
GPU-based skin texture synthesis for
digital human model

Zhe Shen

a,*, Lili Wang

a , Yaqian Zhao

a, Qinping Zhao

a and Meng Zhaob
a

 State Key Laboratory of Virtual Reality Technology, Beihang University, Beijing, China
b

 Northeastern University at Qinhuangdao, Qinhuangdao, China

Abstract. Skin synthesis is important for the actual appearance of digital human models. However, it is difficult to design a
general algorithm to efficiently produce high quality results. This paper proposes a parallel texture synthesis method for large
scale skin of digital human models. Two major procedures are included in this method, a parallel matching procedure and a
multi-pass optimizing procedure. Compared with other methods, this algorithm is easy to use, requires only a small size of
skin image as input, and generates an arbitrary size of skin texture with high quality. As demonstrated by experiments, the
effectiveness of this skin texture synthesis method is confirmed.

Keywords: Texture synthesis, virtual human, parallel computing, L2 normal form

1. Introduction

Digital human models are widely used in many medical applications, including virtual human, ana-
tomical teaching, pharmacological experiment, athletic training, and virtual surgery. However, digital
human models are generally based on human body slices [1], such as the Visual Human Project in
American and Virtual Human in China. As digital human models focus on body structures, body de-
tails, including skin, hair, brows and eyelashes, which affect the actual appearance are generally ig-
nored. When human body slices are used, the integrity of skin cannot be maintained, thus it needs to
be generated by photographs or by hand drawings. As either way is tedious
would always show a uniform flat color.

In computer graphics, texture is used to produce realistic model appearance with little cost [2].
Sample based texture synthesis reconstructs and reorganizes the sample texture, which could synthes-
ize a new texture image with high resolution while maintaining the visual effect.

In this paper, skin is treated as a texture sample, and we propose a GPU (Graphics Process Unit)
based multithreads parallel algorithm for skin texture synthesis. Specifically, skin textures are synthe-
sized using a two-pass algorithm. In the first pass, a patch based synthesis approach is used to synthes-
ize the coarse texture. In the second one, the textures are optimized by a self-adaptive non-parametric
global texture optimization algorithm. For both passes, a universal multithread parallel algorithm is
employed to compute the best match neighborhood in sample texture using GPU. Besides, a novel re-

*Corresponding author: Zhe Shen, State Key Laboratory of Virtual Reality Technology, Beihang University, Beijing, Chi-

na. Tel.: +86 135 8179 4654; Fax: +86 10 8233 9903; E-mail: shenzhe@vrlab.buaa.edu.cn.

0959-2989/14/$27.50 © 2014 – IOS Press and the authors.

DOI 10.3233/BME-141034
IOS Press

Bio-Medical Materials and Engineering 24 (2014) 2219–2227

This article is published with Open Access and distributed under the terms of the Creative Commons Attribution and Non-Commercial License.

2219

weighting scheme ensures fast convergence of the energy function. As confirmed by the result, this
method is effective for not only skin texture, but also some other physiological elements.

In Section 2, a brief introduction will be given on the development of texture synthesis. Section 3
then presents the GPU-based skin texture synthesis algorithm in detail. Results of the algorithm are
given in Section 4 with conclusions summarized Section 5.

2. Related works

2.1. Per-pixel texture synthesis

A non-parameter sample method proposed by Efros [3] describes the texture by MRF (Markov
Random Field). In MRF models, the color of a certain pixel is only affected by its neighboring pixels,
which acts as the theoretical basis of neighborhood texture synthesis. Later, e-
thod by using an L-shape neighborhood to find the best match pixel [4,5]. method searches a
match pixel using the known neighboring pixels. Meanwhile, tree-structured vector quantization is
also employed to reduce the synthesis time.

Ashikhmin proposed the 1-Coherence algorithm to accelerate the texture synthesis per pixel [6]. For
an undetermined pixel, there is a high probability that the best match pixel is the pixel close to the last
best match pixel and thus removing pixels with low match probability could speed up the match
process. Zelinka proposed a jump map method based on K-Coherence algorithm [7], which divides the
synthesis process into two sub-procedures, texture analysis and texture synthesis.

Although per pixel texture synthesis is easy for implementation, yet it takes a long time when ap-
plied in large textures. As a result, for textures with structures, it is hard to maintain the structural in-
formation using per pixel texture synthesis.

2.2. Per-patch texture synthesis

As an improvement from per pixel texture synthesis, per patch texture synthesis was later proposed.
Instead of finding a best match pixel, per patch method now finds a block of pixels.

The image quilting texture synthesis method [8] proposed by Efros synthesizes the texture by
searching the best match patch in a line scanning order, and computes a minimal cost path by dynamic
planning between the new texture patch and the old one. Although a satisfactory effect can be
achieved, this method is low in synthesis processing. By expanding the image quilting method,
Schlömer proposed the semi-random texture synthesis later [9]. Besides, Cohen proposed the Wang
tiles method [10], which combines the Wang tile algorithm in theory of computation and image quilt-
ing. Wang tiles method defines a series of square texture blocks, with each edge of a block marked in
a certain color and edges with the same color could combine seamlessly. During the synthesis, a block
which meets the constraint of color is chosen to form a big image.

However, although per patch texture synthesis is much faster than the per pixel method, it is still
time consuming, and the seam between two adjacent patches needs to be handled.

2.3. Global texture optimization

Kwatra proposed the global texture optimization method [11], which uses two energy functions, Ex-
ception and Maximization, and thus converts texture synthesis into energy function minimization. To

Z. Shen et al. / GPU-based skin texture synthesis for digital human model2220

minimize, the E and M functions are executed iteratively until the energy function is below a threshold.
Therefore, a low energy value could make the texture look like the sampler.

s method, coarse textures can be refined by global optimization algorithm with-
out iterative execution. Instead, with the statistical data, weight is defined to ensure quick convergence
of the energy function.

2.4. GPU-based texture synthesis

Texture synthesis is a computation-intensive work. With the development of hardware and software,
parallel computing is becoming more and more powerful. It is an inevitable choice to implement tex-
ture synthesis in a parallel style.

Lefebvre proposed a parallel controllable texture synthesis method [12]
Image pyramids are constructed for sampler and target texture with the latter being divided into four
groups by the sampled interlaced isolation column and row. This algorithm can be implemented in
parallel within groups and in series between groups. Afterwards, Lefebvre proposed appearance vector
space texture synthesis [13], in which the vector contains more information due to its large size of pix-
el neighborhood, and thus is beneficial for pixel match.

Risser proposed structured image hybrids synthesis method [14], which improves the coordinates
stabilization, and made a global structure image blending. Huang proposed a two-stage large scale tex-
ture synthesis method based on random search [15]. The first (initial) stage will fill the target texture
by random texture patch, while the second (iterate) stage implements the stochastic searching and tex-
ture patch broadcasting in parallel to adjust the texture. This method is also implemented using GPU,
but it still needs several seconds to complete the work.

Chen proposed a method to synthesize large textures using GPU in real-time [16]. This method first
analyzes the periodicity and the optimized patches size of exemplar before distributing patches with
and filling in the vacant regions. Chen later improved the method by generating bigger patches using
patches from the synthesized part [17]. Interactive operations were also added into texture synthesis to
integrate user control information and the structure of exemplar. The method was then implemented
on GPU to guarantee an interactive computation time [18]. Wang presented a just-in-time texturing
method. The method implemented on GPU and modeling a texture patch as an umbrella to address the
texture diversification and mipmapping problem in a short time [19].

In this paper, we combine the patch based synthesis method and the global optimization method.
Firstly, a coarse texture using patch based method is synthesized, which is then refined by global op-
timization method. With both steps implemented on GPU, a common size texture could be worked out
within a second.

3. Texture synthesis on GPU

Texture synthesis begins with initializing the target texture with a white Gaussian noise. A patch
from target texture is then selected in line scanning order, traversing the sampler to find a best match
patch. Once the best match path is found, it is copied to the target texture. These steps are repeated
iteratively until each target texture is matched with a patch. Finally, global optimization method is
employed to refine the entire target textures. Throughout the synthesis process, parallel computing is
used to search for the best match patch and refine the global texture.

Z. Shen et al. / GPU-based skin texture synthesis for digital human model 2221

Fig. 1. Texture synthesis using white Gaussian noise.

3.1. Initial texture

Textures are similar locally but show randomness globally. To make the texture features random,
we initialize the target texture with white Gaussian noise (Figure 1). The purpose of this step is to
convert the random texture into an image like the exemplar.

The first best match patch is completely random, as the initial texture is random. The succeeding
match patchs will also be random due to the accumulation of random data. However, in local areas, we
use patches selected in the exemplar to compose the texture, so it is similar in small scales, which en-
sures the target texture is similar locally while random globally.

3.2. Texture patch matching

Texture patch matching is implemented in a line scanning order. A texture patch ti with size N*N in
target texture is selected, followed by traversing the exemplar S to compute the L2 distance of each
patch si with size N*N corresponding to ti as in Eq. (1).

))(min(
*

1

2
NN

i
iiSs tslockBestMatchB (1)

Short distances indicate small differences, which implies that two patches are more identical. After

obtaining all distances in the exemplar, the patch with the shortest distance is chosen as the best match,
and later copied into ti as the synthesis result.

After finishing one patch in target texture, it will move on to the next undetermined patch in a line
scanning order. Please be noted that the displacement distance D should be smaller than N, which
could guarantee the continuity between patches as well as the data dependency of the subsequent
patches. As a result, an appropriate relation between N and D could ensure the stability of the synthe-

Fig. 2. Texture synthesis by blocks.

Z. Shen et al. / GPU-based skin texture synthesis for digital human model2222

sis result. And in this paper, we choose N=2D.
As there are only horizontal movements in a row, we only have vertically overlapped areas in the

first row. However, in other rows, overlapped areas exist both horizontally and vertically (Figure 2).

3.3. Self-adaptive global optimization

When searching for the matching patches, only part of the decided information is needed, and the
remaining information is random data. There is some high frequency information between two decided
patches, which makes the texture appears as if it consists of blocks. As a result, global optimization
algorithm will be used to adjust the result with the energy function defined as Eq. (2).

Xp
pppt zxzxE

2
}){;((2)

where X stands for the target texture and Z stands for the sample texture. x stands for the vectorized X,
i.e., x is formed by concatenating the intensity values of all pixels in X. Therefore, the global energy is
the sum of the L2 distance in the neighborhood.

In this paper, a self-adaptive optimization is proposed to accelerate synthesis. The probability distri-
bution function of the best match patch is firstly computed. If there is a region with high probability, it
could be a repeatable texture with similar structures, which only needs one time optimization.

To ensure fast convergence of the energy function, high frequency information can be eliminated by
adding a weight based on Eq. (1), as show in Eq. (3).

 (3)

where p stands for the weight, which is given by
2

)(
r

pppp zxxP with .)(pxP is

the probability of finding the best match in a high frequency success match region for the current
patch.

 (a) Without optimization (b) 1 time optimization (c) 2 time optimization

Fig. 3. Results of different optimization times.

Z. Shen et al. / GPU-based skin texture synthesis for digital human model 2223

Fig. 4. Parallel structure sketch map.

After each optimization process, the size of the neighborhood will be reduced to a quarter, which

ensures that the optimization can be implemented in a smaller region with better results. As shown in
Figure 3, Figure 3(a) gives the coarse texture synthesized by patch based method, in which the borders
of the patches can be seen. Figure 3(b) shows the texture with one time optimization, which is better
than (a) but still contains some discontinuous pixels. Figure 3(c) gives the texture after a two time op-
timization, whose quality could satisfy the requirement of application. As a result, the minimum num-
ber of optimization is chosen to be three. As shown r is set to 0.8, which guaran-
tees stable results.

3.4. GPU-based algorithm analysis and design

Although parallel algorithm requires low data dependency, yet texture synthesis based on MRF
model is highly data dependent in which the color of subsequent pixels are determined by the previous
pixels. As a result, the analysis and design of parallel algorithm should maintain data consistency.

Task partitioning of texture synthesis indicates that searching the best match patch is computation
intensive and is the core work of the algorithm. More importantly, the searching procedure could be
completed separately, which allows the computing the best match patch in parallel using the proposed
method as shown in Figure 4.

At the beginning of the parallel algorithm, we will launch equal number of threads as the number of
pixels in the sample texture. Each thread is corresponding to a certain pixel, and it is used to compute
the L2 norm of the neighborhood starting from the corresponding pixel. Once the results are obtained,
we will compute the best value by data reduction on GPU, in which each thread compares the two val-
ues and records the smaller one. This process is repeated until only one value is left. The time com-
plexity of multi-thread data reduction is , which is more efficient than that on CPU.

For N*N sample texture, the traditional algorithm needs to compute N*N times to find the best
match. In comparison, this method allows the results to be computed in one computation cycle.
Meanwhile, the method is insensitive to the size of the exemplar.

4. Results and analysis

Experiments are implemented using parallel tool CUDA 5.0 (Compute Unified Device Architecture)
with the hardware configurations detailed as follows. The hardware includes an Intel Core i3-3220
CPU and a 4 G RAM. The display card is NVIDIA GeForce GTX 650 with 1 G video memory, 384

Z. Shen et al. / GPU-based skin texture synthesis for digital human model2224

stream processors, 128 bit bus width, 5000 MHz video memory frequency, 1100 MHz core frequency
and 3.0 compute capability.

Figure 5 shows the skin state in three conditions with the small images showing the skin texture
sample and the large images showing the synthesized texture. The synthesized texture has the same
feature as the skin sample, but in a larger size. And the synthesized result could be directly applied on
a model as texture.

Figure 6 shows a digital hand model textured with two different textures. The left figure shows the
hand model textured with a simple uniform color, and right one shows the model with the texture syn-
thesized using the method proposed in this paper. It can be seen that the right model could recognize
the skin characteristics of human, including sweat pores and wrinkles, which indicates that the synthe-
sized texture is more realistic.

Fig. 5. Skin textures in different conditions.

Fig. 6. Hand model with different textures.

Fig. 7. Textures of blood platelets and bone tissue under microscope.

Z. Shen et al. / GPU-based skin texture synthesis for digital human model 2225

Besides the skin textures, some other physiological elements can also be synthesized using this me-
thod. Figure 7 shows the samples and satisfactory synthesized results of blood platelets and bone tis-
sues under microscope.

The computation efficiency of this method is compared with that of s-
it takes about 6 seconds to synthesize a texture with a size of 200*200. While

with this method, it only takes 0.903 second to synthesize a 256*256 texture. However, as the pro-
posed method is insensitive to the size of exemplar, synthesizing exemplars with a size of 64*64 or
128*128 size would still require the same time.

5. Conclusion

In this paper, we present a new method to synthesize textures from exemplar on GPU for digital
human model. This algorithm could be implemented on regular desktop GPU systems. Compared with
the other texture synthesis algorithms, the method takes shorter time to synthesize same quality results,
thus could meet the requirement of interactive applications. As confirmed by experiments, this algo-
rithm is stable and insensitive to the size of exemplar. Future work will aim at expanding the algorithm
to the organ surface texture synthesis and solid texture synthesis.

Acknowledgement

This work was supported by grant from the National Natural Science Foundation of China
(61190121) and the Hebei Institute of Humanities and Social Science Research Projects (SD135005).

References

[1] The online resource for the visible human project, http://www.nlm.nih.gov/research/visible/visible_human.html, ac-
cessed at May 1, 2014.

[2] L.Y. Wei, S. Lefebvre, V. Kwatra et al., State of the art in example-based texture synthesis, Proc. of Eurographics State
of the Art Report, Eurographics Association Press, Aire-la-Ville, 2009, pp. 93 117.

[3] A.A. Efros and T.K. Leung, Texture synthesis by non-parametric sampling, Proc. of the 7th IEEE International Confe-
rence on Computer Vision 2 (1999), 1033 1038.

[4] L.Y. Wei and M. Levoy, Fast texture synthesis using tree-structured vector quantization, in: Proc. of the 27th Annual
Conference on Computer Graphics and Interactive Techniques, ACM Press, New York, 2000, pp. 479 488.

[5] L.Y. Wei, Texture synthesis by fixed neighborhood searching, Ph.D. Dissertation, Stanford University, 2002.
[6] M. Ashikhmin, Synthesizing natural textures, in: Proc. of the 2001 Symposium on Interactive 3D Graphics, ACM Press,

New York, 2001, pp. 217 226.
[7] S. Zelinka and M. Garland, Towards real-time texture synthesis with the jump map, in: Proc. of the 13th Eurographics

Workshop on Rendering, Eurographics Association Press, Aire-la-Ville, 2002, pp. 99 104.
[8] A.A. Efros and W.T. Freeman, Image quilting for texture synthesis and transfer, in: Proc. of the 28th Annual Confe-

rence on Computer Graphics and Interactive Techniques, ACM Press, New York, 2001, pp. 341 346.
[9] T. Schlömer and O. Deussen, Semi-stochastic tilings for example-based texture synthesis, Computer Graphics Forum

29 (2010), 1431 1439.
[10] M. F. Cohen, J. Shade, S. Hiller et al., Wang tiles for image and texture generation, ACM Transactions on Graphics 22

(2003), 287 294.
[11] V. Kwatra, I. Essa, A. Bobick et al., Texture optimization for example-based synthesis, ACM Transactions on Graphics

24 (2005), 795 802.
[12] S. Lefebvre and H. Hoppe, Parallel controllable texture synthesis, ACM Transactions on Graphics 24 (2005), 777 786.
[13] S. Lefebvre and H. Hoppe, Appearance-space texture synthesis, ACM Transactions on Graphics 25 (2006), 541 548.

Z. Shen et al. / GPU-based skin texture synthesis for digital human model2226

[14] E. Risser, C. Han, R. Dahyot et al., Synthesizing structured image hybrids, ACM Transactions on Graphics 29 (2010),
85-1 85-6.

[15] Z.Y. Huang, F.Z. He, S.L. Zhang et al., Random search based large scale texture synthesis, Journal of Computer-Aided
Design & Computer Graphics 23 (2011), 1091 1098.

[16] X. Chen and W.C. Wang, Real-time synthesis of large textures, Journal of Software 20 (2009), 193 201.
[17] X. Chen and W.C. Wang, Reusing partially synthesized textures for real time synthesis of large textures, Chinese Jour-

nal of Computers 33 (2010), 769 775.
[18] Y. Chen and L.L. Wang, Interactive texture synthesis based on geometry mesh, Journal of Computer-Aided Design &

Computer Graphics 25 (2013), 1480 1488.
[19] L.L. Wang, Y.L. Shi, Y. Chen et al., Just-in-time texture synthesis, Computer Graphics Forum 32 (2013), 126 138.

Z. Shen et al. / GPU-based skin texture synthesis for digital human model 2227

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037002e000d00500072006f00640075006300650073002000500044004600200062006f006f006b00200063006f007600650072002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

