.12).

• Case (2) in Definition 4.10. Then P1 = (P ′1|| . . . ||P ′n) such that M1 v P ′i for some i. Again
there are two cases. If P ′i is a parallel term, then repeat the process. Note that this eventually
ends, since there are finitely many nested subterms. If P ′i = λx.P ′′ with M ′ v P ′′, then define

Q = (P ′1P2|| . . . ||P ′′[x := P2]|| . . . ||P ′nP2).

We have P = (P ′1|| . . . ||P ′n)P2 →β|| (P ′1P2|| . . . ||(λx.P ′′)P2|| . . . ||P ′nP2) →β|| Q. And we
also have N = M ′[x := M2] v Q, because M ′ v P ′′ and M2 v P2. ut

5. Strong normalization

In [4], weak normalization of IPCC with permutation and detour conversions is proved by studying
the term reduction in λC . The proof consists in proving strong normalization separately for detour
reduction and for permutation reduction. The procedure for weak normalization consists of first doing
a full permutation reduction and then doing a detour reduction step of ‘highest rank’. This is a fairly
complicated process and proof, and in [4] no proof of strong normalization for the union of detour and
permutation reduction is given.

Here we present a detailed proof of strong normalization of the union of detour and permutation
reduction. Our proof is based on the work of De Groote [5] who gives a detailed proof for strong
normalization of Prawitz natural deduction. His proof is based on a translation from natural deduction
to simply typed lambda calculus, λ→. The clue of the proof is that a permutation conversion in the
Prawitz system corresponds to equality (α-equivalence) in simply typed lambda calculus and that a
detour conversion corresponds to β-reduction in simply typed lambda calculus. Therefore, an infinite
conversion would translate to an infinite reduction in λ→, because there cannot be infinitely many
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consecutive permutation conversions. As λ→ is strongly normalizing, there cannot be such an infinite
conversion of derivations in Prawitz natural deduction.

In [5], it is not made explicit where the translations of connectives to λ→-types arise. So, it is
not straightforward to generalize this to arbitrary connectives. A limitation is that [5] excludes the
permutation conversion for the ⊥-rule. This gives normal proofs that do not satisfy the subformula
property, as illustrated in the example below. We have created a method to generalize the approach of
De Groote to full IPCC (for any set of connectives C), including the permutation for the ⊥-rule.

Example 5.1. Below are two examples of derivations (terms) in normal form following De Groote,
but they do not have the subformula property.

`⊥ ⊥-el` A ∨A A ` A A ` A ∨-el` A

` ¬B ` B ¬-el` A ∨A A ` A A ` A ∨-el` A

x :⊥ ` x · [; ] · [;λp.p, λq.q] : A x : ¬B, y : B ` x · [y; ] · [;λp.p, λq.q] : A

This situation occurs with connectives c that have the following row in their truth table (that yields an
elimination rule): tc(1, . . . , 1) = 0, which is not uncommon. These are exactly the connectives having
an elimination rule with no case in the premises.

We define a translation from the truth table system to parallel simply typed lambda calculus, pλ→.
In the translation, we need to preserve all possible reductions in λC . This is tricky when subterms can
be thrown away, which can happen in some permutation reduction rules, exactly for ‘negative connec-
tives’ like ⊥ and ¬, see Example 2.18. The translation of De Groote needs some special treatment
when we also permute those ‘negative connectives’. We therefore single out two types of permuta-
tions, which is a refinement of Definition 3.3.

Definition 5.2. (Positive and negative permutation reductions)

1. Positive permutation reduction: assume there is at least one case λxl.Ol.

(M · [N ; λx.O ]) ·r [P ; λy.Q] −→Ppos M · [N ; λx.(O ·r [P ; λy.Q])]

2. Negative permutation reduction: in case λx.O is empty

(M · [N ; ]) ·r [P ; λy.Q] −→Pneg M · [N ; ]

In this format, De Groote only considers reductions corresponding to the positive permutation
reduction. Our generalization to λC of the approach of De Groote [5] proves strong normalization
only for detour and positive permutation reductions of the truth table system. This is Theorem 5.24.

The translation is not totally sufficient for the negative permutation reduction, which has two rea-
sons. First, we have to slightly change the translation based on De Groote for elimination rules with
no cases by the reason illustrated above. Second, this adjustment does not ensure that a negative per-
mutation step in λC corresponds to a �β|| step in pλ→. However, we have found a manner to prove
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strong normalization for detour and all permutation reductions using Theorem 5.24. This is our main
result in Theorem 5.28.

We define a translation for types (formulas) of λC and we define a corresponding translation of
terms. First we translate types. We use a negative translation of formulas. De Groote bases his
negative translation on the translation induced by Plotkin’s call-by-name CPS-translation [13], but in
[5], it is not made explicit how the translation arises. A closer reading of [5] reveals that the translation
can be derived from the elimination rules of the concerned connective. We generalize this strategy to
λC and it turns out to be effective to prove strong normalization.

Definition 5.3. (Type translation)
Let o be a distinguished atomic type in pλ→. For every type A in pλ→, we denote

∼A := A→ o.

The negative translation 〈〈Φ〉〉 of any formula Φ of IPCC is defined inductively as follows.

• If Φ = A a proposition letter, 〈〈A〉〉 := ∼∼A.

• If Φ = c(A1, . . . , An) for a connective c ∈ C, with elimination rules r1, . . . , rt,

〈〈Φ〉〉 := ∼(E1 → · · · → Et → o),

where Es is the elimination pattern for rule rs defined by

Es = 〈〈Ak1 〉〉 → · · · → 〈〈Akm 〉〉 → ∼〈〈Al1 〉〉 → · · · → ∼〈〈Aln−m 〉〉 → o,

where the Ak’s are the formulas where ak = 1 and the Al’s are the formulas where al = 0 in
the row of the truth table tc that corresponds with elimination rule rs.

There are two special cases. If there is no elimination rule for c, then 〈〈Φ〉〉 := ∼o. If c is a
0-ary connective with an elimination rule, then 〈〈Φ〉〉 := ∼∼o. Note that⊥ is the only connective
with this property.

Looking at the definition, we can make the following easy but convenient observation

〈〈Φ〉〉 = ∼Φ◦ with
Φ◦ = ∼Φ if Φ is a propostion letter,
Φ◦ = E1 → · · · → Et → o if Φ = c(A1, . . . , An) for some connective c,

with E1, . . . , Et as in Definition 5.3.

It is also possible to translate types using the optimized rules. Optimization is defined in Lemma
2.7 and Lemma 2.8. To do this, we only consider rules optimized by Lemma 2.7, because a rule opti-
mized by Lemma 2.8 is not in the correct form. However, this does not matter since this optimization
does not reduce the number of rules and such a rule is easily rewritten back in the correct form using
Lemma 2.8 itself.
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Example 5.4. Conjunction ∧ has the following two optimized elimination rules, as denoted in Ap-
pendix A.

` A ∧B ∧-el1` A and ` A ∧B ∧-el2` B

First we rewrite those rules with Lemma 2.8 to the following.

` A ∧B A ` D ∧-el1` D and ` A ∧B B ` D ∧-el2` D

We have E1 = ∼〈〈A〉〉 → o = ∼∼〈〈A〉〉 and E2 = ∼〈〈B 〉〉 → o = ∼∼〈〈B 〉〉. So

〈〈A ∧B 〉〉 = ∼(∼∼〈〈A〉〉 → ∼∼〈〈B 〉〉 → o).

This is similar to the definition of De Groote [5].

Example 5.5. Here we state the negative translation of types for connectives ∨,→, ¬, ⊥ and > using
the optimized rules. See Appendix A for the optimized elimination rules. Note that some rules have
to be rewritten with Lemma 2.8 before translating the type.

• Disjunction: 〈〈A ∨B 〉〉 = ∼((∼〈〈A〉〉 → ∼〈〈B 〉〉 → o)→ o)

• Implication: 〈〈A→ B 〉〉 = ∼((〈〈A〉〉 → ∼〈〈B 〉〉 → o)→ o)

• Negation: 〈〈¬A〉〉 = ∼(∼〈〈A〉〉 → o) = ∼∼∼〈〈A〉〉
• Bottom: 〈〈⊥〉〉 = (o→ o)→ o = ∼∼o
• Top: 〈〈>〉〉 = o→ o

In [5], the term translation is established in two steps. First a translation 〈〈M 〉〉 and then refining
this definition to [[M ]]. We proceed in the same way of translating a term M in the truth table system
to terms 〈〈M 〉〉 and [[M ]] in pλ→.

Convention 5.6. We sometimes write indices i, j, k, l in sequences of terms to make clear that it is an
indexed sequence, that is, we write Nj instead of N to indicate that it is indexed by j.

Definition 5.7. (Term translation 〈〈M 〉〉)
We define 〈〈M 〉〉 inductively as follows.

1. (Axiom)
〈〈x〉〉 := λh.xh

2. (Elimination) For connective c, let r1, . . . , rt be its elimination rules. We distinguish between
elimination terms with case and without any case.

〈〈M ·rs [Nk ; λxl.Ol ]〉〉 := λh.〈〈M 〉〉(λg1 . . . λgt.gs 〈〈Nk 〉〉 (λxl.〈〈Ol 〉〉h)) if there is a case λxl.Ol

〈〈M ·rs [Nk ; ]〉〉 := λh.〈〈M 〉〉
(
(λp.λg1 . . . λgt.gs 〈〈Nk 〉〉 )h

)



H. Geuvers et al. / SN for Truth Table Natural Deduction 161

3. (Introduction) For connective c, let r1, . . . , rt be its elimination rules. For introduction rule r
we define

〈〈{Nj ; λyi.Mi}r 〉〉 := λh.
(
(λqj .λqi .h) 〈〈Nj 〉〉 (λyi.〈〈Mi〉〉h)

)
eh1 . . . e

h
t ,

where λqj should be understood as a sequence of lambda abstractions corresponding to Nj’s
and λqi corresponding to (λyi.〈〈Mi〉〉h)’s. Term ehs is the possibly parallel term (. . . ) defined
as follows: if Es = 〈〈Ak1 〉〉 → · · · → 〈〈Akm 〉〉 → ∼〈〈Al1 〉〉 → · · · → ∼〈〈Aln−m 〉〉 → o is the
elimination pattern for rs, then ehs contains

• λhk .λhl .hl′ 〈〈Nj′ 〉〉 for all j′ in rule r and l′ in rs such that j′ = l′,
• and λhk .λhl .(λyi′ .〈〈Mi′ 〉〉h)hk′ for all i′ in rule r and k′ in rs such that i′ = k′.

Here, λhk quantifies over all 〈〈Ak 〉〉 in Es and λhl over all ∼〈〈Al 〉〉. In the proof of Proposi-
tion 5.12, we see that the terms ehs are well-defined of type Es, by checking the types of its
components.

In the definition there are a lot of dummy redexes: redexes where the abstracted variable does not
occur in the body and the argument gets thrown away by a β-reduction step. In the elimination term
〈〈M ·rs [Nk ; ]〉〉 redex (λp. . . . )h is a dummy redex. In the introduction term we have for each Nj and
Mi a dummy redex (λqj . . . )〈〈Nj 〉〉 and (λqi . . . )(λyi.〈〈Mi〉〉h). These are necessary in order to preserve
all subterms in the translation. This is very important, because reduction can also take place in those
subterms. In the elimination term we need to preserve h. In the introduction rule we make sure that
each subterm Nj and Mi is preserved in the translation, as they need not be in the ehs terms.

In the introduction terms we use parallel terms. This is a new idea which is not present in the
approach of De Groote, but it is very useful, because detour reduction in the truth table system is
non-deterministic. Using parallel terms, we store each choice of a detour step in the subterm ehs . So
each possible detour reduction in term M is captured by a β||-reduction in the translated pλ→-term
〈〈M 〉〉.

Example 5.8. We give a term translation for the non-optimized rules of ∨. See Example 3.2 for the
typing rules. There is one elimination term and there are three introduction terms of ∨. Here we write
down the translations of ∨-el00 and ∨-in11.

〈〈M ·∨ [ ;λx.O1, λy.O2]〉〉 = λh.〈〈M 〉〉(λg1.g1(λx.〈〈O1〉〉h)(λy.〈〈O2〉〉h))

〈〈{NA, NB; }11〉〉 = λh.
(

(λp.λq.h)〈〈NA〉〉 〈〈NB 〉〉
)
e1,

with e1 = (λh1.λh2.(h1〈〈NA〉〉) || λh1.λh2.(h2〈〈NB 〉〉)).
The last line illustrates the use of the parallel terms. From Example 3.4, we know that there is a

choice in the detour reduction with rule ∨-in11.

The term translation can also be applied to the optimized rules from Lemma 2.7 and Lemma 2.8.
When an elimination term is optimized by Lemma 2.8, the term translation has to be slightly modified
because such a term has a different form. This proceeds in the following way. A rule can be optimized
by Lemma 2.8, only when it has exactly one case, say x : A ` O : D. Then the term (λx.〈〈O〉〉h) in
the elimination translation is replaced by (λf.fh) where f : 〈〈A〉〉.
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Example 5.9. We give the term translations of the optimized rules for conjunction, ∧, where we use
the type translation in Example 5.4. We have the following optimized rules from Appendix A with the
corresponding terms.

`M : A ∧B ∧-el1`M ·el1 [ ; ] : A
, `M : A ∧B ∧-el2`M ·el2 [ ; ] : B

and
` NA : A ` NB : B

∧-in` {NA, NB ; }in : A ∧B

The pλ→-terms after term translation are as follows. We omit the dummy redexes in the introduction
term, because each subterm is already translated by a matching case j′ = l′.

〈〈M ·el1 [ ; ]〉〉 = λh.〈〈M 〉〉(λg1.λg2.g1(λf.fh)),

〈〈M ·el2 [ ; ]〉〉 = λh.〈〈M 〉〉(λg1.λg2.g2(λf.fh)),

〈〈{NA, NB; }in〉〉 = λh.h(λh1.h1〈〈NA〉〉)(λh2.h2〈〈NB 〉〉).

The detour reductions for the optimized rules for ∧ are deterministic, so there is no parallel term in
the introduction rule.

Example 5.10. We continue Example 5.5. We give the term translations of the connectives ∨,→, ¬,
⊥ and > with the optimized rules. See Appendix A for the rules. In each introduction rule we can
omit the dummy redexes, because all information is preserved in the ehs terms.

• Disjunction: Let M : A ∨B, NA : A and NB : B. Then

〈〈M ·el [ ;λxA.O1, λxB.O2]〉〉 = λh.〈〈M 〉〉(λg1.g1(λxA.〈〈O1〉〉h)(λxB.〈〈O2〉〉h)),
〈〈{NA; }in1〉〉 = λh.h(λh1λh2.h1〈〈NA〉〉),
〈〈{NB; }in2〉〉 = λh.h(λh1λh2.h2〈〈NB 〉〉).

• Implication: Let M : A→ B, NA : A and NB : B. Then

〈〈M ·el [NA; ]〉〉 = λh.〈〈M 〉〉(λg1.g1〈〈NA〉〉(λf.fh)),
〈〈{NB; }in1〉〉 = λh.h(λh1λh2.h2〈〈NB 〉〉),
〈〈{ ;λyA.M}in2〉〉 = λh.h(λh1λh2.(λyA.〈〈M 〉〉h)h1).

• Negation: Let M : ¬A and NA : A. Then

〈〈M ·el [NA; ]〉〉 = λh.〈〈M 〉〉
(
λp.(λg1.g1〈〈NA〉〉)h

)
,

〈〈{ ;λyA.M}in〉〉 = λh.h(λh1.(λyA.〈〈M 〉〉h)h1).

• Bottom: Let M :⊥. Then 〈〈M ·el [ ; ]〉〉 = λh.〈〈M 〉〉
(
λp.(λg1.g1)h

)
.

• Top: 〈〈{ ; }in〉〉 = λh.h.

For the optimized rules for those connectives, the detour reduction is deterministic. This means that
there is no parallel term in any of these introduction terms.

It can be shown that translations of types and translations of terms commute with the typing rela-
tion, that is, if M : A in λC , then 〈〈M 〉〉 : 〈〈A〉〉 in pλ→. This is true for non-optimized rules as well as
for optimized rule. See Proposition 5.12 for the proof for non-optimized rules.
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Example 5.11. We continue Example 5.9. Here we show the correctness of the translation for the
optimized rules ∧-el1 and ∧-in. We see that the translation commutes with the typing relation in the
case of those rules. First, recall the rules:

`M : A ∧B ∧-el1`M ·el1 [ ; ] : A
and

` NA : A ` NB : B
∧-in` {NA, NB ; }in : A ∧B

The following show the translated derivations where expressions between brackets are used in abstrac-
tions:

〈〈M 〉〉 : 〈〈A ∧B 〉〉

[g1 : ∼∼〈〈A〉〉]

[f : 〈〈A〉〉] [h : A◦]

fh : o

λf.fh : ∼〈〈A〉〉
g1(λf.fh) : o

λg2.g1(λf.fh) : ∼∼〈〈B 〉〉 → o

λg1.λg2.g1(λf.fh) : ∼∼〈〈A〉〉 → ∼∼〈〈B 〉〉 → o

〈〈M 〉〉(λg1.λg2.g1(λf.fh)) : o

λh.〈〈M 〉〉(λg1.λg2.g1(λf.fh)) : 〈〈A〉〉

and

[h : ∼∼〈〈A〉〉 → ∼∼〈〈B 〉〉 → o]

[h1 : ∼〈〈A〉〉] 〈〈NA 〉〉 : 〈〈A〉〉
h1 〈〈NA 〉〉 : o

λh1.h1 〈〈NA 〉〉 : ∼∼〈〈A〉〉
h(λh1.h1 〈〈NA 〉〉) : ∼∼〈〈B 〉〉 → o

[h2 : ∼〈〈B 〉〉] 〈〈NB 〉〉 : 〈〈B 〉〉
h2 〈〈NB 〉〉 : o

λh2.h2 〈〈NB 〉〉 : ∼∼〈〈B 〉〉
h(λh1.h1 〈〈NA 〉〉)(λh2.h2 〈〈NB 〉〉) : o

λh.h(λh1.h1 〈〈NA 〉〉)(λh2.h2 〈〈NB 〉〉) : 〈〈A ∧B 〉〉

In the following, we write 〈〈Γ〉〉 = x1 : 〈〈B1〉〉, . . . , xn : 〈〈Bn〉〉 when Γ = x1 :B1, . . . , xn :Bn.

Proposition 5.12. If Γ ` M : A in λC , then 〈〈Γ〉〉 ` 〈〈M 〉〉 : 〈〈A〉〉 in parallel simply typed lambda
calculus.

Proof:
The proof is by induction on the derivation of Γ `M : A.

1. The (Axiom) rule is straightforward

2. (Elimination) We consider ` M ·rs [Nk ; λxl.Ol ] : D, which is derived with elimination rule
rs with premises ` M : Φ, ` Nk : Ak and xl : Al ` Ol : D, where Φ = c(A1, . . . An) and
c has t elimination rules. We want to prove that ` 〈〈M ·rs [Nk ; λxl.Ol ]〉〉 : 〈〈D〉〉. Recall that
〈〈Φ〉〉 = ∼(E1 → · · · → Et → o) with elimination patterns

Eu = 〈〈Ak1 〉〉 → · · · → 〈〈Akm 〉〉 → ∼〈〈Al1 〉〉 → · · · → ∼〈〈Aln−m 〉〉 → o,

where the Ak’s are the formulas where ak = 1 and the Al’s are the formulas where al = 0 in
the truth table tc of the corresponding elimination rule ru.
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The added dummy redex in an elimination term where λxl.Ol is empty does not influence
the type, so we can consider the situation where we have at least one case λxl.Ol. Induction
hypotheses are ` 〈〈M 〉〉 : 〈〈Φ〉〉, ` 〈〈Nk 〉〉 : 〈〈Ak 〉〉 and xl : 〈〈Al 〉〉 ` 〈〈Ol 〉〉 : 〈〈D〉〉 for every k and l. We
have the following derivation (where we have omitted some terms). Recall that 〈〈D〉〉 = ∼D◦.

〈〈M 〉〉 : 〈〈Φ〉〉

[gs : Es] . . . 〈〈Nk 〉〉 : 〈〈Ak 〉〉 . . .

xl : 〈〈Al 〉〉 ` 〈〈Ol 〉〉 : 〈〈D〉〉 [h : D◦]
o. . . . . .

λxl.〈〈Ol 〉〉h : ∼〈〈Al 〉〉
gs 〈〈Nk 〉〉 (λxl.〈〈Ol 〉〉h) : o

Et → o

...
E1 → · · · → Et → o

o

λh.〈〈M 〉〉(λg1 . . . λgt.gs 〈〈Nk 〉〉 (λxl.〈〈Ol 〉〉h)) : 〈〈D〉〉

We conclude that indeed λh.〈〈M 〉〉(λg1 . . . λgt.gs 〈〈Nk 〉〉 (λxl.〈〈Ol 〉〉h)) has type 〈〈D〉〉.
3. (Introduction) We consider ` {Nj ; λxi.Mi}r : Φ which is derived from introduction rule r with

premises ` Nj : Aj and xi : Ai ` Mi : Φ, where Φ = c(A1, . . . An) and c has t elimination
rules. Dummy redexes do not influence the type, so we consider the situation without these
redexes. So we want to prove that λh.heh1 . . . e

h
t : 〈〈Φ〉〉. Induction gives ` 〈〈Nj 〉〉 : 〈〈Aj 〉〉 and

xi : 〈〈Ai〉〉 ` 〈〈Mi〉〉 : 〈〈Φ〉〉 for all j, i. First we prove for every s ≤ t that

Es = 〈〈Ak1 〉〉 → · · · → 〈〈Akm 〉〉 → ∼〈〈Al1 〉〉 → · · · → ∼〈〈Aln−m 〉〉 → o,

is inhabited by the term ehs with h : Φ◦ = E1 → · · · → Et → o. (Recall that 〈〈Φ〉〉 = ∼Φ◦.)
Term ehs can be a single or a parallel term (. . . ) with elements that belong to one of the following
cases. Note that ehs always exists, since there is at least one ‘matching case’.

• j′ = l′ for some j′ in introduction rule r and some l′ in elimination rule rs:

[hl′ : ∼〈〈Al′ 〉〉] 〈〈Nj′ 〉〉 : 〈〈Aj′ 〉〉
hl′ 〈〈Nj′ 〉〉 : o

λhk .λhl .hl′ 〈〈Nj′ 〉〉 : 〈〈Ak1 〉〉 → · · · → 〈〈Akm 〉〉 → ∼〈〈Al1 〉〉 → · · · → ∼〈〈Aln−m 〉〉 → o

So we conclude that such an element in ehs has type Es.
• i′ = k′ for some i′ in introduction rule r and some k′ in elimination rule rs:

yi′ : 〈〈Ai′ 〉〉 ` 〈〈Mi′ 〉〉 : 〈〈Φ〉〉 h : Φ◦

〈〈Mi′ 〉〉h : o

λyi′ .〈〈Mi′ 〉〉h : ∼〈〈Ai′ 〉〉 [hk′ : 〈〈Ak′ 〉〉]
o

λhk .λhl .(λyi′ .〈〈Mi′ 〉〉h)hk′ : 〈〈Ak1 〉〉 → · · · → 〈〈Akm 〉〉 → ∼〈〈Al1 〉〉 → · · · → ∼〈〈Aln−m
〉〉 → o

We conclude that in this matching case the element in ehs has also type Es.

Each element in the possibly parallel term ehs has type Es, so ehs is well-defined with type Es.
We conclude that λh.heh1 , . . . , e

h
t has type 〈〈Φ〉〉, since h has type Φ◦. ut
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Just as in [5], the translation 〈〈M 〉〉 of Definition 5.7 has to be modified to another translation
which we denote by [[M ]]. The problem is that permutation reductions in M do not correspond to
β||-reductions in 〈〈M 〉〉. Instead, we have the following situation, for some pλ→-term R.

M //

P

��

〈〈M 〉〉
+

β||   
N // 〈〈N 〉〉 +

β||

// R

This is not sufficient for translating an infinite reduction in λC to an infinite β||-reduction in pλ→.
Therefore, following De Groote [5], we define a modified translation [[M ]] that improves on the sit-
uation described above. The idea of the modified translation is to perform specific additional β||-
reductions in the translation [[M ]]. This only works for positive permutation reductions. With the new
translation [[·]], we have the following diagrams.

M //

D
��

[[M ]]v K

+β||

��
N // [[N ]] v ∃K ′

M //

Ppos

��

[[M ]]

||

N // [[N ]]

M //

Pneg

��

[[M ]]

+

β||   
N // [[N ]]

+

β||

// R

The left diagram is proved in Proposition 5.22 and the diagram in the middle is Proposition 5.17.
This yields strong normalization for −→D ∪ −→Ppos . After that, we consider the addition of
negative permutation reductions separately.

Definition 5.13. (Modified term translation [[M ]])
For every term M in λC , we define term [[M ]] in parallel simply typed lambda calculus by

[[M ]] = λh.(M : h),

where h is a fresh variable and where the operator : is defined as follows (not to be confused with the
typing relation).

1. (Axiom) x : H := xH .

2. (Elimination) For connective c, let r1, . . . , rt be its elimination rules. We distinguish between
elimination terms with case and without case.

M ·rs [Nk ; λxl.Ol ] : H := M :
(
λg1 . . . λgt.gs [[Nk]] (λxl.(Ol : H))

)
if there is a case λxl.Ol

M ·rs [Nk ; ] : H := M :
(
(λp.λg1 . . . λgt.gs [[Nk]])H

)
3. (Introduction) For connective c, let r1, . . . , rt be its elimination rules. For introduction rule r

we define

{Nj ; λyi.Mi}r : H :=
(
(λqj .λqi .H)[[Nj ]] (λyi.(Mi : H))

)
[[eH1 ]] . . . [[eHt ]],
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where λqj should be understood as a sequence of dummy lambda abstractions corresponding
to Nj’s and λqi correspond to λyi.(Mi : H)’s. Term [[eHs ]] is the possibly parallel term (. . . )
defined as follows: if Es = 〈〈Ak1 〉〉 → · · · → 〈〈Akm 〉〉 → ∼〈〈Al1 〉〉 → · · · → ∼〈〈Aln−m 〉〉 → o is
the elimination pattern for rs, then [[eHs ]] contains

• λhk .λhl .hl′ [[Nj′ ]] for all j′ in r and l′ in rs such that j′ = l′,
• and λhk .λhl .(λyi′ .(Mi′ : H))hk′ for all i′ in r and k′ in rs such that i′ = k′.

Here, λhk quantifies over all 〈〈Ak 〉〉 in Es and λhl over all ∼〈〈Al 〉〉.

Example 5.14. In Example 5.8, we gave the non-modified translations of terms corresponding to the
two rules for disjunction ∨-el00 and ∨-in11. Here we consider a detour redex of those rules and show
the difference between the non-modified translation of Definition 5.7 and the modified translation of
Definition 5.13.

〈〈{NA, NB, ; }11 ·∨ [ ;λx.O1, λy.O2]〉〉

= λh.
(
λh′.

(
(λp.λq.h′)〈〈NA〉〉 〈〈NB 〉〉

)
e1

)
(λg1.g1(λx.〈〈O1〉〉h)(λy.〈〈O2〉〉h))

with e1 = (λh1.λh2.(h1〈〈NA〉〉) || λh1.λh2.(h2〈〈NB 〉〉)) and

[[{NA, NB, ; }11 ·∨ [ ;λx.O1, λy.O2]]]

= λh.
((
λp.λq.(λg1.g1(λx.(O1 : h))(λy.(O2 : h))

)
[[NA]][[NB]]

)
[[e1]]

with [[e1]] = (λh1.λh2.(h1[[NA]]) || λh1.λh2.(h2[[NB]])). We see that the second one is somehow
related to the first one by a β-reduction on λh′.

We have defined the type translation in Definition 5.3 and the modified term translation in Defini-
tion 5.13. We have shown that the first term translation commutes with the typing relation. Now we
have to show that this also holds for the modified term translation. This relies on the following lemma.

Lemma 5.15. Let M be a term in λC and let H be a pλ→-term, then:

1. 〈〈M 〉〉 �β|| [[M ]],

2. 〈〈M 〉〉H �β|| M : H.

Proof:
These statements are proved simultaneously by induction on the structure of M . We only look at the
introduction case {Nj ; λyi.Mi}, as the other cases are similar. Let c be a connective with introduction
rule r and elimination rules r1, . . . , rt. In this proof we use the following induction hypotheses for all
j and i:

〈〈Nj 〉〉 �β|| [[Nj ]] and 〈〈Mi〉〉h�β|| Mi : h.
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First we look at the pλ→-terms ehs = (. . . ) and [[ehs ]] = (. . . ) in the definitions of the normal term
translation (Definition 5.7) and the modified translation (Definition 5.13) for an introduction term. If
λhk .λhl .hl′ 〈〈Nj′ 〉〉 is in the parallel term ehs , then

λhk .λhl .hl′ 〈〈Nj′ 〉〉 �β|| λhk .λhl .hl′ [[Nj′ ]]

is in the parallel term [[ehs ]]. And if λhk .λhl .(λyi′ .〈〈Mi′ 〉〉h)hk′ is included in ehs , then

λhk .λhl .(λyi′ .〈〈Mi′ 〉〉h)hk′ �β|| λhk .λhl .(λyi′ .(Mi′ : h))hk′

is in the parallel term [[ehs ]]. This means that ehs �β|| [[ehs ]] for all s. Now we can conclude that

〈〈{Nj ; λyi.Mi}〉〉 = λh.
(
(λqj .λqi .h) 〈〈Nj 〉〉 (λyi.〈〈Mi〉〉h)

)
eh1 . . . e

h
t

�β|| λh.
(
(λqj .λqi .h)[[Nj ]] (λyi.(Mi : h))

)
[[eh1 ]] . . . [[eht ]] = [[{Nj ; λyi.Mi}]]

and
〈〈{Nj ; λyi.Mi}〉〉H �β|| {Nj ; λyi.Mi} : H. ut

Proposition 5.16. If Γ ` M : A in λC , then 〈〈Γ〉〉 ` [[M ]] : 〈〈A〉〉 in parallel simply typed lambda
calculus pλ→.

Proof:
This follows from Proposition 5.12, Lemma 5.15, and the subject reduction property of the parallel
simply typed lambda calculus (Proposition 4.9). ut

Now we see that positive permutation reductions correspond to syntactic equality.

Proposition 5.17. Let M and N be terms in λC such that M −→Ppos N . Then

1. M : H = N : H , for all pλ→-terms H ,

2. [[M ]] = [[N ]].

Proof:
Statement (2) is a direct consequence of (1). For (1), we proceed by induction on the generation of
M −→Ppos N . We only treat the base case, since the induction steps are easily verified.

We consider the permutation convertibility where there is at least one case of the form λx.O:
(M · [N ; λx.O ]) ·rs [P ; λy.Q] −→Ppos M · [N ; λx.(O ·rs [P ; λy.Q])].

Write L =
(
λg1 . . . λgt.gs [[P ]](λy.(Q : H))

)
, then

(M ·[N ; λx.O ]) ·rs [P ; λy.Q] : H

= (M · [N ; λx.O ]) : L

= M :
(
λg1 . . . λgt′ .gs′ [[N ]](λx.(O : L))

)
= M :

(
λg1 . . . λgt′ .gs′ [[N ]](λx.((O ·rs [P ; λy.Q]) : H))

)
= (M · [N ; λx.(O ·rs [P ; λy.Q])]) : H ut
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The following lemmas are useful to prove that detour reduction in the truth table system corre-
sponds to β||-reduction in pλ→ which we establish in Proposition 5.22.

Lemma 5.18. LetM and P be terms in λC andH be a pλ→-term in which there is no free occurrence
of z, then:

1. (M : H)[z := [[P ]]] �β|| (M [z := P ]) : H,

2. [[M ]][z := [[P ]]] �β|| [[M [z := P ]]].

Proof:
Property (2) is a direct consequence of (1). The proof of (1) is by induction on the structure of M . See
[11] for the details. ut

Next lemma is based on Lemma 14 of De Groote [5].

Lemma 5.19. Let H and L be pλ→-terms such that H +→β|| L. Then, for any term M in λC , we have

M : H
+→β|| M : L.

Proof:
By induction on M . See [11] for the details. ut

Recall the definition of parallel subterm of Definition 4.10, K v L. Since we are working in the
parallel simply typed lambda calculus, we need the following lemma.

Lemma 5.20. Let H and L be pλ→-terms, such that H v L. Then, for any term M in λC , we have
(M : H) v (M : L).

Proof:
This is proved by induction on the structure of M . See [11] for the details. ut

Proposition 5.21. Let M and N be terms in λC such that M −→D N .

1. For any pλ→-termH there exists a pλ→-termK such that (M : H)
+→β|| K and (N : H) v K.

2. There exists a pλ→-term K such that [[M ]]
+→β|| K and [[N ]] v K. This can be illustrated in the

following diagram.

M //

D
��

[[M ]]

+β||
��

N // [[N ]] v ∃K

Proof:
The proof of (1) is by induction on the definition of M −→D N (Definition 3.3). The induction steps
are proved in detail in [11]. Here we treat one of the base cases of the detour reduction.
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1. j′ = l′ :
We consider {Nj ; λy.M } ·rs [P ; λxl.Ql ] −→D Ql′ [xl′ := Nj′ ].
In this case we should have a case in the elimination term of the form λxl.Ql.
Write L =

(
λg1 . . . gt.gs [[P ]] (λxl.(Ql : H))

)
, then

{Nj ; λy.M } ·rs [P ; λxl.Ql ] : H

= {Nj ; λy.M } : L

=
(
(λqj .λqiL)Nj λyi.(Mi : L)

)
[[eL1 ]] . . . [[eLt ]]

+→β|| L[[eL1 ]], . . . , [[eLt ]] (Delete dummy redexes)
+→β|| [[eLs ]][[P ]] (λx.(Q : H))

= (. . . ||(λhk .λhl .hl′ [[Nj′ ]])|| . . . )[[P ]] (λx.(Q : H)) (Definition of [[eLs ]])
+→β|| (. . . ||(λhk .λhl .hl′ [[Nj′ ]])[[P ]] (λx.(Q : H))|| . . . )
+→β|| (. . . ||(λxl′ .(Ql′ : H))[[Nj′ ]]|| . . . )
+→β|| (. . . ||(Ql′ : H)[xl′ := [[Nj′ ]]]|| . . . )
�β|| (. . . ||(Ql′ [xl′ := Nj′ ]) : H|| . . . ) (Lemma 5.18)

Define K = (. . . ||(Ql′ [xl′ := Nj′ ]) : H|| . . . ), then we conclude (Ql′ [xl′ := Nj′ ] : H) v K.

For (2): [[M ]] = λh.(M : h) and by (1) we know that there exists aK ′, such that (M : h)
+→β|| K

′

and (N : h) v K ′. Let K = λh.K ′, then [[M ]]
+→β|| K and [[N ]] = λh.(N : h) v K. ut

Proposition 5.22. LetM andN be terms in λC such thatM −→D N and [[M ]] v K for a pλ→-term
K. Then there exists a K ′ such that K +→β|| K

′ and [[N ]] v K ′. This statement is shown in the
following diagram.

M //

D
��

[[M ]]v K

+β||

��
N // [[N ]] v ∃K ′

Proof:
From Proposition 5.21, we know that there exists a term L such that [[M ]]

+→β|| L and [[N ]] v L. By
Lemma 4.13 we know that we can reduce K to some term K ′ such that L v K ′. Since relation v is
transitive we conclude [[N ]] v K ′. ut

Now we look at an example of how the parallel terms are used in a detour reduction.

Example 5.23. Consider the following detour redex {NA, NB; }11 ·∨ [ ;λx.O1, λy.O2] with non-
optimized rules of disjunction (also stated in Example 3.4). There are two possible reductions.

{NA, NB; }11 ·∨ [ ;λx.O1, λy.O2] −→D O1[x := NA]

{NA, NB; }11 ·∨ [ ;λx.O1, λy.O2] −→D O2[y := NB]



170 H. Geuvers et al. / SN for Truth Table Natural Deduction

Recall the modified term translation:

[[{NA, NB, ; }11 ·∨ [;λx.O1, λy.O2]]]

= λh.
((
λp.λq.(λg1.g1(λx.(O1 : h))(λy.(O2 : h))

)
〈〈NA〉〉 〈〈NB 〉〉

)
[[e1]]

with [[e1]] = (λh1.λh2.(h1[[NA]]) || λh1.λh2.(h2[[NB]])).
The translated term β||-reduces to

K = λh.
(
(O1[x := NA]) : h || (O2[y := NB]) : h

)
.

If we choose to do the first detour reduction, then indeed

[[O1[x := NA]]] = λh.((O1[x := NA]) : h) v K.

When we would have picked the second possibility, then

[[O2[y := NB]]] = λh.((O2[y := NB]) : h) v K.

Combining Proposition 5.22 (every −→D step translates to a non-empty β||-reduction) and Propo-
sition 5.17 (every −→Ppos -step translates to an equality) with Theorem 3.8(1) (there are no infinite
−→P -reductions), we can conclude that −→D ∪ −→Ppos is strongly normalizing. This is the
generalization of Theorem 18 of De Groote [5].

Theorem 5.24. For any set of connectives C, λC is strongly normalizing with respect to detour and
positive permutation reductions, −→D ∪ −→Ppos .

Proof:
Suppose there is an infinite sequence of detour and positive permutation reductions starting from term
M1 in λC . We draw the following picture.

M1

D
��

M2
Ppos // M3

Ppos // M4

D
��

M5

...

translates to K1 w [[M1]]

+β||

��
K2 w [[M2]] = [[M3]] = [[M4]] v K2

+β||

��
[[M5]] v K3

...

Theorem 3.8(1) says there can be no infinite sequence of −→Ppos -steps, so the sequence contains
infinitely many detour steps. Proposition 5.22 and Proposition 5.17 imply that the infinite reduction
M1 −→D M2 −→Ppos M3 −→Ppos M3 −→D M4 . . . indeed translates to an infinite sequence

K1
+→β|| K2

+→β|| K3 . . . of β||-reduction steps. This contradicts the strong normalization property
of pλ→ (Theorem 4.8). So, there can be no infinite sequence of detour and positive permutation
reductions. ut
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We now have strong normalization of λC for −→D ∪ −→Ppos , by adapting and extending the
proof strategy of De Groote [5]. De Groote stops here and does not include negative permutations. As
mentioned before, that is unsatisfactory, because it does not give the proper notion of normal form.
So to fully complete our work we use Theorem 5.24 to prove strong normalization for all reductions
−→D ∪ −→P in Theorem 5.28. The idea behind the proof is that negative permutation steps do not
influence possible other reductions. We see that an infinite reduction path in λC (including negative
permutation) corresponds to an infinite reduction path with −→D ∪ −→Ppos steps, by postponing
the negative permutation steps.

Lemma 5.25. Let M1,M2,M3 be terms in λC such that M1 −→Pneg M2 −→D M3. Then there is
a term F in λC such that M1 −→D F −−�Pneg M3. This statement is illustrated by the following
diagram.

M1 D
//

Pneg
��

∃F

Pneg
����

M2 D
// M3

Proof:
By induction on the generation of M1 −→Pneg M2. See [11] for a detailed proof. ut

For positive permutations we want to prove a similar statement. We first introduce a special notion
to count positive permutation steps.

Definition 5.26. We define the relation =⇒n
Ppos which counts positive permutation steps as follows.

We say M =⇒n
Ppos N if

M = T · [R; λy.S ] · [U1 ; λw1.V1 ] · · · · · [Un ; λwn.Vn ],

N = T · [R; λy.(S · [U1 ; λw1.V1 ] · · · · · [Un ; λwn.Vn ])]

where in M there is at least one case of the form λy.S.

Note that =⇒1
Ppos is the same as −→Ppos .

Lemma 5.27. Let M1,M2,M3 be terms in λC such that M1 −→Pneg M2 =⇒n
Ppos M3. Then there is

a term F in λC such that M1 =⇒m
Ppos F −−�Pneg M3 with m = n or m = n + 1. This statement is

illustrated by the following diagram.

M1 Ppos

m +3

Pneg
��

∃F

Pneg
����

M2 Ppos

n +3 M3

Proof:
By induction on the generation of M1 −→Pneg M2. See [11] for a detailed proof. ut
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Finally, we conclude with our main theorem.

Theorem 5.28. (Strong normalization)
For any set of connectives C, λC is strongly normalizing with respect to detour and permutation reduc-
tions, −→D ∪ −→P .

Proof:
Suppose there is an infinite sequence of detour and permutation reductions starting from term M1 in
λC . We distinguish between negative and positive permutation reductions. There cannot be an infinite
sequence of consecutive negative permutation reductions (Theorem 3.8(1)). So we have the diagram
below where the vertical direction indicates negative permutation reductions and the horizontal direc-
tion the other reductions.

M1

Pneg
��

D // F1

k1

����

k1+1 +3 F2

k2

����

D // F3

k3

����

...

M2

Pneg
��

M3
D // M4

Ppos // M5

Pneg
��

M6
D // M7

...

We show that the dashed arrows exist such that we get an infinite sequence of detour and positive
permutation reductions starting from M1 on top of the figure. This contradicts Theorem 5.24.

This is proved as follows. From Lemma 5.25 we conclude that if P1 −→k
Pneg P2 in k steps and

P2 −→D P3, then there exists an F such that P1 −→D F −−�Pneg P3. This yields F1 in the
diagram and the first commuting rectangle. From Lemma 5.27 we conclude that if P1 −→k

Pneg P2

in k steps and P2 −→Ppos P3, then there exists an F such that P1 =⇒m
Ppos F −−�Pneg P3, with

1 ≤ m ≤ k + 1. This yields F2 and the second commuting rectangle. So we can construct an infinite
sequence of detour and positive permutation reductions, which is impossible. Therefore λC is strongly
normalizing with respect to detour and permutation reductions −→D ∪ −→P . ut

6. Related and future work

We have studied the truth table natural deduction system, a natural deduction system for which the
derivation rules are derived from the truth table, as defined in [3, 4]. We have proved that this very
general natural deduction system for IPC satisfies strong normalization: any order in which detour
conversions and permutation conversions are applied leads to a deduction in normal form. The truth
table system is a manner to define natural deduction rules for arbitrary connectives using a standard
format. There are various other ways to generalize standard natural deduction, for example as de-
scribed in [14, 15, 16]. In [4] it has been shown that these can be translated to the truth table system
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in a conversion-preserving way. This makes the present strong normalization result very general: it
applies to all systems of natural deduction. Proofs of weak and strong normalization of IPC appear
at various places in the literature, starting with the proof of weak normalization by Prawitz [2], who
later also gave a proof of strong normalization in [17]. The proof of strong normalization for IPC of
which our proof is a generalization is given by De Groote [5], but we note here (see Example 5.1)
that his ‘normal proofs’ do not have the required subformula property, which our normal proofs do
have. Some other direct proofs of strong normalization (that do not use a reduction-preserving trans-
lation) are given by Von Plato [18], Troelstra [19] and Simpson [20], who prove strong normalization
of intuitionistic predicate logic.

Closely related to the truth table system is the work of Milne [21], but his strategy is slightly
different. He starts from the introduction rules which define a certain truth table. From these truth
tables, the elimination rules are derived. Milne defines his method for classical logic. The idea that
introduction rules are the basis for the definition of the elimination rules is rooted in the inversion
principle of Gentzen and Prawitz: ‘the introductions represent, as it were, the ‘definitions’ of the
symbols concerned, and the eliminations are no more, in the final analysis, than the consequences
of these definitions.’ [1] This idea can be generalized to so-called ‘general elimination rules’. This
is studied by various researchers, such as Von Plato, Read, Francez and Dyckhoff [14, 22, 23]. The
idea is that elimination rules are naturally determined by the introduction rules. The method with
general elimination rules makes it possible to define deduction rules for arbitrary connectives, where
the meaning of the connective lies in the introduction rules. This is different from the truth table
system where connectives arise from truth tables. The elimination rules that arise from the ‘general
elimination’ method have a similar shape as the elimination rules we derive from truth tables, in the
sense that the conclusion of an elimination rule is an arbitrary formula D instead of a subformula of
the major premise. In this way, the standard ∨-E rule in the Prawitz system is a general elimination
rule. However, the general elimination rules differ from our elimination rules for some connectives,
such as for ∧ [4].

An interesting open problem is how to define detour conversion for the classical rules as they
have also been defined generically for all connectives in [3]. In a classical deduction one should
not only reduce an introduction followed by an elimination but also an elimination followed by an
introduction: due to the format of the classical introduction rules, the ‘introduced’ formula need not
be the conclusion of that rule but could be an assumption in the major premise which is eliminated.
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7. Appendix A: Rules from truth tables

We represent the intuitionistic truth table rules for the well-known connectives ∧,¬,→,∨,⊥ and >.
Both in plain form from Definition 2.2 (left column) and in optimized form by Lemmas 2.7 and 2.8
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(right column). The rules derived from the definition are labeled by the corresponding entries in the
truth table. Before we present the rules, we give the well-known truth tables of the connectives.

A B A ∨B A ∧B A→ B

0 0 0 0 1
0 1 1 0 1
1 0 1 0 0
1 1 1 1 1

A ¬A
0 1
1 0

⊥ >
0 1

Disjunction ∨

∨ From definition Optimized rules

Elim ` A ∨B A ` D B ` D ∨-el` D
` A ∨B A ` D B ` D ∨-el` D

Intro ` A B ` A ∨B ∨-in10` A ∨B
` A ∨-in1` A ∨B

` A ` B ∨-in11` A ∨B
` B ∨-in2` A ∨B

A ` A ∨B ` B ∨-in01` A ∨B

Conjunction ∧

∧ From definition Optimized rules

Elim ` A ∧B A ` D B ` D ∧-el00` D
` A ∧B ∧-el1` A

` A ∧B A ` D ` B ∧-el01` D
` A ∧B ∧-el2` B

` A ∧B ` A B ` D ∧-el10` D

Intro ` A ` B ∧-in` A ∧B
` A ` B ∧-in` A ∧B
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Implication→

→ From definition Optimized rules

Elim ` A→ B ` A B ` D →-el` D
` A→ B ` A →-el` B

Intro A ` A→ B B ` A→ B →-in00` A→ B
` B →-in1` A→ B

` A ` B →-in11` A→ B
A ` A→ B →-in2` A→ B

A ` A→ B ` B →-in01` A→ B

The rules for negation, top and bottom cannot be further optimized with Lemmas 2.7 and 2.8. That
is, the definition gives already the rules in optimized form.

Negation ¬ Bottom ⊥ Top >

¬ From definition

Elim ` ¬A ` A ¬-el` D

Intro A ` ¬A ¬-in` ¬A

⊥ From definition

Elim `⊥ ⊥-el` D

Intro no introduction
rule

> From definition

Elim no elimination
rule

Intro >-in` >
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