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Abstract. Combining and analysing sensitive data from multiple sources offers considerable potential for knowledge discovery.
However, there are a number of issues that pose problems for such analyses, including technical barriers, privacy restrictions,
security concerns, and trust issues. Privacy-preserving distributed data mining techniques (PPDDM) aim to overcome these
challenges by extracting knowledge from partitioned data while minimizing the release of sensitive information. This paper
reports the results and findings of a systematic review of PPDDM techniques from 231 scientific articles published in the past
20 years. We summarize the state of the art, compare the problems they address, and identify the outstanding challenges in
the field. This review identifies the consequence of the lack of standard criteria to evaluate new PPDDM methods and pro-
poses comprehensive evaluation criteria with 10 key factors. We discuss the ambiguous definitions of privacy and confusion
between privacy and security in the field, and provide suggestions of how to make a clear and applicable privacy description
for new PPDDM techniques. The findings from our review enhance the understanding of the challenges of applying theoret-
ical PPDDM methods to real-life use cases, and the importance of involving legal-ethical and social experts in implementing
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PPDDM methods. This comprehensive review will serve as a helpful guide to past research and future opportunities in the area
of PPDDM.

Keywords: Survey, data mining, privacy preserving, distributed learning

1. Introduction

Mining distributed, sensitive data offers tantalising potential for new insights and a wide variety of
applications, but is generally fraught with concerns of model accuracy and data privacy. Consider the
case of analyzing patient data in the healthcare domain: hospitals have used patient data to improve
diagnostic accuracy and efficiency [29,31] and to fuel the transition to preventive [17] and precision
medicine [6,27,95]. However, learning patient data from a single hospital might cause limited model
performance and incomplete knowledge discovery [59]. Patients’ health are not only affected by ge-
netic and biological factors, but also by individual behaviour and social circumstances [19]. Combining
various patient data from multiple sources offers one pathway to obtain more accurate and reliable ana-
lytical models for health outcomes [3,97]. However, combining distributed sensitive data faces a number
of challenges including: data protection compliance to one or more legal jurisdictions, privacy concerns,
security, and trust issues. Beyond the healthcare domain, this also applies to applications in many other
fields, such as finance and law [82,114]. Conventional centralised data mining techniques are challenged
in this environment and require viable alternatives.

Privacy-preserving distributed data mining (PPDDM), which focuses on the analysis of decentralised
data without leaking sensitive information from any party to the other parties, offers one way forward
for multiple data parties to overcome the challenges posed by centralising the data for analysis [72].
PPDDM techniques, whether data mining or machine learning, aim to make it technically or mathemat-
ically infeasible to deduce the original data from a communication message, and certainly from the final
analysis result. To make use of PPDDM in practical applications, we should consider the data problems
(e.g., classification, regression), the adversarial concerns the involving data parties have (e.g., malicious,
honest), and the balance between data privacy and model performance. PPDDM is sometimes referred to
privacy-preserving federated learning after Google first proposed the concept in 2016 [66,76]. However,
privacy-preserving federated learning can be regarded as a specific category of PPDDM, in which there
is a federation of autonomous organisations that express an interest to contribute to a joint analysis [92].

A number of PPDDM methods have been reported in the last 20 years. The existing survey papers have
compared the theoretical backgrounds, strengths, and limitations. However, the analysis of distributed
data has been poorly addressed as only one special case of privacy-preserving data mining [1,9,89,110].
The distributed data problem has been addressed to a limited extent in the survey of Hina Vaghashia [102]
and Suchitra Shelke [91]. Vassilios S. et al. [110] presented five dimensions of state-of-the-art privacy-
preserving data mining algorithms where the problem of analysing distributed data was merely consid-
ered to be addressed by cryptography-based techniques and only the association rule mining problem
and decision tree induction were presented in this survey. Several surveys summarized the evaluation
parameters to assess privacy-preserving techniques including privacy level, hiding failure, data quality,
complexity, efficiency, and resistance of different data mining algorithms [9,10,36,110]. Others have a
major focus on the definition and construction of Secure Multiparty Computation (SMC) and how SMC
can be combined with data mining algorithms [18,72,103]. In a recent survey [77], privacy-preserving
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approaches were summarized for data collection, data publishing, data mining output, and distributed
learning. The majority of the published surveys have typically treated PPDDM as a specialised subtopic
of either distributed data mining or privacy-preserving data mining. As an emerging field, PPDDM is
under-reported in the existing surveys and now requires a more comprehensive and complete analysis.

Accordingly, the main aim of this systematic review is to provide an overview of existing approaches
and identify outstanding challenges in the field of PPDDM. This paper reports the results and findings of
a comprehensive review of PPDDM techniques from 231 scientific articles published in the past 20 years.
We present the characteristics of the 18 most cited studies and analyze their influence on other studies in
the field. The results show a wide range of privacy-preserving methods and data mining algorithms have
been well-studied. We highlight the findings showing a lack of standard evaluation criteria in the field,
the ambiguous definition of privacy, and insufficient experimental information in some studies. These
findings enhance the understanding of the challenges of applying the theoretical PPDDM methods to
real-life use cases, and the importance of involving legal-ethical and social experts in implementing
PPDDM methods.

The main contributions of this work to the literature in the PPDDM field are:

(1) to propose comprehensive criteria with 10 key factors to evaluate the new PPDDM techniques.
The evaluation criteria include adversarial behaviour of data parties, data partitioning, experiment
datasets, privacy/security analysis, privacy-preserving methods, data mining problems, analysis
algorithms, complexity and cost, performance measures, and scalability.

(2) to present different definitions of privacy, distinguish information privacy from information secu-
rity in the PPDDM field, and provide suggestions of how to make clear and applicable privacy
descriptions to propose new PPDDM techniques.

(3) to identify the most cited PPDDM articles, analyze their characteristics and how these articles
influence other studies in the field, and

(4) to provide a guideline based on the proposed evaluation criteria for researchers to conduct future
research and publications in the PPDDM field.

This systematic review offers new insights into the important factors that should be considered to
propose and evaluate new PPDDM techniques and how to bridge the gap between theoretical methods
and practical applications in the field. We present this review paper as a helpful guide to past research
and future opportunities in the area of PPDDM.

The outline of this paper is as follows. In the next section, we present existing privacy-preserving
methods and define terms related to PPDDM. In Section 3, we describe the approach in conducting this
systematic review. In Section 4, we provide the results of our review, including evaluation criteria. In
Section 5, we compare the key influential papers. In the last section, we summarize our main findings,
present a list of recommendations, and discuss future directions.

2. Privacy-preserving methods

Privacy-preserving methods, as the major component of PPDDM techniques, are used to minimize the
release of information during data mining model training and communication among multiple parties.
Various privacy-preserving methods have been proposed from different communities such as statistics,
cryptography, data mining, and secure data transfer. In this section, we summarize the most commonly-
used privacy-preserving methods in PPDDM.
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2.1. Secure multiparty computation (SMC)

Secure multiparty computation protocols are designed for multiple parties to jointly compute some
function over their own data without revealing the original data to any other parties [72]. The foundation
for SMC started from cryptography. In addition to protect the participants from being attacked by ex-
ternal parties (who are outside of the system or protocol), SMC also protects the participants from each
other. For example, some SMC protocols are implemented to prevent participants from learning private
information from other parties or deliberately sending incorrect computation results to other parties. The
following sub-sections describe some well-known protocols in SMC.

2.1.1. Building blocks (primitives) SMC of protocols
Secure protocols that are deployed as building blocks of secure computation are used to prevent data

being revealed or deduced from the communication and/or computation between data parties [72]. Com-
monly used encryption protocols include oblivious transfer and homomorphic encryption. Oblivious
transfer, first developed by Even et al. [33], considers two data parties, a requester and a sender, where
the requester obtains exactly one instance without the sender knowing which element was queried, and
without the requester knowing about the other instances that were not retrieved. Oblivious transfer pro-
tocols iteratively pass over the data many times during training, and as a result are computationally
expensive. Another technique, homomorphic encryption, was introduced by Rivest [86]. This technique
supports certain algebraic operations such as additions and multiplications on encrypted text (i.e., ci-
phertext). The decrypted result from the operations on ciphertext matches the result of the operations
performed on the plain text. Homomorphic encryption systems are grouped into fully homomorphic en-
cryption (FHE) or partial homomorphic encryption (PHE) [81]. As the initial scheme of a homomorphic
cryptosystem, PHE can only perform a specific algebra operation such as addition or multiplication in
each iteration. This limits the usability for data mining algorithms, as the algorithms consist of several
complex operations. On the contrary, FHE supports any desirable operation and functionality that can
run on the ciphertext. Since the ciphertext is never decrypted, the input from each data party is not
revealed. The first generation of FHE system was proposed by Gentry in 2009 [42]. However, FHE sys-
tems are not sufficiently efficient due to the high computational cost of performing iterative operations
over encrypted data during the training epochs.

2.1.2. Generic SMC protocols
Generic SMC protocols were implemented for any probabilistic polynomial-time function [72]. Un-

like homomorphic encryption systems, these generic protocols are sensitive to the number of data parties.
The commonly-used protocol of secure two-party computation is Yao’s garbled circuit protocol [124].
The protocol is based on evaluating the function that needs to be computed by two data parties as a com-
binatorial circuit with a collection of gates (e.g., AND, XOR gate). These gates connect with circuit-input
wires, circuit-output wires and intermediate wires. Each gate has two input wires and one single output
wire. The required communication of the protocol depends on the size of the circuit, while the com-
putation cost depends on the number of input wires. Extensions to more than two data parties, i.e. the
cases of multiparty computation, have been developed by Micali et al. [79], Beaver et al. [5], and Ben-Or
et al. [7]. Following Yao’s theory, these protocols are based on designing the function as a circuit and
applying a secure computation protocol to the circuit [72]. Beside computational complexity, communi-
cation cost is a considerable factor in these protocols. All protocols need a one-to-one communication
channel between every pair of parties. Some require a broadcast channel for all parties.
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2.1.3. Specialized SMC protocols
Specialized SMC protocols are commonly used as primitives to the data mining algorithms including

secure sum, secure set union, secure size of intersection, and secure scalar product protocols. These
protocols allow certain operations without revealing any inputs from any of the participating data parties.

Secure sum as a basic and simple example of secure multiparty computation was introduced by Clifton
et al. to obtain the sum of the inputs [18]. The protocol is as follows: data party A has V 1 local value.
Party A generates a random number R and calculates (R + V 1) and sends this result to data party B
(PB). Then, Party B adds their local value to the received value and sends it (R + V 1 + V 2) to the next
party. In the end, to obtain the final result, the last sum value will be sent back to party A to subtract
R. The protocol ends with sending this final result to all participating parties. An example of securely
computing a sum among 4 four parties is shown in Fig. 1(a).

Secure set union has been applied to the case where data parties want to jointly create unions of sets
from rules and itemsets shared by multiple parties but not leaking the owner of each set. To guarantee
a secure computation, one approach is to apply a commutative encryption system in computing the set
union [18,85]. A commutative encryption system can encrypt original data multiple times using different
users’ public keys. The final encrypted data can be decrypted without considering the order of the public
keys in the encryption process [51]. In the secure set union protocol, one data party encrypts its own
itemsets using commutative encryption and transfers them to other parties. The receiver party encrypts
both its own sets and the received encrypted sets and passes it to the next party. Once the data is encrypted
by all parties, decryption can start at each party in any order. The permutation of the encryption order
prevents the participating parties from tracking the ownership of itemsets. However, if one item is present
at multiple data parties, then the number of the item will be exposed because of duplication. Figure 1(b)
presents an example of securely computing a set union among three data parties.

Secure size of set intersection is solving the problem that multiple data parties want to obtain the size
of set intersection of their local datasets without revealing the ownership. Similar to secure set union,
each data party encrypts its own item sets by using commutative encryption and sends it to another data
party. The receiver encrypts these items, arbitrarily permutes the order, and sends it to the next data
party. This process ends when all item sets are encrypted by all data parties. Due to the commutative
encryption, if and only if the original inputs are the same, then the final outcomes from two different item
sets can be equal. Therefore, the number of values that occur in all encrypted item sets is the size of the
set intersection. No input will get exposed since only encryption (no decryption) is required. Figure 1(c)
demonstrates the protocol of securely computing the size of set intersection.

Secure scalar product protocols are essential and powerful. It has been widely applied in many data
mining algorithms which can be decomposed to the calculation of scalar products. As a notable example,
Vaidya and Clifton extended a secure scalar products protocol to solve association rule mining problems
between two parties [104]. The general idea is as follows:

(1) Data party A has X = {x1, . . . , xn}, while data party B has Y = {y1, . . . , yn}. The goal is to
calculate X ∗ Y = ∑n

i=1(xi ∗ yi) without revealing inputs to the other party. Both parties share a
matrix C which is generated by random numbers.

(2) The protocol starts at Party A who generates n random numbers Ra = {r1, . . . , rn}. Then, party
A calculates X′ = X + C ∗ Ra and send to party B.

(3) Party B generates m(< n) random numbers Rb and calculate Y ′ = C1 ∗ Y + Rb1, . . . , Cn/m ∗
Y + Rb1, . . . , C2n/m ∗ Y + Rb2, . . . , Cn ∗ Y + Rbn and S ′ = ∑n

i=1(x
′
i ∗ yi). Y ′ and S are sent to

party A.
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Fig. 1. Examples of three secure multiparty computation protocols - Fig. 1(a). Secure sum protocol, Fig. 1(b). Secure set union
protocol, Fig. 1(c). Secure size of set intersection protocol.

(4) Party A calculates S ′′ = S ′ − ∑n
i=1(Ra ∗ Y ′) and m sets of sum of Ra which is Ra′ = Ra1 +

Ra2 +· · ·+Ran/m +Ran/m+1 +· · ·+Ra2n/m, . . . , Ra((m−1)n/m)+1 +Ra((m−1)n/m)+2 + ...3+Ran.
Party A sends S ′′ and Ra′ for final result calculation.

(5) Party B computes the final scalar product as S = S ′′ + Ra′ ∗ Rb.

The security of this secure scalar product protocol is guaranteed by the inability of either side to
deduce k equations with more than k unknowns. As with many other existing scalar product protocols [4,
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54], it is limited to the collaboration between only two parties because of the lack of efficiency in
practice [18].

2.2. Data perturbation

Data Perturbation preserves data privacy by adding ‘noise” to the individual records but still keeps the
key summary information about the data [116]. One major approach of data perturbation is to use sta-
tistical techniques to replace the original data with synthetic values which have the same or comparable
statistical information (e.g., distributions) as the original values. The synthetic data can be generated by
a statistical model which learns from the original data. The other main approach is to distort the values
by applying additive noise, multiplicative noise, or other randomization procedures [2]. Data swapping,
another method of data perturbation, switches a set of (sensitive) attributes between different data en-
tities to prevent the linkage of records to identities [23,35]. The major drawback of these methods is
the decrease of data quality and accuracy of the learning model. Data perturbation techniques are more
commonly used to protect privacy in data publishing problems [77].

2.3. Local learning and global integration

The method that integrates local models to one global model uses the foundation of ensemble learning
that trains a set of models in order to enhance the performance of one single model [84,112]. Each data
party can train their own local data miners independently. Then, these local data miners are sequentially
or parallelly integrated to compose a center or global data miner which can generate the final results.
Consequently, the original data of each party is never transferred to other data parties. A majority of
data mining algorithms have been theoretically developed to this approach including Support Vector
Machine [40,74,100,108], Decision Tree [34,98,106], Neural Networks [21,28,100,128] and so forth. A
few of them have been successfully implemented, applied and evaluated in practical use cases such as
[59] and [118].

3. Methodology

This paper follows the systematic review procedures described by Kitchenham [65]. In this section,
we will detail the workflow. First, we discuss the inclusion and exclusion criteria of study selection,
followed by the search strategies, and evaluation criteria for reviewing selected studies.

3.1. Eligibility criteria

We selected papers that are peer-reviewed publications in English between 2000 and 2020 (August)
working on data mining and machine learning techniques that solve problems of classification, regres-
sion, clustering, or association rule mining. The eligible papers must take privacy preservation into
account when data mining and machine learning models are executed on partitioned data. Partitioned
data includes horizontally partitioned/homogeneous data, vertically partitioned/heterogeneous data, and
arbitrarily partitioned data (The definitions of different partitioned data are presented in Section 3.3).
Furthermore, included papers must 1) propose and/or implement a new approach and/or; 2) apply exist-
ing approaches to a practical case and/or; 3) improve the performance of existing approaches.
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To narrow down the number of publications, we excluded poster and workshop abstracts, survey pa-
pers, and articles that only contain discussions on current concerns and future research directions. To set
the scope of this survey, the authors screened titles, keywords, and abstracts to exclude the papers that 1)
only focus on privacy-preserving data mining/machine learning on centralised data, 2) solve problems of
parallel computing, cloud computing, grid computing, edge computing, and fog computing to improve
computational performance rather than the complexity of the data analysis problem, 3) solve privacy
issues in data collecting, data publishing, data storage, and data querying, and 4) focus on Blockchain,
web attacks detection, intrusion detection, data privacy focusing on mobile devices, geographic data
privacy, and differential privacy. If the papers could not be identified based on its title, keywords, and
abstract, the authors reviewed the full text of the paper.

3.2. Search strategy

According to the eligibility criteria above, we used the following search engines and digital libraries:
IEEE Xplore Digital Library ,1 ACM Digital Library ,2 Science Direct ,3 ISI Web of Science ,4 Springer
Link ,5 PubMed .6 Based on the inclusion criteria, we formulated the following terms to search in the
title, abstract, and keywords of papers. The entire workflow for selecting relevant studies is presented
with search results in Fig. 3 in Section 4.1.

(1) privacy and (distributed or de-centralized or de-centralised or partitioned) and “machine learn-
ing” (PPDML)

(2) privacy and (distributed or de-centralized or de-centralised or partitioned) and “data mining”
(PPDDM)

(3) privacy and (vertically or heterogeneous) and “machine learning” (PPVML)
(4) privacy and (vertically or heterogeneous) and “data mining” (PPVDM)
(5) privacy and (horizontally or homogeneous) and “machine learning” (PPHML)
(6) privacy and (horizontally or homogeneous) and “data mining” (PPHDM)

3.3. Evaluation criteria for reviewing papers

To evaluate the paper on PPDDM techniques, conventional data mining evaluation criteria are not
adequate [84]. Beside conventional evaluation methods, additional factors such as communication costs,
data partitioning, adversary behavior, privacy measures should be considered. To the best of our knowl-
edge, there are no standard criteria for evaluating new PPDDM approaches. Consequently, studies se-
lected a various set of evaluation methods which they think are necessary for their approaches. In this
review, we assessed selected papers considering the following 10 factors including adversarial behav-
ior of data party, data partitioning, experimented datasets, privacy/security analysis, privacy-preserving
methods, data mining problems, analysis algorithms, complexity and cost, performance measures, and
scalability. The authors initially generated and modified these evaluation criteria by reviewing 10% of

1IEEE Xplore: https://ieeexplore.ieee.org/Xplore/home.jsp/.
2ACM Digital Library: https://dl.acm.org/.
3ScienceDirect: https://www.sciencedirect.com/.
4Web of Science – Clarivate: https://clarivate.com/products/web-of-science/.
5Springer Link: https://link.springer.com/.
6PubMed: https://www.ncbi.nlm.nih.gov/pubmed/.

https://ieeexplore.ieee.org/Xplore/home.jsp/
https://dl.acm.org/
https://www.sciencedirect.com/
https://clarivate.com/products/web-of-science/
https://link.springer.com/
https://www.ncbi.nlm.nih.gov/pubmed/
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the included articles. Then, the evaluation criteria have been discussed by the co-authors in several iter-
ations of reviewing until an agreement has been made on these 10-factor evaluation criteria. Afterwards,
all selected papers have been reviewed and assessed again using the criteria.

1) Adversarial behavior of data parties covers the assumed adversarial behavior that involved data
parties have. In this review, we consider two types of adversarial behavior of involved parties – semi-
honest and malicious. A semi-honest (also called passive, or honest-but-curious) party follows the pro-
tocol properly, however is also curious about other parties’ data [72]. The semi-honest party will attempt
to learn or deduce data from other parties. A malicious (or active) party will arbitrarily deviate from
the protocol and will make deliberate attacks to obtain access to data from other parties [44]. For ex-
ample, possible malicious behavior might be not starting the execution of protocols at all or suspending
(or aborting) the execution at any desired point in time. Papers that use ambiguous expressions such as
‘untrusted’ or ‘non-trusting’ or ‘non-collaborative’ are not classified into any category, because they did
not clearly indicate the adversarial property of data parties, nor did they provide any privacy or security
proof of their methods. In addition, we include the situation where a third party was involved. A third
party, as another independent entity, can combine data from multiple parties, execute analysis on the
joint datasets, or do the final computation based on information from data parties. A third party can be
fully-honest, semi-honest, and malicious.

2) Data partitioning Fig. 2 shows three scenarios of data partitioning which are considered in this
review: 1) Horizontally partitioned data which contains the same attributes from different data instances
(see Fig. 2(a)). For example, different hospitals see different patients, though they collect the same
patient attributes; 2) Vertically partitioned data which contains the same data instances but with different
attributes (see Fig. 2(b)). For example, a hospital has data on the same individuals as the tax office,
while the attributes collected differs per data party; 3) Arbitrarily partitioned data, the hybrid situation of
horizontally and vertically partitioned data. In this scenario, the data providing institutes hold different
attributes for different data instances (see Fig. 2(c)).

3) Dataset information factor indicates whether the study provides adequate information about the
applied datasets in their experiments. Basic information of datasets including sources, names, numbers
of features and instances, categorical or numeric type (if available) were recorded. Considering the
readability, collected information is composed into five categories for this factor:

(1) Datasets that are publicly available (e.g., UCI repository) [101]
(2) Datasets from practical cases such as real patients data from a clinic
(3) Synthetic datasets and datasets which were generated by authors
(4) Experiments are presented in the paper but information about datasets is missing
(5) No experiments are presented in the paper

4) Privacy definition or measurement describes whether the study gave an explicit privacy defini-
tion, analyses, or measurements. Due to a lack of a universally accepted standard definition, there are
many different definitions of privacy from various aspects such as law and philosophical point of view
covering personal information, body, communications, and territory [24,57]. This review only focuses
on information privacy which concerns the control of collection, use, retention, and distribution of per-
sonal information. During reviewing, we do not assess if the privacy definitions are correct and the levels
of privacy these studies can preserve though whether they gave a sufficient description, measurement, or
analysis of privacy.

5) Privacy-preserving methods are classified into 5 categories: 1) secure multiparty computation –
building blocks, 2) secure multiparty computation – generic and specialized construction protocols, 3)
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Fig. 2. Examples of three different partitioned data. Figure 2(a) shows horizontally partitioned data which contains the same
attributes/features from different data instances. Figure 2(b) shows vertically partitioned data which contains the same data
instances but with different attributes/features. Figure 2(c) shows arbitrarily partitioned data which is a hybrid situation of
horizontally and vertically partitioned data.

data modification, 4) local learning and global integration, and 5) others. First 4 categories have been
explained in detail in the Privacy-Preserving Method Section. The papers which did not use any method
from above are categorized to “others”.

6) Types of problems covers four main data mining areas: i.e., classification, regression, clustering,
and association rule mining. Classification predicts a class with categorical labels. These categorical
labels can be represented by discrete values, where the ordering among values has no meaning. In con-
trast, regression is to predict continuous-valued function or ordered value. Clustering is to group a set
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of data objects into multiple groups (clusters) so that objects within a cluster have high similarity, but
are very dissimilar to objects in other clusters. Association rule mining is to discover interesting associ-
ations and correlations between itemsets in transactional and relational databases [48]. Additionally, we
labeled the studies as “general” that solved some mathematical or statistical problems which are applied
to classification, regression, and clustering. The studies which worked on outlier detection, record link-
age, recommendation system, attribute/dimension reduction, feature selection, and probabilistic graph
are categorized into “others”.

7) Data mining algorithms present the algorithms which have been developed in a privacy-preserving
manner and which ones lack attention. There are plenty of algorithms across the data mining and statis-
tics domain [9,38]. In this review, the top eight algorithms are listed in the result table including decision
tree, K-nearest neighbor, bayesian networks, support vector machine, neural networks, K-means, lin-
ear/logistic regressions, and A-priori algorithms.

8) Complexity and cost indicates whether the study explicitly measures computational complexity,
time cost, and communication cost. The papers which did not present any experiments but only briefly
discussed computation, time, and communication costs are counted as “No Measurement”.

9) Performance measures covers whether the study compared the performance of their approaches
with 1) other published PPDDM methods, 2) centralised data mining methods, and 3) distributed with-
out preserving privacy methods. The performance measures include accuracy, precision, recall, F1 score,
AUC (Area Under the Curve), mean squared error, mean absolute error, and other standard evaluation
criteria in the data mining domain [13,39,48,49,83]. Owing to the high degree of heterogeneity in the
reporting of performance measures across the reviewed papers, we determine whether any performance
measure was applied to evaluate the methods rather than comparing different performance measures.
The papers which contained experiments but did not compare their results with other methods are cat-
egorized into “No comparison (with experiment)”. The studies which did not provide any experiments
are classified to “No experiments”.

10) Scalability covers whether the study presented a scalability analysis or the experiments prove
the scalability of their approach. The scalability in this review means if the approach can tackle large-
size datasets which contain a large number of either features or instances. It is noteworthy that only
discussing scalability or mentioning their approaches are scalable were not included.

4. Results

In this section, we first describe the number and distribution of search results retrieved from the six
search engines in the last 20 years. Detailed reviews of selected papers based on the evaluation criteria are
elaborated in Section 4.2. The analysis of the relations among selected papers is described in Section 4.3.

4.1. Search results

In Fig. 3, we present the workflow of this systematic review with the number of papers included in
each step. Following the inclusion criteria, 4222 publications including duplicates were retrieved from
six search engines. Most papers were from IEEE and Springer Link followed by ACM Digital Library.
To remove the duplicates, we used Digital Object Identifiers (DOI) to keep the unique papers. The
number of publications was reduced from 4222 to 2424. Furthermore, we filtered out irrelevant papers
by screening the titles and abstracts of the retrieved papers. Papers that focused on parallel computing,
cloud computing, edge computing, network security, intrusion detection, web attack detection, privacy
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Fig. 3. Workflow of conducting this systematic review.

in mobile data and geographic data, differential privacy, privacy in data collecting, data publishing, data
storing, data querying were excluded. In the end, 231 papers were selected to be preliminarily reviewed.

To improve the insight of the search result, we map the selected papers into graphs by using the Gephi
visualization tool [43]. In Fig. 4, the distribution of 231 selected papers using different search terms is
presented. Papers are presented as nodes and clustered by the search terms. For instance, 182 selected
papers were found by using the search term – PPDDM, while 38 of them were findable in PPHDM
category and 50 of them were findable in PPVDM. It is obvious that data mining papers are the majority
of the search outcomes. It is reasonable as data mining covers a larger scope than machine learning.
Privacy issues should be considered in the entire data processing procedure instead of only the part of
analysis and building machine learning models. Moreover, a large number of papers (71 papers from
PPDDM, 22 papers from PPDML) did not indicated what exact data partitioning problems (vertical,
horizontal, or arbitrary) their method can solve in their titles, abstracts, and keywords. This increases
difficulties for other researchers and practitioners to find the correct papers based on their needs.

4.2. Review results

In Fig. 5, we summarize the review results of 231 papers using the 10 evaluation factors we discussed
previously. The full review results of 231 papers are publicly available in the data repository: https://
doi.org/10.6084/m9.figshare.14239937.v4. (DOI: 10.6084/m9.figshare.14239937). The following sub-
section elaborates on the review result of each factor.

https://doi.org/10.6084/m9.figshare.14239937.v4
https://doi.org/10.6084/m9.figshare.14239937.v4
https://doi.org/10.6084/m9.figshare.14239937
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Fig. 4. Numbers and clusters of selected papers from different search terms. Papers are presented as nodes and clustered by the
search terms. The number of papers in each cluster is labeled in the figure. The edges show which search terms were used to
find the papers. For example, the 23 nodes in the purple cluster were found from using search terms PPDDM, PPHDM, and
PPVDM.

Adversarial behavior of data parties. About half of the reviewed studies assuming their approaches
are applicable for the data parties with semi-honest adversary behavior. In contrast, only 17 reviewed
studies developed their methods against malicious parties. Third party constructions were applied in the
method of 47 studies. More than half of them handled semi-honest behavior data parties together with
employing the third party. However, it is worth noting that over 30% of selected papers did not state a
clear assumption that which adversarial behavior their approach can deal with.

Data partitioning. Horizontally partitioned data (105 reviewed papers) and vertically partitioned data
(112 reviewed papers) seem to be represented equally in the selected literature. There are 35 papers
handling both horizontally partitioned data and vertically partitioned data. However, only 9 reviewed
studies developed PPDDM methods on arbitrarily partitioned data which can work with semi-honest
data parties. Additionally, 20% of selected studies did not indicate in which data partitioning situation
their methods can be applied.

Privacy is one of the most important evaluation parameters for PPDDM techniques. However, only
one fifth of selected studies describe an explicit definition of privacy and mathematical analysis of how
much information is leaked by the proposed method. There are 81 papers proving the security of their
approaches rather than a privacy analysis. The difference between security and privacy will be dis-
cussed in the next section. The majority of studies describe “privacy preservation” very briefly in their
own understanding. These descriptions are heterogeneous: e.g., “not revealing privacy of any database”,
“not compromising the privacy of the data owners”, “preserving the confidentiality of datasets”, and
“no important information leakage”. The remaining 30 papers proposed new PPDDM methods without
indicating any definition or description about privacy.
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Fig. 5. Bar charts of presenting review results using 10-factor evaluation criteria. Papers can cover one or more items in the
factors except privacy definition/analysis and scalability.
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Fig. 5. (Continued.)

Privacy-preserving methods. Secure multiparty computation techniques are the most encountered
solutions in the PPDDM domain. The generic and specialized protocols were applied in 101 papers,
while 89 studies employed homomorphic encryption or oblivious transfer protocols. A minority of re-
viewed studies used data modification, or methodologies to train local models and combine these local
models into a global model. A combination of techniques such as combining data modification and
homomorphic encryption protocols has been applied by 41 studies.

Types of data problems and data mining algorithms. Classification problems attracted the most
attention from researchers in the PPDDM domain, followed by association rule mining and clustering.
By contrast, a minority of studies deal with regression modeling. The most implemented data mining
algorithms tackling these data problems are: Tree-based algorithms such as decision tree, random forest
(35 papers), A-priori-based algorithms (34 papers), Neural Networks (21), Bayesian Networks (18),
Support Vector Machine (17), K-Nearest Neighbor (16), Linear/Logistic/Ridge Regression (16), and K-
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means (9). There are over 10% of reviewed papers studied on generic algorithms that can be applied
to multiple data mining techniques such as gradient descent. About 12% of reviewed papers worked
on solving privacy problems in outlier detection, record linkage, recommendation system approaches,
attribute/dimension reduction, feature selection, and probabilistic graphs.

Applied datasets in their experiments. From the selected studies, we identified the datasets that
were applied in their experiments, measurement of complexity and cost, and performance on accuracy
and scalability. We found 90 studies used datasets from public repositories, while 40 studies generated
synthetic datasets to conduct their experiments. It is noteworthy that only 15 papers applied real-world
datasets in practical use cases. Furthermore, it is remarkable to find that 82 papers proposed new methods
by only presenting mathematical theories without any experiments, while 10 papers conducted experi-
ments but did not provide any information about the datasets.

Complexity and cost. To prove the efficiency of proposed methods, 129 papers calculated computa-
tional complexity and/or time cost, while 104 papers reported communication cost of their approaches.
Among them, 85 papers measured both computational complexity/time cost and communication cost.
However, one third of (80) reviewed papers did not have any measurement of computation, running time,
or communication cost.

Accuracy performance. We found 82 reviewed papers were lacking in evaluating accuracy perfor-
mance of their methods because no experiments were conducted in these studies. In the rest of the
papers, 43 papers proved their PPDDM methods can achieve comparable accuracy as the centralised
data mining methods, while 48 studies proved their methods exceeded other existing PPDDM meth-
ods or achieved the same accuracy with higher efficiency. A small proportion of (10) studies proved
their privacy-preserving models have comparable performance on learning partitioned data as the non-
privacy-preserving models. Lastly, 66 papers conducted experiments but did not compare with any other
methods or situations.

Scalability. The last factor – scalability – shows 10% papers proved or analyzed the scalability of their
proposed methods. The majority of papers either only provided very brief statements in the discussion
and future work section of the paper, or did not consider the scalability challenge.

4.3. Result of referencing relationship among selected papers

We investigated how selected papers influence each other based on their references and citations. We
extracted text from reference sections of all selected studies and recognized titles and authors from the
text. As DOIs are not available in the reference section of all papers, only titles and authors were used
to recognize different studies. Figure 6 illustrates the citation network, where papers are represented as
nodes, and citing relations are represented as edges. The size of nodes are proportional to the number of
citations among the 231 papers. Papers [80,104,105] are most cited, with 1354, 1320, and 875 citations
respectively (until 2021 Feb).

Table 1 lists the attributes of the most cited articles. Semi-honest behavior is the most common as-
sumption, while none of these influential papers addressed malicious adversarial behavior. 3 out of 18
studies considered a third party. Two papers [55,108] took all possible data distribution situations (hori-
zontally, vertically, and arbitrarily partitioned data) into account. Horizontally and vertically partitioned
data problems have been covered with a good balance. Although the vertically partitioned data prob-
lem is more complicated than the horizontally one [107,113], our review indicates that they have been
developed at the same pace.

A similar balance is apparent in the types of problems as well. Seven papers focused on solving
a classification problem by using SVM, decision tree, bayesian networks, while 8 papers looked at
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Fig. 6. Citation network among the selected papers. Papers are presented as nodes, while the citing relations are presented as
edges. The size of nodes are proportional to the number of citations among the 231 papers.

clustering problems particularly at K-means, Expectation Maximization algorithms (EM), Local Outlier
Factor (LOF) algorithm. Association rule mining problem has fewer influential papers, but the top 2
influential papers [80,104] both focused on this problem. In contrast to the balance in the types of
problems, privacy-preserving solutions from the influential papers are completely dominated by SMC.
16 out of 18 influential papers covered SMC [121,127] combined SMC with homomorphic encryption,
while [108,125,126] combined it with structuring local and global data miners. More than half of existing
studies in our review applied SMC as the major privacy-preserving method.

It is notable that 12 out of 18 studies did not conduct experiments, but they provided explicit pri-
vacy/security analyses and costs measurements instead. These privacy/security analyses have been pre-
sented in different ways, but the main objectives were similar. All influential papers described what
information their approaches can protect, what information have to be disclosed, and what potential
risks, problems or troubles might exist. Moreover, their computational complexity and communication
costs of their approaches were clearly presented as one of the evaluation parameters. Hence, the de-
scribed performance evaluation on privacy and efficiency may be the reasons why these papers are often
cited.
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Table 1

Review results for the 18 most cited papers in this review. (PP method: privacy-preserving methods; local-global: local learning and global integration; ARM:
association rule mining)

Ref User scenario Data distribution Privacy/
security
analysis

PP method* Type of problems Experiment Cost
Semihonest Third

party
Horizontal Vertical Arbitrary SMC Local

global*
Classification Clustering ARM* Computation Communication
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5. Discussion

PPDDM has been rapidly developing through active research programs across different scientific com-
munities including data mining and machine learning, mathematics and statistics, cryptography, and data
management. The total number of publications in this domain has dramatically increased in the last 20
years. Many of the studies included promising results in the efficiency and accuracy of their models in an
experimental environment. These promising experimental results helped move the field forward towards
practical applications. In the past five years, use cases have been developed in healthcare [25,59,63,69],
finance [15], and technology companies [11,50,66] to examine different PPDDM methods. Participation
of industry partners accelerates the transformation of PPDDM theoretical methods to practical applica-
tions. The existing PPDDM methods have been well-developed to solve a wide range of data problems
(e.g., classification, clustering, association rule mining) using various data mining algorithms. To achieve
the goal of PPDDM methods in practical studies, methods that will preserve privacy require legal, eth-
ical, and social scholars in addition to scientific and technical experts. Successful implementation of
PPDDM needs a joint effort from researchers with diverse backgrounds.

5.1. Inadequate definition and measurement of privacy

There are some challenges hindering PPDDM methods to be further developed and widely applied in
practice. One of the key issues is the lack of the definition and measurement of (information) privacy.
The meaning and operational definition of privacy is commonly ambiguous and subjective in the se-
lected papers. It is not sufficiently expressed by the papers what privacy means to them, and what their
proposed approaches can preserve. The three most common definitions of privacy preservation in the
selected papers are 1) not revealing sensitive information; 2) not revealing private information; 3) not
revealing raw data. However, it is unclear if “sensitive information” or “private information” or “raw
data” is equal to personal information privacy. To understand personal information privacy from a legal
and ethical perspective, it is the right of an individual or group to seclude themselves, or information
about themselves, and thereby express themselves selectively [8,20,93]. Similarly, privacy is seen as the
claim of individuals, groups, or institutions to determine for themselves when, how, and to what extent
information about them is communicated to others [115]. In relation to controlling and protecting pri-
vacy, two definitions from legal literature state “Privacy, as a whole or in part, represents the control of
transactions between person(s) and other(s), the ultimate aim of which is to enhance autonomy and/or
to minimize vulnerability” [75] and “Privacy is to protect personal data and information related to a
communication entity to be collected from other entities that are not authorized” [26].

According to privacy definitions above, any information about a person can be considered as privacy
regardless of its sensitivity, originality, and transformation. It is the data subject that determines what
data is private. For instance, a data subject might consider their state of mental health more private than
their date of birth. However, existing PPDDM methods have not yet addressed different privacy require-
ments from each data subject. All data elements have equal treatment for all data subjects. This might
cause insufficient privacy preservation for some data elements and data subjects, while over-protection
for the others. To personalize the privacy preservation, Xiao and Tao [122] proposed a new general-
ization framework using personalized anonymity that data subjects can specify the degree of privacy
protection for her/his data elements. In the study, Xiao and Tao [122] assume: 1) data subjects can easily
set/change their privacy requirements with data parties, 2) data subjects are knowledgeable about the
benefits and consequences of setting different degrees of privacy. This method is only applicable when
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the data is centralized. In the partitioned data scenario, there is no platform yet facilitating data sub-
jects to customize privacy requirements for each data element across multiple parties. Second, privacy
requirements can be satisfied when using one single data source. However, analyzing an amount of parti-
tioned data from multiple sources increases risk of privacy violation. As indicated by the 2020 European
Commission White Paper on Artificial Intelligence [32], data about persons can be re-identified through
the analysis of large amounts of other non-private data.

5.2. Ambiguity between privacy and security

Another ambiguity lies in the difference between (information) privacy and (information) security.
Different from privacy, security has an explicit definition and measurement from the cryptography do-
main, separating the problem into semantic security and technical security [44]. Semantic security is a
computational-complexity analogue of Shannon’s definition of perfect privacy (which requires that the
ciphertext yield no information regarding the plaintext). Technical security is the infeasibility of dis-
tinguishing between encryptions of a given pair of messages. Generally speaking, security focuses on
maximally protecting information/data from malicious attacks and stealing data. Satisfying security re-
quirements is not always sufficient for addressing privacy issues [56]. However, in the majority of the
reviewed papers, the difference between security and privacy is not clearly stated. For example, some
studies defined the data privacy but evaluated the methods by conducting security analysis [46,58,70].
Certain approaches guarantee that the data used for the analyses remain unknown to other parties through
secure computation. However, this does not mean that the resulting output from the analyses is equally
privacy-preserving [56,60,72]. The output can reveal information about the person so that the privacy is
still not preserved according to the privacy definition we discussed above. For instance, the outcome of
the analysis might portray a harmful profile for individuals sharing certain characteristics. Some essen-
tial problems are not taken into consideration, such as how much data or information will be revealed
by the output although the output is computed securely [69], whether the models and algorithms are
harmless to the data party or individuals, does the purpose of formula or function satisfy the legal and
ethical concerns [96,99]. A typical example is building a decision tree on vertically partitioned data in
a privacy-preserving way. The decision tree model can be securely and correctly built up. However, to
some extent, the decision tree, as an output, leaks information about the input data [37]. Decision tree
algorithm splits nodes based on attributes or features, while the splitting decision is dictated by the data.
When the final decision tree is completed, the leaf nodes in the tree might reveal some information about
the input data such as class counts. Therefore, releasing the final decision tree to all participating parties
could potentially breach privacy.

Providing an applicable privacy description is significant to any PPDDM studies. What data or in-
formation should be preserved from mining can be influenced by different legal restrictions, ethical
concerns, organizational regulations, personal preference, and application domains. Instead of general-
izing the solution of a specific scheme to all situations, it is more reasonable to make a precise statement
on the specific scenario to address. Therefore, the authors could provide a clear description to readers
about what privacy means to them, and in which situation the proposed approach is privacy preserving
by answering the following questions:

(1) What is the operational definition of privacy-preservation for the work?
(2) Which data are deemed sensitive or require protection, and why?
(3) What computational operation is intended to preserve privacy, and where does it fail?
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(4) What is the role or responsibility of each actor (e.g., data collector, data holder, data publisher,
data analyst) in the scenario?

5.3. Inadequate experiments and practical use cases

Our review result shows half of the reviewed papers did not provide any experiments to evaluate their
methods, and as such there were no reports of accuracy, efficiency, and scalability in these papers. This
is probably one of the gaps between the theoretical research and practical use cases in this domain. So-
lutions based on theory might not solve real world problems. In our review, only a few papers applied
real-world use cases to evaluate their methods. It reflects a fact in this domain that many solutions have
been proposed by researchers, but only a few of them were implemented in practice. Without experi-
menting on real data, the proposed approaches might neglect essential problems such as sparse or biased
datasets [21,52], or record linkage problems in vertically partitioned data [61,94,109]. Future research
in PPDDM should consider conducting experiments using real-world datasets and provide adequate in-
formation about the experiments. Meanwhile, we observed most real-life use cases to examine existing
PPDDM approaches from the healthcare domain [25,69,99]. We suggest researchers apply the PPDDM
methods to practical cases also in other research domains such as social science and finance. In addition
to developing new theories, implementing and improving existing approaches in practice can also make
a meaningful contribution to the PPDDM domain.

Nevertheless, these findings were observed in the light of limitations in our search strategy, which
are elaborated in Section 5.6. This review did not specifically search for follow-up studies of reviewed
papers. A possible effect is that papers which lack experiments might present their experiments in the
follow-up studies, and might introduce selection bias towards the low number of practical experiments.
However, we would argue that our search strategy would have found these papers if proper terminology
was used.

5.4. Challenge of linking data in vertically partitioned data scenario

The accurate linking of entities across distributed datasets is of crucial importance in vertically parti-
tioned data mining. Data parties must link their data and/or order them in an identical manner prior to
data analysis. However, most papers assume this correspondence between data entities (records) exist
by default. Matching data entities from multiple datasets can be error-prone particularly where the use
of direct identifiers – even encrypted – are prevented by law, as is the case in the use of the national Cit-
izen Service Number (“Burgerservicenummer”) in the Netherlands [12]. Sharing such identifiers com-
promises privacy as the sole information that a data subject is known to another data entity might be
sensitive. Furthermore, one often assumes that records can be linked by doing exact matching on this
unique identifier. However, exact matching can be very difficult due to the unstable and incorrect iden-
tifiers. Winkler and Schnell showed that 25% true matches would have been missed by exact matching
in a census operation [88,117]. In another case, two data parties do not share the unique identifiers but
have some features in common. As an alternative solution, two parties can match the data entities based
on their common features. The matching accuracy will be affected by the correctness, completeness, and
updating promptness of these common features from both data parties. In addition, privacy needs to be
preserved in the matching procedure. Some efficient and privacy-compliant algorithms for the field of
privacy-preserving entity matching have been developed [16,41,47,111] in the past 10 years.
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5.5. A recommendation list of key parameters for PPDDM studies

It is challenging to compare similar PPDDM methods where there is a lack of key parameters pre-
sented. For instance, approaches which are designed for semi-honest parties might not be comparable
with the approaches aiming to handle malicious behavior. The privacy-preserving methods for semi-
honest parties will fail if involved parties show malicious behavior such as manipulating the input or
output or completely aborting the protocol. Thus, the allowed adversarial behavior of participating par-
ties is essential to be explicitly stated in the PPDDM papers. To consider all key parameters in PPDDM
techniques, we provide a list of recommendations for the reporting of studies proposing new PPDDM
methods or improving existing PPDDM methods as Table 2 shows. The recommendations detail the key
parameters that should be described in each section of the paper of PPDDM. The factors in Table 2 refer
to the 10 factors in the evaluation criteria which were discussed in the Methodology Section.

5.6. Potential limitations

The findings of this review have to be seen in light of some potential limitations. First, the 231 re-
viewed studies were searched from only 6 digital bibliographic databases (IEEE Xplore Digital Library,
ACM Digital Library, Science Direct, ISI Web of Science, SpringerLink, and PubMed) and must be
peer-reviewed publications. Some relevant studies may be missed in this review because they were not
findable in these 6 bibliographic databases during searching. Studies that have not been peer-reviewed
such as relevant articles published on arXiv.org7 were excluded.

Second, we did not apply an iterative “snowballing” approach to further identify more relevant stud-
ies [45]. “Snowballing” searching includes 1) reference tracking which identifies relevant studies from
the reference lists of the primarily selected papers, 2) citation tracking which identifies relevant articles
that cite primarily selected papers. We decided not to apply “snowballing’ ’approach is because it may
introduce a bias in favour of what authors think is relevant to their narrative [30]. Contrary, omitting
the “snowballing” approach results in omitting follow-up studies of the reviewed papers. We decided
to choose the latter approach, as we deemed our search criteria to be broad enough to cover follow-up
studies. We have found several follow-up papers, where these papers present an extension of their ex-
isting methods to: 1) solve other data partitioning problems [125,126]; 2) apply to more advanced data
analysis algorithms [62,64]; 3) to include more complicated user scenarios [67,68]; 4) to conduct more
experiments by using real-life datasets [25,59,96,109].

Moreover, due to the scope of this review (providing a general overview of existing PPDDM methods
and identifying outstanding challenges), more details of some privacy-preserving methods were not
extensively discussed. For instance, in the category of ‘local learning and global integration’, multiple
different methods can be applied to integrate the local miner (model) into a global miner (model) such as
stacked generalization [119] and meta-learning [14]. In our belief this field warrants a separate in-depth
review. Additionally, it has been well-recognized that there is an important trade-off between leakage
of information and effectiveness or efficiency of learning in PPDDM technologies [15,66,77,123]. In
practice, it is crucial to balance this trade-off depending on the specific use cases, the purposes of the
data analysis, and the urgency of the problems. Although we included the privacy and efficiency factors
in our review, we did not further investigate how each method weights the trade-off between them. For
example, we did not measure how much and in which way information loss was tolerated to increase

7arXiv – a free distribution service and an open-access archive: https://arxiv.org/.

https://arxiv.org/
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Table 2

A list of recommendations for reporting PPDDM studies

Section Factor Recommendations
Title and abstract
Title and keywords 2,7 Identify the study as developing new or improving existing PPDDM algorithms to solve

which data problem by using which type of partitioned data in a privacy-preserving manner
Abstract 1,2,4,6,7 Summarize the problems, objectives covering assumed adversarial behavior of data parties,

data partitioning, brief description about privacy-preserving method, data mining
algorithms, and applied dataset in the experiments.

Introduction
Problem statement and
background

2,3,5,6 Describe how data partitioned in which domain are considered by this study, what privacy
issues are involved in that domain, which data mining algorithm is studied to solve what
problems. Additionally, the number of participating parties and if all parties or only some
parties have the target class should be also covered by this section.

Objectives and study
design

1,3,4,7 Specify the objectives and study design include what level of privacy (or information
leakage) is preserved against what adversarial behavior, applied privacy-preserving
methods, evaluation criteria (for accuracy, efficiency, and privacy level), applied datasets in
the experiments.

Methods
Method design 4,5,6 Clearly explain which privacy-preserving methods are applied including the specific

protocols/structures, proofs of preserving information leakage. Then, describe how certain
data mining algorithms are adapted to combine with privacy-preserving methods, what
information is communicated among parties, and complexity in different scenarios such as
using categorical or numerical data, or involving different numbers of data parties. Lastly,
make the code publicly available so that other researchers can reproduce the work.

Data 7 Describe data sources (and where and how other researchers can request the same dataset),
the type and size of the datasets, basic description about data, what the target
features/attributes are, missing values, and other basic information about the datasets.

Data analysis design 5,6 If real-life datasets are applied in the study, this subsection should describe the
pre-processing of features/attributes (such as normalization, re-sampling), data analysis
algorithms, parameter setting, and so on with reference to other comparable studies.

Experiment design 7 Describe how the datasets are partitioned (both feature-wise and instances-wise), how data
parties communicate/transfer files, what validation is used, and what machine(such as CPU,
memory) and software(versions) are used to do the experiments. In addition, experiments
should be set up to compare with other existing PPDDM methods, or compare with
privacy-preserving centralised data mining methods, or compare with distributed data
mining methods without preserving privacy.

Evaluation design 8,9,10 Describe the evaluations of accuracy, efficiency (computational complexity, time cost on
computation and communication among parties), privacy/security (such as information
disclosure measurement)

Result
Discovery from datasets 7 If real-life datasets are applied in the study, this subsection should describe what new

knowledge was obtained from their analysis
Model performance 8 Present the performance measures such as accuracy scores of the proposed models in

comparison with other existing PPDDM methods, or privacy-preserving centralised data
mining methods, or distributed data mining methods without preserving privacy.
Performance will be presented based on the evaluation criteria which was described in the
methods section.

Privacy and/or security
analysis

9 Provide sufficient privacy/security analysis based on the assumed adversarial behavior
(semi-honest or malicious). Describe what information is exchanged among parties, what
can be learnt from the exchanged information, if the models as a final outcome can cause
information leakage, what the potential risks exist during the training process or in the final
model.
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Table 2

(Continued)

Section Factor Recommendations
Scalability analysis 10 Present the computation complexity and time consumption of the methods and describe

what the volume (number of instances) and variety (number of features/attributes) of data
can be handled by the proposed methods

Discussion
Limitations / Discuss any limitations of proposed methods such as special cases where the methods are

not applicable or certain assumptions which are not common in practice.
Interpretation / If real-life datasets are applied in the study, this subsection should discuss the findings with

reference to any other validation data from other studies. Then, interpret the model
performance on accuracy, efficiency, feasibility in practice, strengths and weaknesses with
reference to other existing PPDDM methods.

Implementation / Discuss what other resources, paperwork, or supports are needed to implement the
proposed methods, what potential challenges or risks will appear if apply the methods on
real-life data.

efficiency. We believe this specific trade-off issue between privacy (information leakage) and learning
performance (effectiveness or efficiency) deserves further investigation.

6. Conclusion

Privacy-preserving distributed data mining (PPDDM) techniques consider the issue of executing data
mining algorithms on private, sensitive, and/or confidential data from multiple data parties while main-
taining privacy. This review presented a comprehensive overview of current PPDDM methods to help
researchers better understand the development of this domain and assist practitioners to select the suit-
able solutions for their practical cases.

In this review, we discovered there is a lack of standard criteria for evaluating new PPDDM techniques.
The previous studies applied a variety of different evaluation methods, which brings challenges to ob-
jectively comparing existing PPDDM techniques. Therefore, an comprehensive evaluation criteria was
proposed in this review including 10 key factors – adversarial behavior of data parties, data partitioning,
experiment datasets, privacy/security analysis, privacy-preserving methods, data mining problems, anal-
ysis algorithms, complexity and cost, performance measures, and scalability to assess 231 recent studies
published between 2000 to 2020 (August). We highlighted the characteristics of the 18 most cited stud-
ies and analyzed their influence on other studies in the field. Furthermore, a variety of definitions of
privacy and distinguishment between information privacy and information security in the PPDDM field
were discussed in this review, followed by some suggestions of making applicable privacy descriptions
for new PPDDM methods. Finally, we also provided a list of recommendations for future research such
as explicitly describing the privacy aspect under consideration, and evaluating new approaches using
real-life data to narrow the gap between theoretical solutions and practical applications.
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