
Data Science 2 (2019) 311–340 311
DOI 10.3233/DS-190019
IOS Press

Reducing the effort for systematic reviews in
software engineering

Francesco Osborne a,∗, Henry Muccini b, Patricia Lago c and Enrico Motta d

a Knowledge Media Institute, The Open University, UK
E-mail: francesco.osborne@open.ac.uk; ORCID: https://orcid.org/0000-0001-6557-3131
b DISIM Department, University of L’Aquila, Italy
E-mail: henry.muccini@univaq.it; ORCID: https://orcid.org/0000-0001-6365-6515
c Department of Computer Science, Vrije Universiteit Amsterdam, The Netherlands
E-mail: p.lago@vu.nl; ORCID: https://orcid.org/0000-0002-2234-0845
d Knowledge Media Institute, The Open University, UK
E-mail: enrico.motta@open.ac.uk; ORCID: https://orcid.org/0000-0003-0015-1952

Editor: James McCusker (https://orcid.org/0000-0003-1085-6059)
Solicited reviews: Anita Dewaard (https://orcid.org/0000-0002-9034-4119); one anonymous reviewer; Philipp Cimiano
(https://orcid.org/0000-0002-4771-441X)

Received 7 January 2019
Accepted 7 June 2019

Abstract.
CONTEXT: Systematic Reviews (SRs) are means for collecting and synthesizing evidence from the identification and analysis
of relevant studies from multiple sources. To this aim, they use a well-defined methodology meant to mitigate the risks of biases
and ensure repeatability for later updates. SRs, however, involve significant effort.
GOAL: The goal of this paper is to introduce a novel methodology that reduces the amount of manual tedious tasks involved
in SRs while taking advantage of the value provided by human expertise.
METHOD: Starting from current methodologies for SRs, we replaced the steps of keywording and data extraction with an
automatic methodology for generating a domain ontology and classifying the primary studies. This methodology has been
applied in the Software Engineering sub-area of Software Architecture and evaluated by human annotators.
RESULTS: The result is a novel Expert-Driven Automatic Methodology, EDAM, for assisting researchers in performing SRs.
EDAM combines ontology-learning techniques and semantic technologies with the human-in-the-loop. The first (thanks to
automation) fosters scalability, objectivity, reproducibility and granularity of the studies; the second allows tailoring to the
specific focus of the study at hand and knowledge reuse from domain experts. We evaluated EDAM on the field of Software
Architecture against six senior researchers. As a result, we found that the performance of the senior researchers in classifying
papers was not statistically significantly different from EDAM.
CONCLUSIONS: Thanks to automation of the less-creative steps in SRs, our methodology allows researchers to skip the
tedious tasks of keywording and manually classifying primary studies, thus freeing effort for the analysis and the discussion.

Keywords: Systematic reviews, software engineering, ontology learning, semantic web, software architecture, digital libraries

*Corresponding author. E-mail: francesco.osborne@open.ac.uk.

This article is published online with Open Access and distributed under the terms of the Creative Commons Attribution License (CC BY 4.0).

2451-8484 © 2019 – IOS Press and the authors.

mailto:francesco.osborne@open.ac.uk
https://orcid.org/0000-0001-6557-3131
mailto:henry.muccini@univaq.it
https://orcid.org/0000-0001-6365-6515
mailto:p.lago@vu.nl
https://orcid.org/0000-0002-2234-0845
mailto:enrico.motta@open.ac.uk
https://orcid.org/0000-0003-0015-1952
https://orcid.org/0000-0003-1085-6059
https://orcid.org/0000-0002-9034-4119
https://orcid.org/0000-0002-4771-441X
mailto:francesco.osborne@open.ac.uk


312 F. Osborne et al. / Reducing the effort for systematic reviews in software engineering

1. Introduction

Understanding the state-of-the-art in research provides the foundation for building novelty. In partic-
ular, in Software Engineering topic areas, the acquisition of knowledge for this understanding follows
a clear path: started with informal reviews and surveys, it is moving towards systematic searches of the
literature. Kitchenham [21] clearly explains the reasons, the importance, and the advantages and dis-
advantages of using systematic reviews instead of informal ones. Various studies (e.g., [12,68]) reveal
the growing interest in systematic literature reviews and systematic mapping studies [65]. A number of
articles and books have been written on how to perform such systematic studies [23,61,64].

A Systematic Review (SR) is “a means of evaluating and interpreting all available research relevant
to a particular research or topic area or phenomenon of interest” [21]. Given a set of research ques-
tions, and by following a systematically defined and reproducible process, a SR helps selecting primary
studies that contribute to provide an answer to them. Used in combination with keywording [41], a SR
supports the systematic elicitation of an ontological classification framework [42]. In this paper we focus
specifically on the field of Software Engineering, but systematic literature reviews and mapping studies
are used in several research fields, such as Biomedics [10], Robotics [5], Artificial Intelligence [45],
Human-Computer Interaction [30], Psychology [46], an many others.

A SR can help researchers and practitioners in creating a complete, comprehensive and valid picture of
the state-of-the-art about a given theme when the search-space is bounded (e.g., when the search query
returns few thousands of articles to scrutinize). However, it falls short when used to investigate the state-
of-the-art on an entire research area (e.g., Software Architecture) where the returned entries are hundreds
of thousands – hence clearly unmanageable. As reported by Vale et al. [60] while investigating the state-
of-the-art of the Component-based Software Engineering area through an SR, a “. . . manual search
[restricted only to the most relevant journals and conferences related to the CBSE area] was considered
as the primary source, given the infeasibility of analyzing all studies collected from automatic search”.
Still, they had to select, read, and thoroughly analyze 1,231 primary studies.

In contrast to manually run SRs, several state of the art automated methods allow classifying a doc-
ument in a certain category or topic [2,8,32,57]. Unfortunately, most current techniques suffer from
limitations that make them unsuitable for systematic reviews. The approaches which exploit keywords
as proxy for research areas are unsatisfactory, as they fail to distinguish research topics from other terms
that can be used to annotate papers (e.g., “user case”, “scalability”) and to take advantage of the re-
lationships that hold between research areas (e.g., the fact that “Software Architecture” is a sub-area
of “Software Engineering”). Probabilistic topic models (e.g., Latent Dirichlet Allocation [8]) are also
unsuitable for this task since they produce cluster of terms that are not easy to map to research areas
[38]. Crucially, it is often unfeasible to integrate these topic detection techniques with the needs and the
knowledge of human experts. Another alternative is to apply entity linking techniques [32] to map pa-
pers to relevant entities in knowledge base. Unfortunately, we currently lack good granular and machine
readable representation of research areas in many domains which could be used to this end.

Current techniques have complementary limitations when investigating the state-of-the-art of an entire
research area: on the one hand side, SRs are “human-intensive”, as they require domain experts to invest
a large amount of time to carry out manual tasks; on the other side, automated techniques keep the
humans “out of the loop”, while human expertise is critical for the more conceptual analysis tasks.

This paper proposes an expert-driven automatic methodology (EDAM) for assisting systematic re-
views that, while recognizing the essential value of human expertise, limits the amount of tedious tasks
the expert has to carry out. Our methodology contributes with (1) automatically extracting an ontology



F. Osborne et al. / Reducing the effort for systematic reviews in software engineering 313

of relevant topics, related to a given research area; (2) using experts to refine this knowledge base; (3) ex-
ploiting this knowledge base for classifying relevant papers that may be then further validated/analyzed
by experts, and for computing research analytics. We demonstrate EDAM in the field of Software Ar-
chitecture, but it can be easily applied to other research areas as well.

Naturally, the ability of domain experts to analyse the research dynamics emerging from primary
studies and to distill the most important lessons and trends is still crucial. Therefore, our aim is not
to fully automatize the process, but to assist domain experts by automatically generating data-driven
analytics in order to free time and resources for the analysis phase.

In summary, our contributions are:

• a novel methodology for supporting ontology-driven systematic reviews, which involves both auto-
matic techniques and human experts;

• an implementation of this methodology which exploits the Klink-2 algorithm for generating the
domain ontology in the field of Software Architecture;

• an illustrative analysis of the Software Architecture trends;
• an evaluation involving six human annotators, which shows that the classification of primary studies

yielded by the proposed methodology is comparable to the one produced by domain experts (p =
0.77).

• an automatically generated ontology of Software Engineering, which could support further system-
atic reviews in the field.1

The rest of the paper is structured as follows. Section 2 introduces related works on systematic studies.
Section 3 provides an overview of some preliminary evidence of the benefits brought by using EDAM
to assist a mapping study. Section 4 then presents the EDAM methodology and its application to the
research area of Software Architecture. This experiment is discussed and evaluated in Section 5, which
also present a comparison of several approaches for classifying research papers. Finally, in Section 6 we
discuss the main implications of our study and outline future directions of research.

2. Related work

There are many guidelines for, and reports on, carrying out systematic studies in Software Engineer-
ing. Among them, we could identify a few aimed at supporting or improving the underlying process.
In our perspective, they all enable researchers to focus more on the most creative steps of a systematic
study by removing what is referred to as manual work.

With a motivation similar to ours, i.e. to improve the search step in systematic studies in Software
Engineering research, Octaviano et al. [35] propose a strategy that automates part of the primary study
selection activity. Mourão et al. [34] present a preliminary assessment of a hybrid search strategy for
systematic literature reviews that combines database search and snowballing to reduce the effort due
to searches in multiple digital libraries. Kuhrmann et al. [26] provide recommendations specifically for
the general study design, data collection, and study selection procedures. Zhang et al. [69], in turn,
systematically select and analyze a large number of SRs. Their results have been then used to define
a quasi-gold standard for future studies. In their validation, they were able to improve the rigor of the
search process and provide guidelines complementing the ones already in use.

1http://rexplore.kmi.open.ac.uk/data/edam/SE-ontology.owl

http://rexplore.kmi.open.ac.uk/data/edam/SE-ontology.owl


314 F. Osborne et al. / Reducing the effort for systematic reviews in software engineering

Ros et al. [48] propose a machine learning approach that classifies papers for SRs by leveraging human
experts, who iteratively validate set of publications produced by a classifier. Conversely, EDAM does not
require experts to manually examine research papers, but only to review a taxonomy of research areas.

The need for guidelines in conducting empirical research has been addressed in other types of empir-
ical studies, too. De Mello and Travassos [14] focus on opinion surveys and provide guidelines (in the
form of a reference framework) aimed at improving the representativeness of samples. Also on opinion
surveys, Molleri et al. [33] provide recommendations based on an annotated bibliography instead.

Another interesting work by Felizardo et al. [16] investigates how the use of forward snowballing can
considerably reduce the effort in updating SRs in Software Engineering. Based on this result, comple-
menting our method with automated forward snowballing suggests a very promising direction for future
works as it could further reduce the effort for identifying relevant primary studies.

Marshall et al. [31] carried out an interview survey with experts in other domains (i.e. healthcare and
social sciences) with the aim to identify tools that are generally used, or desirable, to ease which steps
in systematic studies, and transfer the best practices to the Software Engineering domain. Among the
results, data extraction and automated analysis emerge as top requirements for reducing the workload.
In a similar vein, Hassler et al. [20] followed by Al-Zubidy et al. [1] consulted Software Engineering re-
searchers conducting SRs to identify and prioritize the necessary SR tool features. The results identified
search & study selection as the most desirable feature. Our work addresses the needs identified by both
Marshall et al. [31] and Hassler et al. [20].

The idea of using ontologies for supporting SRs was discussed by few papers, but did not receive much
attention. de Almeida Biolchini et al. [13] introduced the Scientific Research Ontology, a resource to or-
ganize the knowledge generated from SR. This ontology offers a conceptual framework with the aim of
fostering the consistency between different studies, but does not directly assist the tasks involved in SR,
such as the extraction of primary studies. Sun et al. [59] discussed the use of ontologies for supporting
key activities in SRs and presented an experiment in which they automatically classified primary studies
by means of COSONT, an ontology of methods for cost estimation. Unfortunately, their approach still
required to manually check hundreds of papers and the COSONT ontology was quite simplistic, being
an handcrafted list of methods with no hierarchical structure. This is a common issue with manually
generated ontology of research concepts, which are usually costly to produce, coarse-grained, and slow
to evolve [37]. Conversely, EDAM takes advantage of recent ontology learning techniques to automat-
ically generate complex multi-level ontologies (e.g., the SE ontology presented in this paper includes
956 topics and 5,461 relationships), exploits the resulting taxonomic structure to classify the primary
studies, and does not require experts to manually review a large number of papers.

3. An overview of the benefits of automatic SRs

Before entering the details of the EDAM methodology, this section provides an overview of the ben-
efits such an automatic SR methodology can bring with respect to more traditional, manual SRs carried
out according to predefined protocols.

We all agree that manual SRs based on well-defined systematic protocols help reducing (but not fully
removing) subjective biases in the selection of the studies. They however are by and large unfeasible in
reviewing a too large dataset (i.e. when the number of scientific publications is too large to be manually
processed by the researcher).



F. Osborne et al. / Reducing the effort for systematic reviews in software engineering 315

Fig. 1. Some evidence on the benefits of automated SRs.

In a similar vein, automatic SRs help reducing subjective biases (in this case by implementing the
selection of the studies according to the predefined systematic protocol). Differently, they pose no limi-
tation in terms of the size of the dataset of publications.

In our earlier work [67] we challenged these limitations and benefits by applying the automatic study
selection to a manual SR carried out beforehand by other researchers [17]. In this way, we could compare
and contrast the results of the manual SR with the results of our automatic SR. In this earlier work,
we have studied the field of software sustainability within the Software Engineering domain. While at
the time the EDAM methodology was not yet fully developed, we did use the same ontology-learning
algorithms and a preliminary version of the ontology for the Software Engineering domain.

The observations gathered during this experiment are illustrated in Fig. 1, where we represented the
primary studies selected manually (see the left-hand circles) and those selected automatically (see the
right-hand ovals). The experiment underwent three phases:

Starting point: The already-completed manual SR had selected 116 primary studies. Before training the
algorithm and tuning the domain ontology, from the Scopus dump of scientific publications we
automatically selected 950 studies. While our automatic methodology is able to handle seamlessly
any size of the base of publications, the selected studies did initially include a very large number
of false positives. However, it did also uncover that 12 studies selected in the manual SR where
wrongly included. Observation #1: in spite of systematic selection criteria and the involvement
of multiple researchers, human errors in the manual study selection is still possible.

Training: By treating the 104 primary studies (from the manual SR) as pilot studies, we trained our
domain ontology and learning algorithm to automatically select the primary studies. Observation
#2: Automatic SR is able to automatize the selection criteria of systematic reviews while handling
any size of the initial dataset of scientific publications. As discussed in Section 5.1, the domain
ontology is able to classify the primary studies as correctly as the human experts do, without
needing further training. As such, the domain ontology can be reused for any study in the domain
of Software Engineering.

Final result: The final result of the automatic selection converged to 234 studies which included the
104 pilot studies and correctly identified additional 130 studies that were missing in the original
manual SR. Observation #3: By handling a much larger base of publications, automatic SRs are
able to uncover primary studies that are missed by manual SRs where such scale is unfeasible.



316 F. Osborne et al. / Reducing the effort for systematic reviews in software engineering

4. An expert-driven automatic methodology

We propose a novel expert-driven automatic methodology (EDAM) for assisting systematic reviews
like systematic literature reviews and mapping studies. EDAM allows to automatize the steps that are the
most time and effort consuming while requiring the least creativity, such as selection of relevant papers,
keywording, and creation of a classification schema [42], by exploiting ontology learning techniques
and semantic technologies to foster scalability, objectivity, reproducibility, and granularity of the study
(further discussed in Section 5.4). It also supports the generation of research trends, which are typical of
data synthesis in mapping studies. In this paper, we illustrate how EDAM can support mapping studies,
even though it can be evidently exploited in systematic literature reviews, too.

Figure 2 shows the steps of a mapping study using EDAM in contrast with the steps of a classic
(manual) methodology – shown in Fig. 3. The main difference is that in the classic methodology the
researchers first select and analyze each primary study (steps 2–3) and then produce a taxonomy to clas-
sify them (step 4). When assisted by EDAM, instead, the researchers first use ontology learning methods
over large scholarly datasets to generate an ontology of the field (steps 2–3), then refine the ontology
with the help of domain experts (step 4), and finally exploit this knowledge base to automatically select
and classify the primary studies (steps 5–6).

An alternative solution for steps 2–4 (Generation of domain ontology) is the reuse of an ontology
crafted by a previous study with the same scope. Indeed, in the study discussed in Section 4.2 we have
generated an ontology of Software Engineering (SE) research topics, with the hope that it will be re-used
by the research community.

Fig. 2. Steps of a systematic mappings adopting the EDAM methodology. The gray-shaded elements refer to the alternative
step of reusing the previously generated ontology.

Fig. 3. Classic steps of systematic mappings (inspired by [42]).



F. Osborne et al. / Reducing the effort for systematic reviews in software engineering 317

In Section 4.1, we describe EDAM and discuss its advantages over a classic methodology. In Sec-
tion 4.2, we exemplify the application of EDAM specifically aimed at identifying publication trends of
the Software Architecture research area in the specific SE domain.

4.1. EDAM description

A SR assisted by EDAM is organized along the following steps (ref. Fig. 2).
1. Research question definition. The researchers performing the study state the research questions

(RQs). These will affect the aim of the study and thus its steps. It should be noted that EDAM is ap-
plicable only to research questions that could be answered by classifying publications, authors, venues,
and other entities according to the ontology for producing relevant analytics. Other research questions
should be addressed according to the standard methodology [42].

2. Dataset selection. The researchers select a dataset on which to apply the chosen ontology learning
technique (further elaborated in step 3) for generating the domain ontology that will be used to select
and classify the primary studies. The most important characteristic of this dataset is that it must be
unbiased with respect to the focus of the study. For example, if the study wants to uncover the trends
in research areas (e.g., Software Architecture), the dataset should not be biased with respect to any area
in the domain (e.g., Software Engineering in our case). A good strategy to select unbiased datasets is
considering either a full scholarly dataset of a very high-level field (e.g., all the Computer Science papers
in Microsoft Academic Search2 or in Scopus3) or a dataset including all the papers published in the main
conferences and journals of the domain under analysis. In recent years, universities, organizations, and
publishing companies have released an increasing number of open datasets that could assist in this task,
such as CrossRef,4 SciGraph,5 OpenCitations,6 DBLP,7 Semantic Scholar,8 and others.

3. Ontology learning. The dataset is processed by an ontology learning technique that automatically
infers an ontology of the relevant concepts.

We strongly advocate the use of an ontology learning technique that generates a full domain ontology
and represents it with Semantic Web standards, such as the Web Ontology Language (OWL)9). The
main advantage of adopting an ontology in this context is that it allows for a more comprehensive
representation of the domain since it includes, in addition to hierarchical relationships, also other kinds
of relationships (e.g., sameAs, partOf ), which may be critical for classifying the primary studies. For
example, an ontology allows to explicitly associate to each category a list of alternative labels or related
terms that will be used in the classification phase. In addition, ontology learning techniques can infer very
structured multi-level ontologies [37], and thus describe the domain at different levels of granularity.

The task of ontology and taxonomy learning was comprehensively explored over the last 20 years.
Therefore, the researcher can choose among a variety of different approaches for this step, including:

• statistical methods for deriving taxonomies from keywords [29,56];
• natural language processing approaches, e.g., FRED [18], LODifier [4], Text2Onto [11];

2http://academic.research.microsoft.com
3https://www.scopus.com/
4https://www.crossref.org/
5https://scigraph.springernature.com/explorer/downloads/
6http://opencitations.net
7http://dblp.uni-trier.de
8https://www.semanticscholar.org/
9https://www.w3.org/OWL/

http://academic.research.microsoft.com
https://www.scopus.com/
https://www.crossref.org/
https://scigraph.springernature.com/explorer/downloads/
http://opencitations.net
http://dblp.uni-trier.de
https://www.semanticscholar.org/
https://www.w3.org/OWL/


318 F. Osborne et al. / Reducing the effort for systematic reviews in software engineering

• approaches based on deep learning, e.g., recurrent neural networks [43];
• hybrid ontology learning frameworks [63];
• specific approaches for generating research topic ontologies, e.g., Klink-2 [37].

However, as discussed in the following step, researchers may also choose to skip this step and re-use
a compatible ontology from a previous study.

It is useful to clarify why we suggest the adoption of an ontology learning approach, rather than the
adoption of one of the currently available research taxonomies, such as the ACM computing classifica-
tion system,10 the Springer Nature classification,11 Scopus subject areas,12 and the Microsoft Academic
Search classification. Unfortunately, these taxonomies suffer from some common issues, which make
them unfeasible to support most kinds of SRs. First, they are very coarse-grained and represent wide
categories of approaches, rather than the fine-grained topics addressed by researchers [36]. Secondly,
they are usually obsolete since they are seldom updated. For example, the 2012 version of the ACM
classification was finalized fourteen years after the previous version. This is a critical point, since some
interesting trends could be associated with recently emerged topics. In third instance, most ontology
learning algorithms are not limited to learning research areas, but can be tailored to yield the outputs
which are more apt to support a specific analysis.

4. Ontology refining. The ontology resulting from the previous step is corrected and refined by do-
main experts. During this phase, the experts are allowed to (1) delete an existent category, (2) add a new
category, (3) delete an existent relationship, (4) add a new relationship. We suggest using at least three
domain experts for addressing possible disagreements.

This step is critical for two reasons. First, it may correct some errors in the automatically-generated
taxonomy. Secondly, it verifies that the data-driven representation aligns with the domain experts mental
model and thus the outcomes will be understandable and reusable by their research community.

Refining a very large ontology is not a trivial task, therefore if the domain comprehends a large number
of topics we suggest splitting it in manageable sub branches to be addressed by different experts. Our
experience suggests that a taxonomy of about 50 research areas can be reviewed in about 15–30 minutes
by an expert of the field. For example, in [37] three experts reviewed a Semantic Web ontology of
58 topics in about 20 minutes. In the test study for this paper, three experts took about 20 minutes to
examine and produce feedback on a taxonomy of 46 topics (and 71 terms considering synonymous such
as “product line”, “product-lines”, “product-line”, which were clustered automatically by the ontology
learning algorithm). In both cases, we represented the ontology as tree diagram in a excel sheet13 and
included also a list of the most popular terms in the dataset, for supporting experts in remembering all
the relevant research topics.

An alternative solution is to provide experts with ontology editors that could be used to directly modify
the ontology, such as Protege,14 NeOn Toolkit,15 TopBraid Composer,16 Semantic Turkey,17 or Fluent
Editor.18 However, these tools are not always easy to learn and the adoption of a simple spreadsheet may

10http://www.acm.org/publications/class-2012
11http://www.nature.com/subjects
12https://www.elsevier.com/solutions/scopus/content
13See an example at http://tinyurl.com/yal6h3wu.
14http://protege.stanford.edu
15http://neon-toolkit.org/
16http://www.topquadrant.com/products/TB_Composer.html
17http://semanticturkey.uniroma2.it/
18http://www.cognitum.eu/Semantics/FluentEditor/

http://www.acm.org/publications/class-2012
http://www.nature.com/subjects
https://www.elsevier.com/solutions/scopus/content
http://tinyurl.com/yal6h3wu
http://protege.stanford.edu
http://neon-toolkit.org/
http://www.topquadrant.com/products/TB_Composer.html
http://semanticturkey.uniroma2.it/
http://www.cognitum.eu/Semantics/FluentEditor/


F. Osborne et al. / Reducing the effort for systematic reviews in software engineering 319

be advisable in most cases. Indeed, the annotators who participated in the mapping study of Software
Architecture described in the next section, reported that they were able to easily correct and suggest
changes in the ontology using this simple solution. In particular, this task was natural to them since
the same kind of spreadsheet is typically used in the analysis phase of systematic reviews (e.g., for the
keywording step). We refer the reader to Sabou et al. [49] for a comprehensive analysis of the verification
of domain knowledge by human experts in the field of Software Engineering.

As highlighted by Fig. 2, the aim of steps 2–4 is to generate an ontology apt to select and classify
relevant papers and ultimately answer the RQs. It follows that these steps could be replaced by the
adoption of an ontology previously generated and validated by a previous study with a consistent scope.
For example, the ontology about Software Engineering generated for this paper’s example study (see
Section 4.2) can be re-used to perform many kinds of mapping studies involving other research areas
in SE. Naturally, the ontology may have to be further updated to include the most recent concepts and
terms. This solution allows users with no access to vast scholarly databases or no expertise in ontology
learning techniques to easily implement an EDAM study.

5. Selection of primary studies. The authors select a dataset of papers and define the inclusion criteria
of the primary studies according to the domain ontology and other metadata of the papers (e.g., year,
venue, language). The inclusion criteria are typically expressed as a search string, which uses simple
logic constructs, such as AND, OR, and NOT [3]. The search string is then used to produce the query
that will be run over the dataset for selecting the primary studies. Some examples of queries include (1)
“all the papers in the dataset published in a list of relevant conferences” or “all the papers in the dataset
that contain a list of relevant terms from the ontology”.

In most cases this dataset will be the same or a subset of the one used for learning the domain ontology.
However, the authors may want to zoom on a particular set of articles, such as the ones published in the
main venues of a field, in a geographical area, or by a certain demography. It is also possible to select
a different dataset altogether, since the ontology would use generic topic labels and thus be agnostic
with respect to the dataset. A possible reason to do so is the availability of the full text of the studies.
Many ontology learning algorithms can be run on massive metadata dataset (e.g., Scopus, Microsoft
Academic Search), but some research questions may require the full text. In this case, the author may
want to perform the ontology learning step on the metadata dataset, which is usually larger in size and
scope, and then either select a subset composed by publications which are available online or adopt for
this phase a second dataset that includes the full text of the articles, such as Core [24]. The growth of the
Open Access movement [62], which aims at providing free access to academic work, may alleviate this
limitation in the following years.

6. Classification of primary studies. The authors define a function for mapping categories to papers
based on the refined ontology. This step is important to foster reproducibility since the inclusion criteria
(defined in the step 5), the mapping function, and the domain ontology should contain all the information
needed for replicating the classification process. The function can also be associated to an algorithmic
method (e.g., a machine learning classifier), provided the method is made available and is reproducible.

The simplest way for mapping categories to papers is to associate to each category each paper that
contains the label of the category or of any of its sub-categories. This simple technique for semantically
characterizing documents has the advantage of being unsupervised and was applied with good results
in a variety of fields, such as topic forecasting [52], automatic classification of proceeding books [39],
sentiment analysis [50], recommender systems [15], and many others. Alternative unsupervised meth-
ods, which we evaluate in Section 5.2, include approaches based on TF-IDF [44], LDA [8], and word
embeddings [53].



320 F. Osborne et al. / Reducing the effort for systematic reviews in software engineering

In addition, the authors can choose to create a more complex mapping function which exploits other
semantic relationships in the ontology (e.g., relatedTerm, partOf ).

7. Data synthesis. According to the RQs, this step may be automatic, semi-automatic or manual.
Some straightforward analytics (e.g., the number of publications or citations over time) can be com-
puted completely automatically by counting the previously classified papers or summing their number
of citations. Other more complex analyses may require the use of machine learning techniques or the
(manual) intervention of human experts. Starting from the groundwork formed by our research, a full
analysis of the possible kinds of data synthesis and the way to automatize them will constitute interesting
future works beneficial for the whole research community.

Overall, motivated by the need to reduce the amount of manual tedious tasks involved in SRs, EDAM
offers four main advantages over a classic methodology. First, human experts are not required to
manually analyze and classify primary studies, but they simply have to refine the ontology, choose the
inclusion criteria, and define a mapping function for associating papers to categories in the ontology.
This allows researchers to carry out large scale studies that involve thousands of research papers with
relative ease. Secondly, since the domain ontology is created with a data-driven method, it should reflect
the real trends of the primary studies, rather than arbitrary human decisions about which keywords to
annotate and aggregate, even if the refinement step may still introduce a degree of arbitrariness. Third,
the use of a formal machine-readable ontology language for representing the domain taxonomy should
foster the reproducibility of the study and allow authors with no expertise in data science to perform
studies using previously generated ontologies. Fourth, this methodology allows researchers to produce
and exploit complex multi-level ontologies, rather than the simple two-level classifications used by many
studies [60].

Naturally, EDAM is suitable for research questions that can be automatized by the ontology-driven
classification process previously described, or that aim at giving an overview of the state-of-the-art or
state-of-practice on a topic [66] by analysing all of the relevant research contributions in a specific
research area. We will discuss further this and other limitations in Section 5.3.

4.2. EDAM application

With the aim of presenting a reproducible pipeline and showing how EDAM can be applied, we present
here an example as part of a possible systematic mapping study assisted by EDAM in the Software
Architecture research area. We chose to study the research trends in this area, since trend analysis is
typical of mapping studies [66] and it is one of the tasks that can be automatized by EDAM.

In the following, we describe how we instantiated the study example assisted by EDAM and discuss
the specific technologies used to implement it. The data necessary for reproducing this study and using
this same pipeline on other fields are available at https://doi.org/10.5281/zenodo.2653924.

1. Research question definition. We wanted to focus on a task that is often addressed by mapping
studies and could be completely automatized. Therefore our RQ is: “What are the trends of the main
research topics of Software Architecture?”.

2. Dataset selection. We selected all papers in a dump of the Scopus dataset about Computer Science
in the period 2005–2013. The Scopus dataset we were given access by Elsevier BV includes papers in
1900–2013 interval, but the number of relevant articles before 2005 was too low to allow a proper trend
analysis. Each paper in this dataset is described by title, abstract, keywords, venue, and author list.

3. Ontology learning. We applied the Klink-2 algorithm [37] on the Scopus dump for learning an
ontology representing the main ‘Software Architecture’ research area in SE.

https://doi.org/10.5281/zenodo.2653924


F. Osborne et al. / Reducing the effort for systematic reviews in software engineering 321

Klink-2 is an algorithm that generates an ontology of research topics by processing scholarly metadata
(titles, abstracts, keywords, authors, venues) and external sources (e.g., DBpedia, calls for papers, web
pages). In particular, Klink-2 periodically produces the Computer Science Ontology (CSO)19 [54] that is
currently used by Springer Nature for classifying proceedings in the field of Computer Science [39], such
as the well-known Lecture Notes in Computer Science series.20 The ontologies produced by Klink-2 use
the Klink data model,21 which is an extension of the BIBO ontology22 that in turn builds upon SKOS.23

This model includes three semantic relations: relatedEquivalent, which indicates that two topics can be
treated as equivalent for the purpose of exploring research data; skos:broaderGeneric, which indicates
that a topic is a subarea of another one; and contributesTo, which indicates that the research outputs of
one topic significantly contribute to the research into another. In the following, we make use of the first
two relationships for classifying studies according to their research topics.

In Algorithm 1, we report the pseudocode of Klink-2. The algorithm takes as input a set of keywords
and investigates their relationships with the set of their most co-occurring keywords. Klink-2 infers a
sub-topic relationship between keyword x and y by means of two metrics: (i) HR(x, y), which uses a
semantic variation of the subsumption method; (ii) TR(x, y), which uses temporal information to do the

Algorithm 1: The Klink-2 algorithm
Input : List of keywords keywords, Metadata metadata

Output: Ontology ontology

1 relationships={};

2 while some keywords yet to process do
3 foreach k1 in keywords do
4 candidates = GetCandidates(k1, metadata);
5 foreach k2 in candidates do
6 relationship = InferRelationship(k1, k2, metadata, relationships);
7 end foreach
8 end foreach

9 relationships = RemoveLoops(relationships);
10 new.keywords = MergeAndSplitKeywords(keywords, metadata, relationships);
11 keywords = AddNewKeywords(new.keywords);
12 end while
13 keywords = FilterTopics(keywords, metadata, relationships);

14 ontology = GenerateSemanticRelationships(relationships);
15 return(ontology);

19http://cso.kmi.open.ac.uk/
20http://www.springer.com/gp/computer-science/lncs
21http://technologies.kmi.open.ac.uk/rexplore/ontologies/BiboExtension.owl
22http://purl.org/ontology/bibo/
23https://www.w3.org/2004/02/skos/

http://cso.kmi.open.ac.uk/
http://www.springer.com/gp/computer-science/lncs
http://technologies.kmi.open.ac.uk/rexplore/ontologies/BiboExtension.owl
http://purl.org/ontology/bibo/
https://www.w3.org/2004/02/skos/


322 F. Osborne et al. / Reducing the effort for systematic reviews in software engineering

same. HR(x, y) is computed according to the following formula:

HR(x, y) =
(

IR(x, y)

IR(x, x)
− IR(y, x)

IR(y, y)

)
cR(x, y)n(x, y)

where IR(x, y) is the number of elements associated with both x and y according to relation R (e.g.,
number of co-occurrences in research papers), IR(x,y)

IR(x,x)
is the conditional probability that an element as-

sociated with keyword x will be associated also with keyword y, nR(x, y) is the Levenshtein distance
between the two keywords normalized by the length of the longest one, and cR(x, y) is the cosine simi-
larity between the two vectors in which each index represents a keyword k and the value is the number
of time x or y co-occurred with k in a certain context.

TR(x, y) is a temporal version of HR(x, y), which weighs more the information associated with the
first years of x. It is useful to detect the cases in which the relationship between two terms fade because
their association has become implicit (e.g., Artificial Intelligence and Machine Learning). TR(x, y) is
calculated using a variation of formula (1) in which IR(x, y) is computed by weighting the intensity of
the relationships in each year according to the distance from the debut of x. The weight is computed as
w(year, x) = (year − debut(x) + 1)−−γ , with γ > 0 (γ = 2 in the implementation used for this paper).
A hierarchical relationship is inferred whenever HR(x, y) or TR(x, y) are higher then a certain threshold
(0.25 in the implementation used for this study).

After inferring the hierarchical relationships, Klink-2 removes loops in the topic network (instruction
#9), merges similar keywords and splits ambiguous keywords associated to multiple meanings (e.g.,
‘Java’). The keywords produced in this step are added to the initial set of keywords to be further analysed
in the next iteration and the while-loop is re-executed until there are no more keywords to be processed.
Finally, Klink-2 filters the keywords considered ‘too generic’ or ‘not academic’ according to a set of
heuristics (instruction #13) and generates the triples describing the ontology.

Klink-2 was evaluated on a gold standard ontology including 88 research topics in the field of Seman-
tic Web, which was manually generated by three senior researchers. It significantly outperformed the
alternative algorithms (p = 0.0005), yielding a precision of 86% and a recall of 85.5%. More details
about Klink-2 and its evaluation can be found in Osborne and Motta [37].

We selected Klink-2 among the other previously discussed solutions for a number of reasons. First, it
is the only approach to our knowledge that was specifically designed to generate taxonomy of research
areas. Secondly, it was already integrated and evaluated on a dump of the Scopus dataset, which we
adopted in this study, yielding excellent performance on the fields of artificial intelligence and semantic
web [37]. In third instance, it permits to define a number of pre-determinate relationships as basis for a
new taxonomy. In particular, a human user can define a subsumption relation (i.e., skos:broaderGeneric),
a relatedEquivalent one, or specify that two concepts should not be in any relationships. This functional-
ity allows us to easily incorporate expert feedback in the ontology learning process. Therefore, the next
iterations of the ontology will benefit from the knowledge of previous reviewers. We ran Klink-2 on
the selected dataset, giving as initial seed the keyword “Software Engineering” and generated an OWL
ontology of the field including 956 concepts and 5,461 relationships. We then selected the sub-branch
of Software Architecture comprising 46 research areas and 71 terms (some research areas have multiple
labels, such as “component based software” and “component-based software”).

4. Ontology refining. We generated a spreadsheet, containing the Software Architecture (SA) ontol-
ogy as a tree diagram.24 In this representation each concept of the ontology was illustrated by its level in

24http://tinyurl.com/yal6h3wu

http://tinyurl.com/yal6h3wu


F. Osborne et al. / Reducing the effort for systematic reviews in software engineering 323

the taxonomy, its labels, and the number of papers annotated with the concepts. We also included a list
of the 500 more popular terms in the papers that contained the keywords “Software Architecture” and
“Software Engineering”, to assist the experts in remembering other concepts or terms that the algorithm
may have missed.

We sent it to three senior researchers and asked them to correct the ontology as discussed in Sec-
tion 4.1. The task took about 20 minutes and produced three revised spreadsheets. The feedback from
the experts was integrated in the final ontology.25 In case of disagreement we went with the majority
vote.

The most frequent feedback regarded: (1) the deletion sub-areas that were incorrectly classified under
SA (e.g., “software evolution”), (2) the introduction of sub-areas that were neglected by Klink-2 (e.g,
“architecture concerns”), and (3) the inclusion of alternative labels for some category (e.g., alternative
ways to spell “component-based architecture”).

5. Selection of primary studies. We then selected from the initial Scopus dump two datasets of
primary studies to investigate the SA area: (1) DSA (Dataset SA, 3,467 publications), including all
papers in the Scopus dataset that contain the terms “Software Architectures” or “Software Architecture”
and include at least one of the subtopics of Software Architecture in the domain ontology, and (2) DSA-
MV (Dataset SA – Main Venues, 1,586 publications), containing all the papers published in a list of
well-known conferences and journals in the SE fields and in a particular in the SA area (see Table 1) and
including at least one of the sub-topics of SA in the OWL ontology. We considered these two datasets
since it may be interesting to analyze the discrepancy between generic SA papers and papers published
in the main venues.

6. Classification of primary studies. We defined the mapping function as follows. A paper was clas-
sified under a certain category (e.g., service-oriented architectures) if it contained in the title, abstract

Table 1

List of venues used for the DSA-MV dataset

25http://rexplore.kmi.open.ac.uk/data/edam/SE-ontology.owl

http://rexplore.kmi.open.ac.uk/data/edam/SE-ontology.owl


324 F. Osborne et al. / Reducing the effort for systematic reviews in software engineering

Fig. 4. Number of publications in DSA and DSA-MV over the years.

or keywords: (1) the label of the category (e.g., “service-oriented architectures”), (2) a relevantEquiv-
alent of the category (e.g., “service oriented architecture”), (3) a skos:broaderGeneric of the category
(e.g., “microservices”), or (4) a relevantEquivalent of any skos:broaderGeneric of the category (e.g.,
“microservice”). The advantage of this solution is that it allows us to map each category to a list of terms
that can be automatically searched in the metadata of the papers. Therefore, the classification step can
be handled automatically. In addition, it allows us to associate multiple categories to the same paper.

We chose this straightforward approach instead of other more complex methods based on word embed-
dings and string similarity [53], since it is simple to reproduce and yields the best precision, as discussed
in Section 5.2. There we discuss also some recent approaches [53,55] yielding a more comprehensive
set of topics and therefore a better recall, and illustrate how the choice of the method ultimately depends
on the requested tradeoff between precision and recall.

In practice, we indexed titles, abstracts and keywords in an ElasticSearch26 instance and we ran a PHP
script that imported the ontology, performed the relevant queries on the metadata, and saved the result
in a MariaSQL database.27

7. Data synthesis. Fig. 4 shows the number of primary studies in the DSA and DSA-MV datasets.
The DSA dataset follows the trend of the “Software Architecture” keyword in the Scopus dataset and
decreases after 2010. Conversely, the size of DSA-MV grows steadily with the number of relevant con-
ferences and journals.

We identified the main trends by running a script to count the number of studies about each sub-
topic in each year. Since the focus of the paper is the EDAM methodology, rather than a comprehensive
analysis on these research sub-areas, we will briefly discuss only the main trends associated with the
more popular subtopics (in terms of number of papers). The full results of this example study, however,
are available at rexplore.kmi.open.ac.uk/data/edam and on Zenodo28 and can be reused for supporting a
more in-depth analysis of the field.

Figure 5 displays the number of publications and citations associated with the most popular sub-areas
of SA. The papers in DSA yield on average 4.8 ± 2.1 in citations versus the 13.6 ± 7.0 citations of those
in DSA-MV. Reasonably, this tendency suggests that the papers published in the main SA venues tend
to be more recognized by the research community.

26https://www.elastic.co/
27https://mariadb.org/
28https://doi.org/10.5281/zenodo.2653924

http://rexplore.kmi.open.ac.uk/data/edam
https://www.elastic.co/
https://mariadb.org/
https://doi.org/10.5281/zenodo.2653924


F. Osborne et al. / Reducing the effort for systematic reviews in software engineering 325

Fig. 5. Number of publications and citations of the main topics in DSA and DSA-MV.

Figure 6 shows the percentage of papers published over time in the main topics within SA. We focus
on the 2005–2013 period, since in this interval the number of publications is high enough to highlight
the topic trends.

Software-oriented Architectures appears to have been the most prominent topic before 2009, while
from 2010, Model-driven Architectures appears to be the most popular topic in this dataset. We can also
appreciate the rising of Design Decisions, that seems the most significant positive trend of the last period
together with Architecture Description Languages.

Interestingly, the dataset regarding the main venues (DSA-MV) exhibits some different dynamics.
Figure 7 highlights the difference between DSA and DSA-MV by showing for each topic the ratio be-
tween its number of publications and the total publications in the ten main topics. The research areas
of Design Decisions and Views appear much more prominent in the main venues, while Model-Driven
Architectures and Architecture Analysis are more popular in DSA. We can further analyze these differ-
ences by considering the main trends of the DSA-MV dataset, displayed by Fig. 8. The trend of Design
Decisions in DSA-MV mirrors the one exhibited in DSA, both growing steadily from 2010. Conversely,
Service-oriented Architectures, which has a negative trend in DSA, remains stable in DSA-MV.

5. Evaluation and discussion

In the following, we reflect on this preliminary application of EDAM. This section includes (1) a
evaluation of our method versus six human annotators, (2) a comparison of several approaches for clas-
sifying primary studies, (3) an analysis of EDAM limitations, (4) a discussion about the implications for
systematic mappings in Software Engineering, and (5) a discussion on how to reuse EDAM for other
SRs.



326 F. Osborne et al. / Reducing the effort for systematic reviews in software engineering

Fig. 6. Number of publications of the top ten main topics in DSA over time.



F. Osborne et al. / Reducing the effort for systematic reviews in software engineering 327

Fig. 7. Comparison DSA and DSA-MV in terms of topic distribution. The percentage value refers to the ratio between the
number of publications in a topic and the total publications in the ten main topics.

5.1. Evaluation of the primary study classification

The most critical step of EDAM is the classification of primary studies. When these are correctly
associated to the relevant topics, the subsequent analysis presents a realistic assessment of the landscape
of the studied research field. Thus, even if working on a large number of papers can alleviate the weight
of some minor misclassification mistakes, we need to be able to trust that the automatic classification
process will obtain an accuracy similar to that yielded by human annotators.

We evaluated the ability of EDAM to correctly discriminate between different topics in the field of
Software Architecture by (1) randomly selecting a set of 25 papers in the DSA dataset, (2) classifying
them both with EDAM and with six human experts (researchers in the field of SA), and (3) comparing
the results. For simplifying the task and allowing to compare the annotation algorithmically, we first
selected five unambiguous categories from the main topics of SA: Design Decisions, Service-oriented
Architectures, Model-driven Architectures, Architecture Description Languages, and Views. For each
category, we randomly selected from the DSA dataset five primary studies that were classified by EDAM
exclusively under that topic, for a total of 25 papers. These papers were described in a spreadsheet by
means of their title, author list, abstract, and keywords. The human experts were given this spreadsheet
and asked to classify each paper either with one of the five categories or with a “none of the above”
tag. We then compared the seven annotation sets produced by the six human experts and by EDAM,
considered as an additional annotator.29

Table 2 shows the agreement between the annotators. It was computed by calculating the ratio of
papers which were tagged with the same category by both annotators. EDAM has the highest average

29The material and the results of the evaluation are available at https://doi.org/10.5281/zenodo.2653924.

https://doi.org/10.5281/zenodo.2653924


328 F. Osborne et al. / Reducing the effort for systematic reviews in software engineering

Fig. 8. Number of publications of the top ten main topics in DSA-MV over time.

agreement and it also yields the highest agreement with three out of six users. User5 does even better in
this regards and has the highest agreement with four annotators.

The chi-square test run on the human users shows that their behaviours are significantly different
(p = 0.017). However, if we group together users {2, 3, 5, 6} and users {1, 4}, we find no significant
differences in the behaviour within each group (p = 0.81, p = 0.38, good intra-group agreement),
while there are between the two groups (p = 0.0007).

Interestingly, users {1, 4} were two students at the beginning of their PhD, hence still relatively new to



F. Osborne et al. / Reducing the effort for systematic reviews in software engineering 329

Table 2

Agreement between annotators (including EDAM) and average agreement of each annotator. In bold the best agreements for
each annotator

Fig. 9. Percentage of annotations that agree with other n annotators.

the domain. This could suggests the importance of considerable domain experience for this task. EDAM
exhibits a behaviour consistent with the most senior group, from which it is not significantly different
(p = 0.77).

As anticipated, a good way to measure the performance of annotators is their agreement with the
majority of other expert users. Figure 9 shows the percentage of annotations of each annotator that agree
with other n annotators. EDAM agrees with four out of six human annotators for 68% of the studies,
it agrees with at least three of them for 80% of the studies, and it agrees with at least one of them for
all the studies but one. Indeed, the categories generated by EDAM coincide with the ones suggested by
the relative majority of users in 84% of the cases. Therefore, EDAM’s performance is comparable to the
performance of the two annotators (User5 and User3) with the highest agreement with the user majority.



330 F. Osborne et al. / Reducing the effort for systematic reviews in software engineering

We further confirmed these findings by computing the Cohen’s kappa between each couple of annota-
tors and between each of the annotators and EDAM. The inter-annotator agreement was 0.57, typically
indicating a moderate agreement [27]. The average agreement of EDAM with the annotators was 0.58,
confirming that this method performs in line with the annotators. In addition, we note that EDAM always
agrees with the majority for the studies in which no more than one annotator disagrees. It thus seems to
perform well in handling simple not-ambiguous papers, that nonetheless human experts may sometimes
get wrong.

In conclusion, this study suggests that the EDAM classification step generates annotations that agree
with the majority of human experts and are not statistically different from the ones produced by the
senior group.

Naturally, EDAM performance may change according to the quality of the ontology and the domain
knowledge of the human users that refined it. EDAM is not an alternative to human experts, rather a
methodology that allows humans to annotate on a larger scale, by defining a sound domain knowledge
and a mapping function. However, this preliminary example application already shows very promising
results.

5.2. Comparison of classifiers for primary studies

EDAM can adopt many different approaches for automaticaly classifying primary study. The choice
of the method ultimately depends on its affectiveness of the avaliable approaches on the domain under
analysis and on the preferred precision-recall tradeoff. For instance, in a prevalently automatic mapping
study on a large set of papers, precision is of paramount importance, and the missed topics may be
compensated by the numerosity of the sample. Conversely, when the results are validated in some way
by human experts (e.g., [39]) or when the goal is to detect emerging trends that may appear in few
publications, a better strategy may be to sacrifice some precision for producing a more comprehensive
set of topics.

In this section we compare several approaches that can be used with EDAM to automatically classify
studies according to a taxonomy of research topics, and discuss their tradeoff. We focus on unsupervised
approaches, since typically the authors of a systematic review do not have the resources to prepare a
large gold standard to train a supervised classifier on a potentially new taxonomy.

We evaluated seven alternative approaches on a gold standard of 70 papers [53] within the fields of
Semantic Web (23 papers), Natural Language Processing (23), and Data Mining (24). These papers were
selected by retrieving the most cited papers from Microsoft Academic Graph containing in the title or
the abstract those relevant fields. Each paper was annotated by three domain experts (for a total of 21 dif-
ferent annotators) and was associated with 14.4±7.0 topics using majority vote in case of disagreement.
The inter-annotator agreement was 0.45 ± 0.18 according to Fleiss’ Kappa, which indicates a moderate
inter-rater agreement [27]. The data produced in the evaluation and the Python implementation of the
approaches are available at https://cso.kmi.open.ac.uk/cso-classifier/. A more comprehensive version of
this analysis, with additional baselines that are out of scope for this paper (e.g., not producing a set of
pre-defined categories), is available in Salatino et al. [53].

All the tested classifiers analysed the title and abstract of the 70 papers and assigned them with a set
of topics drawn from the Computer Science Ontology (CSO), a recently released taxonomy of research
areas [54]. This knowledge base covers well the three mentioned fields, including a total of 35 sub-
topics for the Semantic Web, 173 for Natural Language Processing, and 396 for Data Mining. LDA100,
LDA500, and LDA1000 are based on a Latent Dirichlet Allocation (LDA) model [8] trained over 4.6M

https://cso.kmi.open.ac.uk/cso-classifier/


F. Osborne et al. / Reducing the effort for systematic reviews in software engineering 331

papers in Computer Science from Microsoft Academic Search. Specifically, LDA100 used a model
trained with 100 topics, LDA500 on 500 topics, and LDA100 on 1,000 topics. Similarly to [7], these
classifiers generate a set of CSO topics from the LDA topics by first producing a set of topics with a
probability of at least j and all their terms with a probability of at least k. Then they map these terms to
CSO by returning all CSO topics having Levenshtein similarity higher than 0.8 with them. We performed
a grid search for finding the best values of j and k on the gold standard and report here the best results
of each classifier in term of F-measure.

TF-IDF produces a ranked list of terms using TF-IDF [44] (the IDF was computed on the same set
adopted for LDA) and all the CSO topics having Levenshtein similarity higher than 0.8 with the first 30
terms.

Direct Mapping (DM) is the approach used for the implementation of EDAM described in step 6 of
Section 4.2. This same method was also used by the first version of the Smart Topic Miner (STM) [39],
the system adopted by Springer Nature to classifying proceedings in the field of Computer Science. It
returns all topics that explicitly appear in the papers or that are entailed by the ones appearing in the
paper according to the ontology.

The CSO Classifier v.1 (CSO-C1) is an unsupervised approach presented in Salatino et al. [55] that
extracts a combination of n-grams (unigrams, bigrams, and trigrams) from the text and returns all the
topics that have a Levenstein similarity higher than t (t = 0.94 as in the implementation reported in
Salatino et al. [55]). Finally, the CSO Classifier v.2 (CSO-C2) [53] is a recent evolution of the previous
classifier, which uses part-of-speech tagging to identify promising terms and then exploits word embed-
dings to infer semantically related topics that may not explicitly appear in the paper. This solution has
also been adopted by the current version of the Smart Topic Miner [51].

Table 3 reports on the resulting values of precision, recall and F-measure. The approaches based on
LDA performed quite poorly. An analysis of the results revealed that the topics returned by the models
are both noisy and coarse-grained, often clustering together distinct topics from CSO. Indeed, while
LDA works quite well at identifying the main topics of a large collection of documents, it does not tra-
ditionally perform equally well when characterizing specific research topics, which may be associated
with a relatively low number of publications (50–200), as discussed in [36]. The approaches based on
TF-IDF worked slightly better, yielding an F-measure of 30.1%. DM, used in our exemplary EDAM
implementation, yielded the best precision of all the approaches (80.8%). Indeed, this method focuses
on topics that are explicitly mentioned in the text, which tends to be very relevant. However, this solution

Table 3

Values of precision, recall, and F-measure for the seven classifiers. In bold the best results



332 F. Osborne et al. / Reducing the effort for systematic reviews in software engineering

naturally obtains a relatively low recall of 58.2%. CSO-C1, which expands the set of terms by consid-
ering string similarity, obtained a better recall (63.8%) but a lower precision (78.3%). Finally, CSO-C2
yielded the best performance in term of both recall (75.3%) and F-measure (74.1%).

DM performed significantly better (p < 10−7 with the McNemar’s test) than the first four approaches.
In turn, CSO-C2 performed significantly better (p < 10−7) than DM and CSO-C1.

5.3. Limitations

In this section we discuss EDAM limitations based on the categorization given in Wohlin et al. [66].
For internal validity we have identified two main threats that regard the generation of a reliable ontol-

ogy, which is key to select relevant studies that directly fulfill the selection criteria (and hence correspond
to the primary studies for the study at hand). In particular:

Ontology learning (step 3): hierarchy is important. The domain ontology, automatically inferred by
the ontology learning technique, is structured hierarchically. Therefore, an area marked as subarea
(e.g., architecture description languages) is subsumed by the previous area at the upper level of
the taxonomy (e.g., Software Architecture). Deeper hierarchies bring finer-grained topics, and
therefore a higher precision in the classification process.
During the application of ontology learning techniques to various research areas (not reported
in this paper for the sake of brevity) we found that current ontology learning methods usually
identify only mature (in terms of number of publications) research areas. Emerging topics may be
excluded, thus reducing the granularity of recent fields’ ontologies.
To alleviate this problem, human experts may be asked to manually identify the most recent areas
and to possibly adopt ontology forecasting techniques [9]. Therefore, the role of experts in improv-
ing the quality and deepness of the hierarchy is indeed critical. For the sake of this study, aimed
at showing the advantages of automation, the relatively small number of experts was acceptable.
However, a larger and more diversified pool of experts should be involved when the research area
under investigation is broader.

Ontology refinement (step 4): experience matters. As illustrated in Fig. 2, EDAM requires human ex-
pertise to refine the automatically generated ontology (step 4). This task is not always straightfor-
ward, since humans can have different views on the foundational conceptual elements characteriz-
ing a certain discipline. Those differences may be related to many factors, such as the researcher’s
exposure to the research area under investigation, seniority, broad vs. specialized knowledge on
specific sub-disciplines. Our preliminary experiments allow us to conclude that senior domain ex-
perts, with a mature yet wide view on the research area under investigation, should be selected to
minimize this threat.

The main threats for external validity regard the practical exploitation of EDAM. In particular:

Scholarly dataset: different research areas require different datasets. This paper reports on our ex-
perience with EDAM’s application to the Software Architecture research area. Since the domain
of Software Engineering is well represented in the Scopus dataset, we are not facing generaliz-
ability issues. However, moving to a totally different domain would require taking into account
(assuming to have access to) different scholarly datasets.
Unfortunately, finding up-to-date datasets of scholarly data covering the field under analysis is
not always easy and this could be a threat to our approach. Nonetheless, the movement toward



F. Osborne et al. / Reducing the effort for systematic reviews in software engineering 333

open access is helping in mitigating this issue by making available a variety of datasets con-
taining machine-readable data about scientific publications, e.g., Microsoft Academic Graph30

[58], CORE31 [24], OpenCitations32 [40], DBLP33 [28], Bio2RDF34 [6], ScholarlyData.org35 [19],
Nanopub.org36 [25], Semantic Scholar,37 and others.

Tool support: closed-source tools. EDAM is making use of some closed-source, proprietary tools for
running some of the tasks. This may reduce the application of our approach from other research
groups. In order to mitigate this threat, we are planning to release a web service accessible by
other colleagues interested to carry out an EDAM study.

Research Questions: some may not be automatized. Many research questions that are typical of map-
ping studies can be answered by producing relevant analytics [66], e.g., by counting the number
of publications, authors, and venues associated with certain topics in subsequent years. However,
some more complex research questions may still require domain experts to manually analyse the
relevant studies, e.g., for classifying them in categories that a state of the art classifier would be
unable to detect with good accuracy. This is an inherent limitation of the methodology. Nonethe-
less in many of these cases a preliminary classification by an automatic system may still alleviate
the expert work load, e.g., by reducing the set of publications that need to be manually analysed.
In addition, the performance of entity extraction and linking tools is steadily improving [4,18,47],
allowing to extract increasingly better representations of research knowledge from scientific ar-
ticles. Therefore, the number of research questions that can be addressed algorithmically may
increase over the following years.

5.4. Implications for systematic mappings

There are a few implications that can potentially change the way we perform systematic mapping
studies in Software Engineering. As mentioned in Section 4, these implications regard:

Scalability: size does not matter anymore. EDAM can process a potentially endless set of publica-
tions. This allows e.g., mapping studies to be based on all relevant primary studies, previously
scoped down due to the fact that humans could not manually process hundreds or thousands of
papers.

Objectivity: the automatic classification is less biased. The automatic classification of primary stud-
ies does not suffer from the biases of specific human annotators. Nonetheless, the quality of the
classification appears on par with the one produced by the human annotators.

Reproducibility: study duplication and extension is easy. Thanks to EDAM, replicating or extending
studies, either by the same researcher or by someone else, requires simple tuning, e.g., to extend
the publication period, or to select different views illustrating the publication trends of interest.

30https://academic.microsoft.com/
31https://core.ac.uk
32http://opencitations.net/
33http://dblp.uni-trier.de/
34bio2rdf.org/
35http://www.scholarlydata.org/
36http://nanopub.org/
37https://www.semanticscholar.org/

https://academic.microsoft.com/
https://core.ac.uk
http://opencitations.net/
http://dblp.uni-trier.de/
http://bio2rdf.org/
http://www.scholarlydata.org/
http://nanopub.org/
https://www.semanticscholar.org/


334 F. Osborne et al. / Reducing the effort for systematic reviews in software engineering

Granularity of the study: zooming-in and -out is simpler. Thanks to the fact that the selection and
classification of primary studies is based on an domain ontology, and of course to automation,
EDAM allows to tune the depth of the classification the researcher desires in a given research
area. Such tuning just requires setting the level of categories and sub-categories to be included in
the classification, and then re-run the methodology.

5.5. Reusing EDAM for other systematic reviews

EDAM can be applied to any domain of interest and for different types of studies. The scenarios that
we envisage are discussed below and illustrated in Fig. 10. They are: S1) Application of EDAM to a new
application domain, S2) Mapping study replication, S3) Mapping study refinement, and S4) Systematic
literature review.

Application of EDAM to a new application domain (S1). In the basic scenario (S1), the ontology for
the new application domain is not yet available. In this case, the complete process illustrated in
Fig. 2 (and emphasized in Fig. 10(S1)) shall be applied. This is the scenario followed in the work
presented in this article. It is applicable while investigating a new domain notwithstanding its
specific characteristics.

If instead a researcher wants to perform a SR in a domain for which the ontology already exists
(scenario S2), such generated domain ontology can be reused in the following two ways, depending on
the specific study goal:

Mapping Study Replication (same classification, S2a). Suppose we want to replicate a pre-existing
EDAM mapping study conducted at time t0, in order to update the list of primary studies and re-
lated analysis at time t1 (e.g., update in year 2020 the study on Software Architecture presented in
this paper). In this case, we can directly reuse the previously generated ontology (cf. Fig. 10(S2a)).
The list of (updated) primary studies can be automatically re-calculated (in step 5) and used (in
step 6) for classification and analysis purposes. Notice, however, that this scenario does not ad-
dress the potential need to update the list of topics. Such a scenario is covered below.

Mapping Study Replication (updated classification, S2b). Differently from scenario S2a, we may be
interested to replicate a pre-existing study and also include any new topics that may have emerged
in the period between time t0 and time t1 (e.g., updating this study in year 2020 while includ-
ing new topics appeared after this study). This need requires an update of the domain ontology;
therefore, the process in Fig. 10(S2b) must be run from step 4 onward.

Another scenario (S3) accommodates the case in which we want to refine the classification and analy-
sis conducted as a mapping study. In the current approach, as shown in the Software Architecture domain
scenario, step 5 in Fig. 2 returns a set of primary studies that can be further classified into sub-domains
(e.g., Architectural Styles, being one element of our ontology, can be further refined to discover all the
papers that cover selected styles). We identify two sub-scenarios in order to provide a refinement of
sub-domains contents:

Mapping Study Refinement with classic selection criteria (S3a). In this scenario, one may classify
the articles into sub-domains of interest by applying the inclusion and exclusion criteria [23] to
the primary studies selected in step 5 of EDAM. For example, knowing that Publish-Subscribe,
Client-Server, and Event-driven are sub-domains of Architectural Styles, we introduce selection



F. Osborne et al. / Reducing the effort for systematic reviews in software engineering 335

Fig. 10. Possible EDAM applications.



336 F. Osborne et al. / Reducing the effort for systematic reviews in software engineering

criteria to position Architectural Styles articles into those categories. This approach allows us to
zoom into a specific sub-domain of interest and extract the articles fitting in the specific target
sub-domain.

Mapping Study Refinement with re-generated domain ontology (S3b). The selected sub-domain of
interest may contain hundreds of papers (for example, the Design Decisions sub-domain in our
study includes 428 papers). Consequently, applying the selection criteria reported in scenario S3a
may be cumbersome, requiring the manual analysis of most of those papers. Alternatively, the
researcher may execute an additional round of steps 2–4 to refine the domain ontology for the
specific sub-domain (cf. Fig. 10(S3b)). This scenario is similar to S1, but applied to a specific
sub-domain of interest.

A fourth scenario sees the researcher is interested to run a systematic literature review (SLR) on
specific research questions:

Systematic Literature Reviews (S4). In step 5 (cf. Fig. 10(S4)), given the list of primary studies gen-
erated based on the existing ontology, we may run the classic SLR approach [22] to select those
papers that fit with the research questions of interest. Differently from scenario S3a, S4 adds the
semantics beyond the definition of the domain, and encapsulated into the research questions and
the corresponding selection criteria. E.g., given the list of all studies on Software Architecture
styles, one may want to perform an SLR to analyze those approaches that are adopted in industrial
settings.

6. Conclusions and future work

In this paper we have presented EDAM, an expert-driven automated methodology to assist systematic
reviews. Its application to the Software Architecture research area shows preliminary and very promising
results.

Motivated by the large amount of time and effort needed by classic methodologies to select and clas-
sify the primary studies, EDAM offers benefits that can help SE researchers to dedicate most of their
time to the most cognitive-intensive tasks like e.g., interpretation of the trends and extraction of lessons
and research gaps.

Additional benefits have been emphasized in Section 4.1 (after presenting EDAM) and Section 5.4
(discussing implications for systematic mappings). Among the benefits we mention the great potential
for re-using EDAM and in particular domain ontologies and functions to build a shared framework
helping the research community at large. Much can be done in this direction.

Our next step is to complement EDAM with automated forward snowballing to further reduce the
effort for identifying relevant primary studies. With the same goal, we are planning to investigate other
possible data synthesis techniques through machine learning techniques or the (manual) intervention of
human experts. Last, but most important for us, we plan to reconstruct the 25 years of the Software
Architecture body of knowledge by fully exploiting EDAM automation and human expertise.

Acknowledgements

The authors would like to thank the colleagues which donated their time and expertise by contributing
to this study as domain experts and/or annotators: Paris Avgeriou, Barbora Buhnova, Rafael Capilla, Jan



F. Osborne et al. / Reducing the effort for systematic reviews in software engineering 337

Carlson, Ivica Crnkovic, John Grundy, Rich Hilliard, Heiko Koziolek, Anton Jansen, Ivano Malavolta,
Leonardo Mariani, Marina Mongiello, Matthias Naab, Patrizio Pelliccione, Mohammad Sharaf, Damian
Andrew Tamburri, Antony Tang, Jan Martijn van der Werf, Smrithi Rekha Venkatasubramanian, Rainer
Weinreich, Danny Weyns, Eoin Woods, and Uwe Zdun.

We also thank Davide Falessi for reviewing an earlier version of this manuscript, and Elsevier BV for
providing us with access to its large repository of scholarly data.

References

[1] A. Al-Zubidy, J.C. Carver, D.P. Hale and E.E. Hassler, Vision for SLR tooling infrastructure: Prioritizing value-added
requirements, Information and Software Technology 91 (2017), 72–81. doi:10.1016/j.infsof.2017.06.007.

[2] R. Alghamdi and K. Alfalqi, A survey of topic modeling in text mining. I, J. ACSA 6(1) (2015), 147–153. doi:10.14569/
IJACSA.2015.060121.

[3] E. Aromataris and D. Riitano, Constructing a search strategy and searching for evidence, American Journal of Nursing
114(5) (2014), 49–56. doi:10.1097/01.NAJ.0000446779.99522.f6.

[4] I. Augenstein, S. Padó and S.R. Rudolph, Lodifier: Generating linked data from unstructured text, in: Extended Semantic
Web Conference, Springer, 2012, pp. 210–224. doi:10.1007/978-3-642-30284-8_21.

[5] F.B.V. Benitti, Exploring the educational potential of robotics in schools: A systematic review, Computers & Education
58(3) (2012), 978–988. doi:10.1016/j.compedu.2011.10.006.

[6] F. Belleau, M.-A. Nolin, N. Tourigny, P. Rigault and J. Morissette, Bio2rdf: Towards a mashup to build bioinformatics
knowledge systems, Journal of biomedical informatics 41(5) (2008), 706–716. doi:10.1016/j.jbi.2008.03.004.

[7] S. Bhatia, J.H. Lau and T. Baldwin, Automatic labelling of topics with neural embeddings, 2016, arXiv preprint
arXiv:1612.05340.

[8] D.M. Blei, A.Y. Ng and M.I. Jordan, Latent Dirichlet allocation, Journal of machine Learning research 3 (2003), 993–
1022. https://dl.acm.org/citation.cfm?id=944937.

[9] A.E. Cano-Basave, F. Osborne and A.A. Salatino, Ontology forecasting in scientific literature: Semantic concepts predic-
tion based on innovation-adoption priors, in: Knowledge Engineering and Knowledge Management: 20th International
Conference, EKAW 2016, Proceedings 20, Bologna, Italy, November 19–23, 2016. Springer, 2016, pp. 51–67. doi:10.
1007/978-3-319-49004-5_4.

[10] M.J.M. Chinapaw, K.I. Proper, J. Brug, W. Van Mechelen and A.S. Singh, Relationship between young peoples’ sedentary
behaviour and biomedical health indicators: A systematic review of prospective studies, Obesity reviews 12(7) (2011),
e621–e632. doi:10.1111/j.1467-789X.2011.00865.x.

[11] P. Cimiano and J. Völker, Text2onto, Springer, 2005, pp. 227–238. doi:10.1007/11428817_21.
[12] F.Q.B. da Silva, M. Suassuna, A. César, C. França, A.M. Grubb, T.B. Gouveia, C.V.F. Monteiro and I.E. dos Santos, Repli-

cation of empirical studies in software engineering research: A systematic mapping study, Empirical Software Engineer
19(3) (2014), 501–557. doi:10.1007/s10664-012-9227-7.

[13] J.C. de Almeida Biolchini, P.G. Mian, A.C. Cruz Natali, T.U. Conte and G.H. Travassos, Scientific research ontology
to support systematic review in software engineering, Advanced Engineering Informatics 21(2) (2007), 133–151. doi:10.
1016/j.aei.2006.11.006.

[14] R.M. De Mello and G.H. Travassos, Surveys in software engineering: Identifying representative samples, in: Proceedings
of the 10th ACM/IEEE International Symposium on Empirical Software Engineering and Measurement, ESEM ’16, ACM,
New York, NY, USA, 2016, pp. 55:1–55:6. doi:10.1145/2961111.2962632.

[15] T. Di Noia, R. Mirizzi, V.C. Ostuni, D. Romito and M. Zanker, Linked open data to support content-based recommender
systems, in: Proceedings of the 8th International Conference on Semantic Systems, ACM, 2012, pp. 1–8. doi:10.1145/
2362499.2362501.

[16] K.R. Felizardo, E. Mendes, M. Kalinowski, É.F. Souza and N.L. Vijaykumar, Using forward snowballing to update sys-
tematic reviews in software engineering, in: Proceedings of the 10th ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement, ACM, 2016, p. 53. doi:10.1145/2961111.2962630.

[17] B. Filipovic, B. Van Lindschoten, G. Procaccianti and P. Lago, Systematic Literature Study on Sustainable Software, VU
Technical Report, 2, 2017. https://research.vu.nl/ws/portalfiles/portal/58444907/Technical_Report_SLR.pdf.

[18] A. Gangemi, V. Presutti, D. Reforgiato Recupero, A.G. Nuzzolese, F. Draicchio and M. Mongiovì, Semantic web machine
reading with fred, Semantic Web 8(6) (2017), 873–893. doi:10.3233/SW-160240.

[19] A.G. Nuzzolese, A.L. Gentile, V. Presutti and A. Gangemi, Conference linked data: The scholarlydata project, in: Inter-
national Semantic Web Conference, Springer, 2016, pp. 150–158. doi:10.1007/978-3-319-46547-0_16.

https://doi.org/10.1016/j.infsof.2017.06.007
https://doi.org/10.14569/IJACSA.2015.060121
https://doi.org/10.14569/IJACSA.2015.060121
https://doi.org/10.1097/01.NAJ.0000446779.99522.f6
https://doi.org/10.1007/978-3-642-30284-8_21
https://doi.org/10.1016/j.compedu.2011.10.006
https://doi.org/10.1016/j.jbi.2008.03.004
http://arxiv.org/abs/arXiv:1612.05340
https://dl.acm.org/citation.cfm?id=944937
https://doi.org/10.1007/978-3-319-49004-5_4
https://doi.org/10.1007/978-3-319-49004-5_4
https://doi.org/10.1111/j.1467-789X.2011.00865.x
https://doi.org/10.1007/11428817_21
https://doi.org/10.1007/s10664-012-9227-7
https://doi.org/10.1016/j.aei.2006.11.006
https://doi.org/10.1016/j.aei.2006.11.006
https://doi.org/10.1145/2961111.2962632
https://doi.org/10.1145/2362499.2362501
https://doi.org/10.1145/2362499.2362501
https://doi.org/10.1145/2961111.2962630
https://research.vu.nl/ws/portalfiles/portal/58444907/Technical_Report_SLR.pdf
https://doi.org/10.3233/SW-160240
https://doi.org/10.1007/978-3-319-46547-0_16


338 F. Osborne et al. / Reducing the effort for systematic reviews in software engineering

[20] E. Hassler, J.C. Carver, D. Hale and A. Al-Zubidy, Identification of SLR tool needs – results of a community workshop,
Information and Software Technology 70 (2016), 122–129. doi:10.1016/j.infsof.2015.10.011.

[21] B. Kitchenham, Procedures for performing systematic reviews, Keele, UK, Keele University 33(2004) (2004), 1–26. http://
www.inf.ufsc.br/~aldo.vw/kitchenham.pdf.

[22] B. Kitchenham and P. Brereton, A systematic review of systematic review process research in software engineering,
Information and software technology 55(12) (2013), 2049–2075. doi:10.1016/j.infsof.2013.07.010.

[23] B.A. Kitchenham and S. Charters, Guidelines for performing systematic literature reviews in software engineering, 2007.
https://edisciplinas.usp.br/pluginfile.php/4108896/mod_resource/content/2/slrPCS5012_highlighted.pdf.

[24] P. Knoth and Z. Zdrahal, Core: Three access levels to underpin open access, D-Lib Magazine 18(11/12) (2012). doi:10.
1045/november2012-knoth.

[25] T. Kuhn, P.E. Barbano, M.L. Nagy and M. Krauthammer, Broadening the scope of nanopublications, in: Extended Seman-
tic Web Conference, Springer, 2013, pp. 487–501. doi:10.1007/978-3-642-38288-8_33.

[26] M. Kuhrmann, D. Méndez Fernández and M. Daneva, On the pragmatic design of literature studies in software engineer-
ing: An experience-based guideline, Empirical Software Engineer 22 (2017), 1–40. doi:10.1007/s10664-016-9495-8.

[27] J.R. Landis and G.G. Koch, The measurement of observer agreement for categorical data, Biometrics 33(1) (1977), 159–
174. doi:10.2307/2529310.

[28] M. Ley, Dblp: Some lessons learned, Proceedings of the VLDB Endowment 2(2) (2009), 1493–1500. doi:10.14778/
1687553.1687577.

[29] X. Liu, Y. Song, S. Liu and H. Wang, Automatic taxonomy construction from keywords, in: Proceedings of the 18th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, ACM, 2012, pp. 1433–1441. doi:10.1145/
2339530.2339754.

[30] A. Mannocci, F. Osborne and E. Motta, The evolution of IJHCS and CHI: A quantitative analysis, International Journal
of Human-Computer Studies (2019). arXiv:1908.04088.

[31] C. Marshall, P. Brereton and B. Kitchenham, Tools to support systematic reviews in software engineering: A cross-
domain survey using semi-structured interviews, in: Proceedings of the 19th International Conference on Evaluation and
Assessment in Software Engineering, ACM, 2015, p. 26. doi:10.1145/2745802.2745827.

[32] P.N. Mendes, M. Jakob, A. García-Silva and C. Bizer, Dbpedia spotlight: Shedding light on the web of documents,
in: Proceedings of the 7th International Conference on Semantic Systems, ACM, 2011, pp. 1–8. doi:10.1145/2063518.
2063519.

[33] J.S. Molleri, K. Petersen and E. Mendes, Survey guidelines in software engineering: An annotated review, in: Proceedings
of the 10th ACM/IEEE International Symposium on Empirical Software Engineering and Measurement – ESEM ’16, ACM
Press, 2016, pp. 1–6. doi:10.1145/2961111.2962619.

[34] E. Mourão, M. Kalinowski, L. Murta, E. Mendes and C. Wohlin, Investigating the use of a hybrid search strategy for
systematic reviews, in: Proceedings of the 11th ACM/IEEE International Symposium on Empirical Software Engineering
and Measurement, ESEM ’17, IEEE Press, 2017, pp. 193–198. doi:10.1109/ESEM.2017.30.

[35] R.F. Octaviano, K.R. Felizardo, J.C. Maldonado and C.P. Sandra, Semi-automatic selection of primary studies in sys-
tematic literature reviews: Is it reasonable?, Empirical Software Engineer 20(6) (2015), 1898–1917. doi:10.1007/s10664-
014-9342-8.

[36] F. Osborne and E. Motta, Mining semantic relations between research areas, in: International Semantic Web Conference
2012, Springer, 2012, pp. 410–426. doi:10.1007/978-3-642-35176-1_26.

[37] F. Osborne and E. Motta, Klink-2: Integrating multiple web sources to generate semantic topic networks, in: International
Semantic Web Conference 2015, Springer, 2015, pp. 408–424. doi:10.1007/978-3-319-25007-6_24.

[38] F. Osborne, E. Motta and P. Mulholland, Exploring scholarly data with rexplore, in: International Semantic Web Confer-
ence 2013, Springer, 2013, pp. 460–477. doi:10.1007/978-3-642-41335-3_29.

[39] F. Osborne, A. Salatino, A. Birukou and E. Motta, Automatic classification of springer nature proceedings with smart
topic miner, in: International Semantic Web Conference 2016, Springer, 2016, pp. 383–399. doi:10.1007/978-3-319-
46547-0_33.

[40] S. Peroni, A. Dutton, T. Gray and D. Shotton, Setting our bibliographic references free: Towards open citation data,
Journal of Documentation 71(2) (2015), 253–277. doi:10.1108/JD-12-2013-0166.

[41] K. Petersen, R. Feldt, S. Mujtaba and M. Mattsson, Systematic mapping studies in software engineering, in: Proceedings
of the 12th International Conference on Evaluation and Assessment in Software Engineering, EASE, British Computer
Society, Swinton, UK, UK, 2008, pp. 68–77. https://dl.acm.org/citation.cfm?id=2227115.2227123.

[42] K. Petersen, S. Vakkalanka and L. Kuzniarz, Guidelines for conducting systematic mapping studies in software engineer-
ing: An update, Information and Software Technology 64 (2015), 1–18. doi:10.1016/j.infsof.2015.03.007.

[43] G. Petrucci, C. Ghidini and M. Rospocher, Ontology learning in the deep, in: Knowledge Engineering and Knowledge
Management: 20th International Conference, EKAW 2016, Proceedings 20, Bologna, Italy, November 19–23, 2016,
Springer, 2016, pp. 480–495. doi:10.1007/978-3-319-49004-5_31.

https://doi.org/10.1016/j.infsof.2015.10.011
http://www.inf.ufsc.br/~aldo.vw/kitchenham.pdf
http://www.inf.ufsc.br/~aldo.vw/kitchenham.pdf
https://doi.org/10.1016/j.infsof.2013.07.010
https://edisciplinas.usp.br/pluginfile.php/4108896/mod_resource/content/2/slrPCS5012_highlighted.pdf
https://doi.org/10.1045/november2012-knoth
https://doi.org/10.1045/november2012-knoth
https://doi.org/10.1007/978-3-642-38288-8_33
https://doi.org/10.1007/s10664-016-9495-8
https://doi.org/10.2307/2529310
https://doi.org/10.14778/1687553.1687577
https://doi.org/10.14778/1687553.1687577
https://doi.org/10.1145/2339530.2339754
https://doi.org/10.1145/2339530.2339754
http://arxiv.org/abs/arXiv:1908.04088
https://doi.org/10.1145/2745802.2745827
https://doi.org/10.1145/2063518.2063519
https://doi.org/10.1145/2063518.2063519
https://doi.org/10.1145/2961111.2962619
https://doi.org/10.1109/ESEM.2017.30
https://doi.org/10.1007/s10664-014-9342-8
https://doi.org/10.1007/s10664-014-9342-8
https://doi.org/10.1007/978-3-642-35176-1_26
https://doi.org/10.1007/978-3-319-25007-6_24
https://doi.org/10.1007/978-3-642-41335-3_29
https://doi.org/10.1007/978-3-319-46547-0_33
https://doi.org/10.1007/978-3-319-46547-0_33
https://doi.org/10.1108/JD-12-2013-0166
https://dl.acm.org/citation.cfm?id=2227115.2227123
https://doi.org/10.1016/j.infsof.2015.03.007
https://doi.org/10.1007/978-3-319-49004-5_31


F. Osborne et al. / Reducing the effort for systematic reviews in software engineering 339

[44] J. Ramos et al., Using tf-idf to determine word relevance in document queries, in: Proceedings of the First Instruc-
tional Conference on Machine Learning, Vol. 242, Piscataway, NJ, 2003, pp. 133–142. https://dl.acm.org/citation.cfm?
id=2227115.2227123.

[45] M.Q. Raza and A. Khosravi, A review on artificial intelligence based load demand forecasting techniques for smart grid
and buildings, Renewable and Sustainable Energy Reviews 50 (2015), 1352–1372. doi:10.1016/j.rser.2015.04.065.

[46] D. Richards and T. Richardson, Computer-based psychological treatments for depression: A systematic review and meta-
analysis, Clinical psychology review 32(4) (2012), 329–342. doi:10.1016/j.cpr.2012.02.004.

[47] G. Rizzo and R. Troncy, Nerd: A framework for unifying named entity recognition and disambiguation extraction tools, in:
Proceedings of the Demonstrations at the 13th Conference of the European Chapter of the Association for Computational
Linguistics, Association for Computational Linguistics, 2012, pp. 73–76. https://dl.acm.org/citation.cfm?id=2380936.

[48] R. Ros, E. Bjarnason and P. Runeson, A machine learning approach for semi-automated search and selection in literature
studies, in: Proceedings of the 21st International Conference on Evaluation and Assessment in Software Engineering,
EASE’17, ACM, 2017, pp. 118–127. ISBN 978-1-4503-4804-1. https://dl.acm.org/citation.cfm?id=3084243.

[49] M. Sabou, D. Winkler, P. Penzerstadler and S. Biffl, Verifying conceptual domain models with human computation: A case
study in software engineering, in: Sixth AAAI Conference on Human Computation and Crowdsourcing, 2018. https://www.
aaai.org/ocs/index.php/HCOMP/HCOMP18/paper/view/17917/16921.

[50] H. Saif, Y. He and H. Alani, Semantic sentiment analysis of Twitter, The Semantic Web–ISWC 2012 (2012), 508–524.
doi:10.1007/978-3-642-35176-1_32.

[51] A.A. Salatino, F. Osborne, A. Birukou and E. Motta, Improving editorial workflow and metadata quality at springer nature,
International Semantic Web Conference 2019, p. 2019. http://oro.open.ac.uk/62265/.

[52] A.A. Salatino, F. Osborne and E. Motta, How are topics born? Understanding the research dynamics preceding the emer-
gence of new areas, PeerJ Computer Science 3 (2017), e119. doi:10.7717/peerj-cs.119.

[53] A.A. Salatino, F. Osborne, T. Thanapalasingam and E. Motta, The CSO classifier: Ontology-driven detection of research
topics in scholarly articles, in: TPDL 2019: 23rd International Conference on Theory and Practice of Digital Libraries,
2019. doi:10.1007/978-3-030-30760-8_26.

[54] A.A. Salatino, T. Thanapalasingam, A. Mannocci, F. Osborne and E. Motta, The computer science ontology: A large-scale
taxonomy of research areas, in: International Semantic Web Conference, Springer, 2018, pp. 187–205. doi:10.1007/978-
3-030-00668-6_12.

[55] A.A. Salatino, T. Thanapalasingam, A. Mannocci, F. Osborne and E. Motta, Classifying research papers with the computer
science ontology, in: International Semantic Web Conference (P&D/Industry/BlueSky). CEUR Workshop Proceedings,
Vol. 2180, 2018. doi:10.21954/ou.rd.7204814.v1.

[56] M. Sanderson and B. Croft, Deriving concept hierarchies from text, in: Proceedings of the 22nd Annual International
ACM SIGIR Conference on Research and Development in Information Retrieval, ACM, 1999, pp. 206–213. doi:10.1145/
312624.312679.

[57] J.M. Schultz and M. Liberman, Topic detection and tracking using idf-weighted cosine coefficient, in: Proceedings of the
DARPA Broadcast News Workshop, Morgan Kaufmann, San Francisco, 1999, pp. 189–192. http://citeseerx.ist.psu.edu/
viewdoc/download?doi=10.1.1.591.7692&rep=rep1&type=pdf.

[58] A. Sinha, Z. Shen, Y. Song, H. Ma, D. Eide, B.P. Hsu and K. Wang, An overview of Microsoft academic service (MAS)
and applications, in: Proceedings of the 24th International Conference on World Wide Web, ACM, 2015, pp. 243–246.
doi:10.1145/2740908.2742839.

[59] Y. Sun, Y. Yang, H. Zhang, W. Zhang and Q. Wang, Towards evidence-based ontology for supporting systematic literature
review, in: International Conference on Evaluation and Assessment in Software Engineering (EASE), IET, 2012. doi:10.
1049/ic.2012.0022.

[60] T. Vale, I. Crnkovic, E. Santana de Almeida, P.A. da Mota Silveira Neto, Y. Cerqueira Cavalcanti and S.R. de Lemos
Meira, Twenty-eight years of component-based software engineering, Journal of Systems and Software 111(1) (2016),
128–148, ISSN 0164-1212. doi:10.1016/j.jss.2015.09.019.

[61] R.J. Wieringa, Design Science Methodology for Information Systems and Software Engineering, Springer, Berlin Heidel-
berg, 2014. doi:10.1007/978-3-662-43839-8.

[62] M.D. Wilkinson, M. Dumontier, J. Aalbersberg, G. Appleton, M. Axton, A. Baak, N. Blomberg, J.-W. Boiten, L.B. da
Silva Santos, P.E. Bourne et al., The fair guiding principles for scientific data management and stewardship, Scientific
data 3 (2016), 160018. doi:10.1038/sdata.2016.18.

[63] G. Wohlgenannt, A. Weichselbraun, A. Scharl and M. Sabou, Dynamic integration of multiple evidence sources for ontol-
ogy learning, Journal of Information and Data Management 3(3) (2012), 243–254. http://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.301.6283&rep=rep1&type=pdf.

[64] C. Wohlin and R. Prikladnicki, Systematic literature reviews in software engineering, Information and Software Technol-
ogy 55(6) (2013), 919–920. doi:10.1016/j.infsof.2013.02.002.

https://dl.acm.org/citation.cfm?id=2227115.2227123
https://dl.acm.org/citation.cfm?id=2227115.2227123
https://doi.org/10.1016/j.rser.2015.04.065
https://doi.org/10.1016/j.cpr.2012.02.004
https://dl.acm.org/citation.cfm?id=2380936
http://www.isbnsearch.org/isbn/978-1-4503-4804-1
https://dl.acm.org/citation.cfm?id=3084243
https://www.aaai.org/ocs/index.php/HCOMP/HCOMP18/paper/view/17917/16921
https://www.aaai.org/ocs/index.php/HCOMP/HCOMP18/paper/view/17917/16921
https://doi.org/10.1007/978-3-642-35176-1_32
http://oro.open.ac.uk/62265/
https://doi.org/10.7717/peerj-cs.119
https://doi.org/10.1007/978-3-030-30760-8_26
https://doi.org/10.1007/978-3-030-00668-6_12
https://doi.org/10.1007/978-3-030-00668-6_12
https://doi.org/10.21954/ou.rd.7204814.v1
https://doi.org/10.1145/312624.312679
https://doi.org/10.1145/312624.312679
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.591.7692&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.591.7692&rep=rep1&type=pdf
https://doi.org/10.1145/2740908.2742839
https://doi.org/10.1049/ic.2012.0022
https://doi.org/10.1049/ic.2012.0022
https://doi.org/10.1016/j.jss.2015.09.019
https://doi.org/10.1007/978-3-662-43839-8
https://doi.org/10.1038/sdata.2016.18
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.301.6283&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.301.6283&rep=rep1&type=pdf
https://doi.org/10.1016/j.infsof.2013.02.002


340 F. Osborne et al. / Reducing the effort for systematic reviews in software engineering

[65] C. Wohlin, P. Runeson, P.A. da Mota Silveira Neto, E. Engström, I. do Carmo Machado and E. Santana de Almeida, On
the reliability of mapping studies in software engineering, The Journal of systems and software 86(10) (2013), 2594–2610.
doi:10.1016/j.jss.2013.04.076.

[66] C. Wohlin, P. Runeson, M. Höst, M.C. Ohlsson, B. Regnell and A. Wesslén, Experimentation in Software Engineering.,
Springer, 2012. doi:10.1007/978-3-642-29044-2.

[67] N.J.E. Wolfram, P. Lago and F. Osborne, Sustainability in software engineering, in: IFIP Conference on Sustainable
Internet and ICT for Sustainability (SustainIT), 2017. doi:10.23919/sustainit.2017.8379798.

[68] H. Zhang and M.A. Babar, Systematic reviews in software engineering: An empirical investigation, Information and
Software Technology 55(7) (2013), 1341–1354, ISSN 0164-1212. doi:10.1016/j.infsof.2012.09.008.

[69] H. Zhang, M.A. Babar and P. Tell, Identifying relevant studies in software engineering, Information and Software Tech-
nology 53(6) (2011), 625–637. doi:10.1016/j.infsof.2010.12.010.

https://doi.org/10.1016/j.jss.2013.04.076
https://doi.org/10.1007/978-3-642-29044-2
https://doi.org/10.23919/sustainit.2017.8379798
https://doi.org/10.1016/j.infsof.2012.09.008
https://doi.org/10.1016/j.infsof.2010.12.010

	Introduction
	Related work
	An overview of the benefits of automatic SRs
	An expert-driven automatic methodology
	EDAM description
	EDAM application

	Evaluation and discussion
	Evaluation of the primary study classification
	Comparison of classifiers for primary studies
	Limitations
	Implications for systematic mappings
	Reusing EDAM for other systematic reviews

	Conclusions and future work
	Acknowledgements
	References

