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Abstract. We explore the computational complexity of justification, stability and relevance in incomplete argumentation frame-
works (IAFs). IAFs are abstract argumentation frameworks that encode qualitative uncertainty by distinguishing between certain
and uncertain arguments and attacks. These IAFs can be completed by deciding for each uncertain argument or attack whether
it is present or absent. Such a completion is an abstract argumentation framework, for which it can be decided which arguments
are acceptable under a given semantics. The justification status of an argument in a completion then expresses whether the
argument is accepted (IN), not accepted because it is attacked by an accepted argument (OUT) or neither (UNDEC). For a given
IAF and certain argument, the justification status of that argument need not be the same in all completions. This is the issue of
stability, where an argument is stable if its justification status is the same in all completions. For arguments that are not stable
in an IAF, the relevance problem is of interest: which uncertain arguments or attacks should be investigated for the argument
to become stable? In this paper, we define justification, stability and relevance for IAFs and provide a complexity analysis for
these problems under grounded, complete, preferred and stable semantics.
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1. Introduction

A central concept in computational argumentation is that of argumentation frameworks (AFs), in
which arguments and the attack relation between them are represented as a directed graph where nodes
correspond to arguments and edges display the attack relation [10]. One of the assumptions in such
Dung-style argumentation frameworks is that all arguments and attacks are known. However, in practice,
argumentation is a dynamic process in which not all arguments and attacks may be known in advance.
For example, not all the evidence on which arguments are based might already have been observed,
making the presence of a specific argument uncertain [16]. AFs are not able to represent qualitative
uncertainty on the existence of specific arguments and attacks. For this reason, incomplete argumentation
frameworks (IAFs) have been designed [3,4,7,15]. IAFs are an extension to AFs in which not only
certain arguments are specified, but also arguments and attacks for which it is uncertain whether they
are present. By deciding for every uncertain argument and attack whether it is present or absent, it is
possible to “complete” an IAF, turning it into an AF. Thus, an IAF represents a set of possible AFs, its
completions.
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Since every completion of an IAF is an AF, standard Dung semantics can be applied to determine the
extensions of any completion [10]. Based on these extensions, one can determine the justification status
of every argument in every completion of the IAF. The justification status is defined in terms of labels
like IN (expressing that the argument is in some, or all, extensions and therefore should be accepted),
OUT (expressing that the argument is attacked by an IN argument and therefore should be rejected) and
UNDEC (for all other arguments, which are undecided) [6]. Note that the notion of justification status is
only defined on the AFs that make up the completions of an IAF, but not on the IAF itself.

Now suppose that we are interested in the justification status of a particular argument, but are faced
with an IAF containing uncertainties concerning the presence of (other) arguments and attacks. Then it
would be interesting to know whether it is required to resolve these uncertainties. In a situation where
the argument we are interested in has the same justification status in each completion of the IAF, there
is no need for further investigation into the uncertain arguments and attacks. Then we say that the ar-
gument is stable with respect to the IAF and justification status. The detection of such stability has
practical applications, for instance as a termination criterion for argumentative dialogue agents: in the
agent architecture for inquiry proposed in [16,17], stability detection prevents the agent from asking un-
necessary questions. In addition, [15] proposes an application of stability detection in negotiating agents,
to recognise situations in which an agent should stop negotiating and accept its opponent’s offer.

In the case that the argument of interest is not stable in the given IAF, we know that the agent should
collect more information. However, not all information that is currently unknown can influence the
justification status of the argument of interest. A natural question would therefore be: which uncertainties
should we resolve in order to reach a point where the argument is stable? In other words: which uncertain
arguments or attacks are still relevant for the justification status? Adding relevance to an inquiry or
negotiation process ensures that the questions that are asked contribute to reaching stability.

The problem of detecting stability has been studied for structured (ASPIC+) approaches to argumenta-
tion in [16,17,23]. The algorithms proposed in this line of research have been implemented in an inquiry
system for the intake of online trade fraud that has been used by hundreds of users every day since
its launch in September 2019 [16]. For abstract approaches to argumentation, the problem of detecting
stability was introduced in [15] and the subsequent problem of detecting relevance in incomplete (ab-
stract) argumentation frameworks was introduced in our earlier work in [18]. Given the high potential
for applications of stability and relevance in inquiry and negotiation, it would be useful to have efficient
algorithms for solving these problems in abstract approaches to argumentation as well. In this paper we
take a first step in the development of such algorithms, by investigating in which complexity class the
problems of detecting stability and relevance are situated: insights in the complexity of the problems
establish the possible efficiency of any algorithm to solve them.

The contribution of this paper, which expands on [18], is the extensive study of the complexity of
justification, stability and relevance in the context of IAFs. Specifically, we present precise complexity
results for each of these three problems under grounded, complete, stable and preferred semantics.1

Table 1 provides an overview of all these results. We further provide full proofs and illustrative examples
for all the complexity results of justification, stability and relevance.

The paper is structured as follows. In Section 2, we provide the necessary preliminaries. In Section 3,
we study the complexity of identifying the justification status of an argument. These results are used

1In [18] we only discussed the complexity of relevance for IN/OUT justification statuses under grounded semantics, whereas
this paper is the first to also give complexity results for relevance for all justification statuses under all semantics (stable,
complete, grounded, preferred).
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Table 1

Overview of all complexity results related to this paper. We considered four different semantics: stable (ST), complete (CP),
grounded (GR) or preferred (PR). The semantics and acceptance strategies are defined formally in Section 2.1. If a reference is
specified, this complexity result is trivial from an earlier result in the literature. New results are printed bold; we refer to the
corresponding proposition by “P” and the proposition number

Semantics Acceptance strategy Label JUSTIFICATION STABILITY RELEVANCE

ST credulous IN/OUT NP-c [8,9] �
p
2 -c [3] �

p
2 -c P17

ST credulous UNDEC Trivial (no) P4 Trivial (no) P10 Trivial (no) P18
ST sceptical IN/OUT CoNP-c [9] CoNP-c [3] �

p
2 -c P17

ST sceptical UNDEC CoNP-c P5 CoNP-c P9 �
p
2 -c P19

ST sceptical-existent IN/OUT DP-c [12] �
p
2 -c [3] �

p
2 -c P20

ST sceptical-existent UNDEC Trivial (no) P4 Trivial (no) P10 Trivial (no) P18

CP credulous IN/OUT NP-c [8,9] �
p
2 -c [3] �

p
2 -c P13

CP credulous UNDEC P-c P1 CoNP-c P6 NP-c P12
CP sceptical IN/OUT P-c [10] CoNP-c [3] NP-c P12
CP sceptical UNDEC CoNP-c P2 CoNP-c P7 �

p
2 -c P15

GR credulous IN/OUT P-c [10] CoNP-c [3] NP-c P12
GR credulous UNDEC P-c P1 CoNP-c P6 NP-c P12
GR sceptical IN/OUT P-c [10] CoNP-c [3] NP-c P12
GR sceptical UNDEC P-c P1 CoNP-c P6 NP-c P12

PR credulous IN/OUT NP-c [8,9] �
p
2 -c [3] �

p
2 -c P13

PR credulous UNDEC �
p
2 -c P3 �

p
3 -c P8 �

p
3 -c P14

PR sceptical IN/OUT �
p
2 -c [11] �

p
2 -c [3] �

p
3 -c P16

PR sceptical UNDEC CoNP-c P2 CoNP-c P7 �
p
2 -c P15

in Section 4 in our complexity analysis of the stability problem. We then introduce the relevance prob-
lem for IAFs in Section 5 and provide complexity results. Related work is discussed in Section 6; we
conclude in Section 7.

2. Preliminaries

In this section, we recall the most important notions from abstract argumentation and the associated
semantics [10], as well as incomplete argumentation frameworks and their completions [3,4,7,15]. We
also provide a brief introduction to the polynomial hierarchy, which is required for our complexity study.

2.1. Argumentation frameworks and semantics

An argumentation framework (AF) 〈A,R〉, as introduced in [10], consists of a finite set A of argu-
ments and a binary attack relation R ⊆ A × A on them, where (A, B) ∈ R indicates that argument A

attacks argument B. In this paper, we evaluate arguments using the semantics of [10].

Definition 1 (Extension-based semantics). Let AF = 〈A,R〉 be an AF and S ⊆ A. Then:

• S is conflict-free iff for each X, Y ∈ S : (X, Y ) /∈ R;
• X ∈ A is acceptable with respect to S iff for each Y ∈ A such that (Y, X) ∈ R, there is a Z ∈ S

such that (Z, Y ) ∈ R;
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Fig. 1. An example of an argumentation framework. Arguments are depicted as circles, whereas attacks are depicted as arrows.

• S is an admissible set iff S is conflict free and X ∈ S implies that X is acceptable with respect to S;
• S is a complete extension (CP) iff S is admissible and for each X: if X ∈ A is acceptable with

respect to S then X ∈ S;
• S is a preferred extension (PR) iff it is a set inclusion maximal admissible set;
• S is the grounded extension (GR) iff it is the set inclusion minimal complete extension; and
• S is a stable extension (ST) iff it is complete and attacks all the arguments in A \ S.

Example 1. Fig. 1 shows an example of an argumentation framework AF = 〈A,R〉 where A =
{A, B, C, D, E} and R = {(A, B), (B, C), (C, B), (D, C), (D, E), (E, D)}. The grounded extension
of AF is {A}. This is also a complete extension. Additionally, there are two complete extensions that are
also preferred and stable: {A, C, E} and {A, D}.

In order to decide if an argument should be accepted w.r.t. a given AF and semantics, one can choose
between different strategies. We will refer to these as acceptability strategies, following [5, Definition 1].
Dependent on the strategy, the argument is accepted iff it occurs in one and/or all extensions.

Definition 2 (Acceptability strategies). Let AF = 〈A,R〉 be an argumentation framework and σ some
semantics in {GR, CP, PR, ST} and let A be some argument in A.

• A is sceptically accepted w.r.t. σ semantics iff A belongs to each σ -extension of AF;
• A is credulously accepted w.r.t. σ semantics iff A belongs to some σ -extension of AF; and
• A is sceptically-existent accepted w.r.t. σ semantics iff AF has at least one σ -extension and A

belongs to each σ -extension of AF.

We refer to sceptical, credulous and sceptical-existent as acceptability strategies.

Note that the sceptical-existent acceptability strategy only differs from the sceptical strategy for ST

semantics: for GR, CP and PR semantics, each AF has at least one extension, while it is possible for an
AF to have no ST extension.

Example 2. In the AF illustrated in Fig. 1, only the argument A is sceptically accepted w.r.t. CP se-
mantics. The arguments C, D and E are all credulously accepted. Argument B is not accepted for any
acceptability strategy.

2.2. Incomplete argumentation frameworks

Incomplete argumentation frameworks (IAFs) [3,4,15] are an extension to AFs, initially proposed as
partial AFs in [7]. In an IAF, the set of arguments and attacks is split into two disjoint parts: a certain
part (A and R) and an uncertain part (A? and R?). For the uncertain elements, it is not known whether
they are part of the argumentation framework or not. They may be added in the future, for example
because more information is acquired in an inquiry dialogue, or removed, for example because after
investigation, this element turned out not to be present in the given setting.



CORRECTED  P
ROOF

D. Odekerken et al. / Justification, stability and relevance in IAFs 5

Fig. 2. An example of an incomplete argumentation framework. Certain arguments are depicted as circles with solid borders,
whereas uncertain arguments are circles with dashed borders. Attacks are depicted as arrows, which have a solid line if they
represent certain attacks and a dashed line if they represent uncertain attacks.

Fig. 3. The eight completions of our incomplete argumentation framework.

Definition 3 (Incomplete argumentation framework). An incomplete argumentation framework is a tu-
ple I = 〈A,A?,R,R?〉, where A ∩ A? = ∅, R ∩ R? = ∅ and:

• A is the set of certain arguments;
• A? is the set of uncertain arguments;
• R ⊆ (A ∪ A?) × (A ∪ A?) is the certain attack relation; and
• R? ⊆ (A ∪ A?) × (A ∪ A?) is the uncertain attack relation.

Example 3 (IAF). Fig. 2 shows an example of an incomplete argumentation framework I =
〈A,A?,R,R?〉 where A = {B, C, E}, A? = {A, D}, R = {(A, B), (B, C), (D, C), (D, E), (E, D)}
and R? = {(C, B)}. Arguments A and D are currently absent but may be added in the future. The attack
from A to B is certainly present if A is present. Similarly, the attacks (D, C), (D, E) and (E, D) are
certainly present if D is present. The attack from C to B, on the other hand, is uncertain: although the
arguments B and C are certainly present, the attack itself is currently absent but may still be added.

An incomplete argumentation framework can be completed by deciding for all uncertain arguments
and attacks whether or not they are present, as defined below.

Definition 4 (Completions). Given an IAF I = 〈A,A?,R,R?〉, a completion is any AF 〈A′,R′〉 that
satisfies A ⊆ A′ ⊆ A ∪ A? and R|A′ ⊆ R′ ⊆ (R ∪ R?)|A′ where the restriction R|A′ of an attack R to
a set of arguments A′ is defined as R|A′ = {(A, B) ∈ R|A ∈ A′ and B ∈ A′}.
Example 4 (Completions). The incomplete argumentation framework from our previous example has
eight completions. These are illustrated in Fig. 3.

Since completions are abstract argumentation frameworks, we can use the semantics from Section 2.1
to evaluate arguments in the completions of an incomplete argumentation framework. This leads to
two ways of defining acceptance for incomplete argumentation frameworks, proposed in [3, pages 6-7]:
necessary and possible acceptance. Informally, some argument is necessarily accepted if it is accepted
in each completion, whereas the argument is possibly accepted if this holds for some completion. The
definitions below make a distinction between the different acceptability strategies.
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Fig. 4. Visualisation of the CP extensions of each of the eight completions of I from Example 3, where the completion is
repeated for each CP extension and argument that are present in that extension are coloured green.

Definition 5 (Necessary acceptance). Given an incomplete argumentation framework I = 〈A,A?,

R,R?〉, a certain argument A ∈ A, some semantics σ in {GR, CP, PR, ST} and some acceptability strat-
egy α ∈ {sceptical, credulous, sceptical-existent}, A is necessarily α-σ accepted w.r.t. I iff A is α-σ
accepted in each completion of I.

Definition 6 (Possible acceptance). Given an incomplete argumentation framework I = 〈A,A?,

R,R?〉, a certain argument A ∈ A, some semantics σ in {GR, CP, PR, ST} and an acceptability strategy
α ∈ {sceptical, credulous, sceptical-existent}, A is possibly α-σ accepted w.r.t. I iff A is α-σ accepted
in some completion of I.

Example 5 (Necessary and possible acceptance). Fig. 4 displays the CP extensions of each of the eight
completions of I from Example 4, where the completion is repeated for each CP extension. None of the
certain arguments in I is necessarily sceptically accepted w.r.t. CP semantics, because no argument is in
all extensions of all completions. Note that A, although it is present in all extensions of all completions
of I in which it occurs, is not necessarily sceptically accepted w.r.t. CP semantics: A is not a certain
argument in I. The only argument that is necessarily credulously accepted w.r.t. CP semantics is E. B

is possibly sceptically accepted w.r.t. CP semantics, because the argument is in each extension of the
completion AF7 (as well as AF8). C and E are possibly sceptically accepted w.r.t. CP semantics as well,
thanks to their presence in the only extension of AF2. Finally, all certain arguments of I (B, C and E)
are possibly credulously accepted w.r.t. CP semantics.

The definitions of necessary and possible acceptance are particularly interesting for our work, as they
are strongly related to the notion of stability, to be defined formally in Section 4. Before we do so, we
first explain the polynomial hierarchy in the next section.
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Fig. 5. The relation between complexity classes in the polynomial hierarchy. The lines between classes denote a subset rela-
tionship: all problems in the class of the left side are also contained in the class on the right side.

2.3. The polynomial hierarchy

In this section, we give a brief introduction to the polynomial hierarchy – for a more detailed explana-
tion, we refer to [14]. This is required for the complexity study presented in this paper as the problems
we study are situated on various levels in the polynomial hierarchy.

The polynomial hierarchy [19] is a hierarchy of complexity classes defined using oracle machines, i.e.,
Turing machines that are allowed to call a subroutine (oracle), deciding some fixed problem in constant
time. For a class of decision problems C and a class X defined by resource bounds, X C denotes the
class of problems decidable on a Turing machine with a resource bound given by X and an oracle for
a problem in C. For example, problems in NP are decidable with a resource bound given by NP and an
oracle for a problem in P, therefore NP = NPP.

Based on these notions, the sets �
p

k and �
p

k are defined as follows: �
p

0 = �
p

0 = P , �p

k+1 = NP�
p
k and

�
p

k+1 = CoNP�
p
k . So problems in �

p

2 are decidable with a resource bound given NP and an oracle for a
problem in �

p

1 = NP. The polynomial hierarchy (PH) is then defined as the union of these complexity
classes: PH = ⋃∞

k=0 �
p

k = ⋃∞
k=0 �

p

k . Finally, note that the definition over classes in the polynomial
hierarchy imply a subset relation, illustrated in Fig. 5. By this relation, for each i ∈ N, each problem in
�

p

i is also in �
p

i+1, as well as in �
p

i+1.
A problem that is �

p

2 -complete is �2-SAT [22]; in this paper we will use the CNF formulation that is
also used in, e.g. [3,4]. An instance of �2-SAT would be (�, X, Y ), where � is an input formula in CNF
over the pairwise disjoint sets of propositional variables X and Y . Then the �2-SAT problem is to decide
if there exists a truth value assignment τX to variables of X such that for each truth value assignment τY :
�[τX, τY ] = False, where �[τX, τY ] is the truth value that � evaluates to when applying the assignment
τX to X and τY to Y .

3. Justification status

In this section, we define the notion of justification status and study the complexity of determining
this status for a given argument. The justification status [6] is a notion of acceptance for arguments
in abstract argumentation frameworks that is more fine-grained than only considering the presence or
absence in extensions. Given an AF 〈A,R〉, an argument A and a semantics σ , A’s justification status
can be determined by either considering all σ -extensions (sceptical and sceptical-existent) or at least one
σ -extension of the AF (credulous). In this context, an argument can be IN (part of all/some σ -extensions);
OUT (attacked by all/some σ -extensions), or UNDEC (otherwise).

Definition 7 (Argument justification status). Let AF = 〈A,R〉 be an argumentation framework and σ

some semantics in {GR, CP, PR, ST}. Let A be some argument in A.
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• The justification statuses for the IN label are:

∗ A is σ -sceptical-IN iff A belongs to each σ -extension of AF;
∗ A is σ -credulous-IN iff A belongs to some σ -extension of AF; and
∗ A is σ -sceptical-existent-IN iff AF has a σ -extension and A belongs to each σ -extension of AF.

• The justification statuses for the OUT label are:

∗ A is σ -sceptical-OUT iff for each σ -extension S of AF, A is attacked by some argument in S;
∗ A is σ -credulous-OUT iff for some σ -extension S of AF, A is attacked by some argument in S;

and
∗ A is σ -sceptical-existent-OUT iff AF has a σ -extension and for each σ -extension S of AF, A is

attacked by some argument in S.

• The justification statuses for the UNDEC label are:

∗ A is σ -sceptical-UNDEC iff for each σ -extension S of AF, A is not in S and not attacked by any
argument in S;

∗ A is σ -credulous-UNDEC iff for some σ -extension S of AF, A is not in S and not attacked by any
argument in S; and

∗ A is σ -sceptical-existent-UNDEC iff AF has a σ -extension and for each σ -extension S of AF, A

is not in S and not attacked by any argument in S.

The justification statuses that we consider in this paper are {GR, CP, PR, ST} × {sceptical, credulous,
sceptical-existent} × {IN, OUT, UNDEC}. In the remainder of this paper, we refer to IN-, OUT or UNDEC-
justification in case the semantics and acceptability strategy is obvious or irrelevant.

Example 6 (Argument justification status). Consider the argumentation framework AF1, as illustrated in
Fig. 4. For σ ∈ {GR, CP, PR, ST}, A is σ -sceptical-IN, while B is σ -sceptical-OUT. For σ ∈ {CP, PR, ST},
the arguments C, D and E are σ -credulous-IN, σ -credulous-OUT as well as σ -credulous-UNDEC.

We formulate the identification of justification status as a decision problem j -JUSTIFICATION (where
j ∈ {GR, CP, PR, ST} × {sceptical, credulous, sceptical-existent} × {IN, OUT, UNDEC}):

j -JUSTIFICATION

Given: An argumentation framework 〈A,R〉, a justification status j and an argument A ∈ A
Question: Does A’s justification status in 〈A,R〉 equal j?

The remainder of this section provides proofs for complexity results related to JUSTIFICATION prob-
lems. Whereas the complexity of IN-JUSTIFICATION has been studied before (as acceptance problems,
see [8–11]), this is not the case for OUT- and UNDEC-JUSTIFICATION. This is unfortunate, as detecting
OUT- and UNDEC-JUSTIFICATION has interesting applications as well: since arguments that are UN-
DEC are “more acceptable” than arguments that are OUT, these justification statuses provide a more
fine-grained notion of acceptability than the distinction between accepted and not accepted. In ad-
dition, more insight in the complexity of detecting these justification statuses could for example be
helpful in developing fast algorithms. Furthermore, we will use the complexities of OUT- and UN-
DEC-JUSTIFICATION later for finding the complexities of OUT- and UNDEC-STABILITY (Section 4) and
OUT- and UNDEC-RELEVANCE (Section 5). We will therefore provide complexity proofs for these types
of JUSTIFICATION under GR, CP, ST and PR semantics. Our strategy in proving these complexities is
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Fig. 6. Illustration of the argumentation frameworks that are used in transformations between justification problem in-
stances used for proving Lemma 2. The figure illustrates three argumentation frameworks: AF = 〈A,R〉 (first column),
AF′ = 〈A∪{A′},R∪{(A, A′), (A′, A′)}〉 (second column) and AF′′ = 〈A∪{A′, B, C},R∪{(A, B), (A, C), (B, C), (C, A′)}〉
(third column). The dotted, rounded rectangles represent all arguments in A except A. Each of the argumentation frameworks
is displayed three times, corresponding to different extensions of AF: the first row, where A is coloured yellow, represents ex-
tensions that do not contain A or any attacker of A (“A is UNDEC”). The second row, where A is green and with boldface font,
represents extensions containing A (“A is IN”). Finally, the third row, where A is red and with italic font, represents extensions
containing some attacker of A (“A is OUT”). The colours and typesetting refer to the justification statuses of arguments, where
green and boldface font stands for IN; yellow and regular font for UNDEC and red and italic font for OUT.

to relate them to the complexities of IN-JUSTIFICATION and using existing results from the complexity
of acceptance problems. Short proofs will be given directly after the lemmas and propositions, whereas
we provide sketches for longer proofs; the full proofs can be found in Appendix A. We start with a
lemma for JUSTIFICATION that shows that IN-JUSTIFICATION and OUT-JUSTIFICATION are in the same
complexity class:

Lemma 1 (Justification status IN and OUT). For any given σ ∈ {GR, CP, PR, ST} and c ∈ {sceptical,
credulous}, the complexity of σ -c-OUT-JUSTIFICATION equals the complexity of σ -c-IN-JUSTIFICATION.

Proof. Let AF = 〈A,R〉 be an AF and A ∈ A an argument. Now construct A′ as A ∪ {B} (where
B /∈ A) and R′ = R ∪ {(A, B)}; let AF′ = 〈A′,R′〉. Then A is σ -c-OUT in AF iff B is σ -c-IN in AF′;
in addition, A is σ -c-IN in AF iff B is σ -c-OUT in AF′. �

Contrary to OUT-JUSTIFICATION, UNDEC-JUSTIFICATION is not necessarily in the same com-
plexity class as IN-JUSTIFICATION. However, under GR, CP and PR semantics, there is another
relation, as we will show in Lemma 3.2 Before we can do so, we prove relations between
credulous-IN- and sceptical-UNDEC-JUSTIFICATION, as well as between credulous-UNDEC- and
sceptical-IN-JUSTIFICATION, in the following lemma. The transformations used in this lemma are il-
lustrated in Fig. 6.

Lemma 2 (Complementary relation IN- and UNDEC-JUSTIFICATION). For any given σ ∈ {GR, CP, PR},
for each argumentation theory AF = 〈A,R〉 and argument A ∈ A, each of the following holds:

(1) A is σ -credulous-IN in AF iff A′ is not σ -sceptical-UNDEC in 〈A∪ {A′},R∪ {(A, A′), (A′, A′)}〉;
(2) A is σ -sceptical-IN in AF iff A′ is not σ -credulous-UNDEC in 〈A∪ {A′},R∪ {(A, A′), (A′, A′)}〉;
(3) A is σ -credulous-UNDEC in AF iff A′ is not σ -sceptical-IN in 〈A∪{A′, B, C},R∪{(A, B), (A, C),

(B, C), (C, A′)}〉; and

2This relation does not exist for ST semantics as arguments cannot be ST-credulous-UNDEC. We will prove the complexity
of ST-credulous-, ST-sceptical-existent- and ST-sceptical-JUSTIFICATION later in this section.
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(4) A is σ -sceptical-UNDEC in AF iff A′ is not σ -credulous-IN in 〈A∪{A′, B, C},R∪{(A, B), (A, C),

(B, C), (C, A′)}〉.

Proof sketch. We give the proof for the first item here. For full proofs of all items, we refer to Ap-
pendix A. Consider an arbitrary semantics σ ∈ {GR, CP, PR}, argumentation theory AF = 〈A,R〉 and
argument A ∈ A. Construct AF′ = 〈A ∪ {A′},R ∪ {(A, A′), (A′, A′)}〉; for an illustration, see the first
and second columns of Fig. 6.

⇒ Suppose that A is σ -credulous-IN in AF: then there is some σ -extension S of AF containing A. Note
that S also must be a σ -extension of AF′: all arguments in A attacking attackers of A are still
in A ∪ {A′} and S ∪ {A′} is not a σ -extension as it is not conflict-free. Then there exists some
σ -extension (i.e. S) of AF′ in which A′ is attacked by S, so A′ is not σ -sceptical-UNDEC in AF′.

⇐ Suppose that A′ is not σ -sceptical-UNDEC in AF′; then there exists some σ -extension S of AF′ such
that either A′ ∈ S or some argument attacking A′ is in S. Given that A′ is self-attacking, A′ /∈ S,
so A′ is attacked by some argument in S, which can only be A. Furthermore note that S is also
a σ -extension of AF, since the arguments that are acceptable w.r.t. S in AF are exactly the same
as the arguments acceptable w.r.t. S in AF′. To conclude, there exists some σ -extension (i.e. S) of
AF in which A ∈ S, so A is σ -credulous-IN in AF. �

Lemma 2 is used in the following lemma to show that credulous-IN-JUSTIFICATION and sceptical-
UNDEC-JUSTIFICATION are in complementary complexity classes, as well as credulous-UNDEC-
JUSTIFICATION and sceptical-IN-JUSTIFICATION, under GR, CP and PR semantics.

Lemma 3 (Complexities UNDEC-JUSTIFICATION). For any given σ ∈ {GR, CP, PR}:
(1) If the complexity of σ -credulous-IN-JUSTIFICATION is C, then the complexity of σ -sceptical-

UNDEC-JUSTIFICATION is co-C; and
(2) If the complexity of σ -sceptical-IN-JUSTIFICATION is C, then the complexity of σ -credulous-

UNDEC-JUSTIFICATION is co-C.

Proof sketch. We give a proof sketch for the first item here and refer to the full proofs for both items to
Appendix A. The first item can be proved by two reductions:

• Each instance I1 = (〈A,R〉, A) of σ -credulous-IN-JUSTIFICATION can, in polynomial time, be
converted to an instance I2 = (〈A ∪ {A′},R ∪ {(A, A′), (A′, A′)}〉, A′) of σ -sceptical-UNDEC-
JUSTIFICATION where, by Lemma 2 item 1, I1 is a positive instance iff I2 is a negative instance.

• Similarly, each instance I1 = (〈A,R〉, A) of σ -sceptical-UNDEC-JUSTIFICATION can, in polyno-
mial time, be converted to an instance I2 = (〈A∪{A′, B, C},R∪{(A, B), (A, C), (B, C), (C, A′)}〉,
A′) of σ -credulous-IN-JUSTIFICATION where, by Lemma 2 item 4, I1 is a positive instance iff I2 is
a negative instance. �

Using Lemma 3, we can now directly derive justification statuses for UNDEC-JUSTIFICATION under
CP, GR and PR semantics in Propositions 1, 2 and 3.

Proposition 1. CP-credulous-UNDEC-JUSTIFICATION, GR-credulous-UNDEC-JUSTIFICATION and GR-
sceptical-UNDEC-JUSTIFICATION are P-complete.
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Proof. This follows directly from Lemma 3 in combination with P-completeness of CP-sceptical-
IN-JUSTIFICATION, GR-sceptical-IN-JUSTIFICATION and GR-credulous-IN-JUSTIFICATION [10] and the
fact that P = CoP. �

Proposition 2. CP-sceptical-UNDEC-JUSTIFICATION and PR-sceptical-UNDEC-JUSTIFICATION are
CoNP-complete.

Proof. This follows directly from Lemma 3 and the fact that CP-credulous-IN-JUSTIFICATION and PR-
credulous-IN-JUSTIFICATION are NP-complete [8,9]. �

Proposition 3. PR-credulous-UNDEC-JUSTIFICATION is �
p

2 -complete.

Proof. This follows directly from Lemma 3 and the fact that PR-sceptical-IN-JUSTIFICATION is �
p

2 -
complete [11]. �

For ST semantics, the situation is different, since for each ST extension S, each argument is either in
S or attacked by some argument in S. In the remainder of this section, we give the complexity results of
UNDEC-JUSTIFICATION for ST semantics.

Proposition 4. ST-credulous-UNDEC-JUSTIFICATION and ST-sceptical-existent-UNDEC-JUSTIFICA-
TION are trivial.

Proof. In each ST extension S, each argument is either in S or attacked by some argument in S.
Consequently, each instance of ST-credulous-UNDEC-JUSTIFICATION or ST-sceptical-existent-UNDEC-
JUSTIFICATION is False. �

In addition, an argument can only be ST-sceptical-UNDEC in a given argumentation framework AF if
AF does not have any ST extension.

Proposition 5. ST-sceptical-UNDEC-JUSTIFICATION is CoNP-complete.

Proof. For each AF 〈A,R〉 and argument A ∈ A, A is ST-sceptical-UNDEC in 〈A,R〉 iff no stable
extension exists for 〈A,R〉. The problem of deciding if a given AF has a stable extension is NP-complete
[9], so the complementary problem of deciding if an AF has no stable extension is CoNP-complete. �

At this point, we have studied the complexity of the JUSTIFICATION problem for GR, CP, PR and ST

semantics, for sceptical and credulous (and sceptical-existent of ST semantics) acceptance and labels
IN, OUT and UNDEC. These results are summarised in Table 2. In the following sections, we will see
that these definitions and complexity results can be used for defining and studying the complexity of the
stability and relevance problems.

4. Stability

In this section, we will formally define stability and study its complexity. Stability can be seen as a
dynamic variant of justification, defined on incomplete argumentation frameworks: whereas the notion of
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Table 2

Overview of all complexity results related to justification. If a reference is specified, this complexity result is trivial from
an earlier result in the literature. New results are printed bold; we refer to the corresponding proposition by “P” and the
proposition number. Full proofs for each of the propositions are presented in the appendix. The complexities for IN- and
OUT-JUSTIFICATION are the same; this follows from Lemma 1

Justification status j Complexity
j -JUSTIFICATION

ST-credulous-IN/OUT NP-c [8,9]
ST-credulous-UNDEC Trivial (no) P4
ST-sceptical-IN/OUT CoNP-c [9]
ST-sceptical-UNDEC CoNP-c P5
ST-sceptical-existent-IN/OUT DP-c [12]
ST-sceptical-existent-UNDEC Trivial (no) P4

CP-credulous-IN/OUT NP-c [8,9]
CP-credulous-UNDEC P-c P1
CP-sceptical-IN/OUT P-c [10]
CP-sceptical-UNDEC CoNP-c P2

Justification status j Complexity
j -JUSTIFICATION

GR-credulous-IN/OUT P-c [10]
GR-credulous-UNDEC P-c P1
GR-sceptical-IN/OUT P-c [10]
GR-sceptical-UNDEC P-c P1

PR-credulous-IN/OUT NP-c [8,9]
PR-credulous-UNDEC �

p
2 -c P3

PR-sceptical-IN/OUT �
p
2 -c [11]

PR-sceptical-UNDEC CoNP-c P2

justification only takes certain arguments and attacks into account, the notion of stability also considers
arguments and attacks for which their presence is still uncertain. Whereas justification status is defined
on arguments in an abstract argumentation framework, stability status is defined on certain arguments in
an incomplete argumentation framework. Informally, a certain argument is stable if its justification is the
same in all completions of the IAF. In the definition below, we define j -stability based on j -justification,
where j can be any justification status considered in the previous section: j ∈ {GR, CP, PR, ST} ×
{sceptical, credulous, sceptical-existent} × {IN, OUT, UNDEC}.
Definition 8 (Stability on IAFs). Given an IAF I = 〈A,A?,R,R?〉, a certain argument A ∈ A and
some justification status j , A is stable-j w.r.t. I iff A is j in each completion of I.

Example 7 (Stability). We reconsider the incomplete argumentation framework I = 〈A,A?,R,R?〉
from Example 3. The arguments in A are B, C and E. Figure 7 illustrates the complete IN/OUT/UNDEC-
labellings of each of the completions (AF1, . . . , AF8) of I. For each of these eight AFs, each complete
extension is represented by colouring the argument nodes: nodes corresponding to arguments in the
extension are coloured green and with boldface font; arguments attacked by an argument in the exten-
sion are coloured red and with italic font; all other arguments are yellow and with regular font. Note
that for each completion of I, there is at least one complete extension containing E. In other words: E

is stable-CP-credulous-IN. Similarly, for each completion of I, there is at least one preferred and sta-
ble extension containing E, so E is stable-PR-credulous-IN and stable-ST-credulous-IN as well. Under
grounded semantics, E is not stable-IN, since there are completions (such as AF1) for which E is not in
the grounded extension.

For each σ ∈ {GR, CP, PR, ST}, there is no argument that is stable-σ -sceptical-IN, -OUT or -UNDEC.
In practice, this means that a sceptical reasoner interested in one of the arguments in A would require
more information.

Finally recall that stability is not defined for A and D, since they are in A? rather than A. So although
the argument A is in each GR, CP, PR and ST extension in each completion in which the argument
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Fig. 7. Visualisation of the complete IN/OUT/UNDEC-labellings of each of the eight unique completions of I, where the ar-
gumentation framework is repeated for each CP extension. Arguments that are in that extension are coloured green and with
boldface font; argument attacked by some argument in that extension are red and with italic font; and all other arguments are
yellow and with regular font.

exists, it is not stable-GR/CP/PR/ST-sceptical/credulous-IN because there are completions that do not
contain A.3

Note that the notion of stability is strongly related to the notion of necessary acceptance, defined in
Section 2. In fact, for any semantics σ , certain arguments are stable-σ -sceptical-IN if and only if they are
necessarily sceptically accepted (i.e. in each extension of each completion); similarly, certain arguments
are stable-σ -credulous-IN if and only if they are necessarily credulously accepted (i.e. in some extension
of each completion). However, stability provides a more fine-grained notion of (non-)acceptance in
IAFs than necessary acceptance. Using (OUT-)stability, it is, for example, also possible to express that,
in any completion, some certain argument is attacked by an argument (not necessarily the same) in a
σ -extension of that completion.

In the remainder of this section, we present our results on the complexity of the task of identifying a
stability status. The following formulates this task as a decision problem.

j -STABILITY

Given: An incomplete argumentation framework 〈A,A?,R,R?〉, a justification status j and
an argument A ∈ A

Question: Does A’s stability status w.r.t. 〈A,A?,R,R?〉 equal stable-j?

3One may also be interested in an alternative notion of stability for uncertain arguments, which we call existent-stability
here: an uncertain argument A ∈ A? is j -existent-stable w.r.t. some IAF 〈A,A?,R,R?〉 if it has justification status j in all
completions 〈A′,R′〉 such that A ∈ A′. Note that the set of completions 〈A′,R′〉 of 〈A,A?,R,R?〉 such that A ∈ A′ equals
the set of completions of 〈A∪{A},A? \{A},R,R?〉. Therefore, A ∈ A? is j -existent-stable w.r.t. some 〈A,A?,R,R?〉 iff A is
j -stable w.r.t. 〈A∪{A},A? \{A},R,R?〉. Analogously, B ∈ A is j -stable w.r.t. some 〈A,A?,R,R?〉 iff B is j -existent-stable
w.r.t. 〈A \ {B},A? ∪{B},R,R?〉. This implies that the problem of deciding j -existent-stability is in the same complexity class
as the problem of deciding j -stability.
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Next, we give complexity results for variants of the STABILITY problem. We start with relating
IN-STABILITY to necessary (sceptical and credulous) acceptance, as defined in Definition 5 (which was
adapted from [3]).

Lemma 4. For any given σ ∈ {GR, CP, PR, ST} and c ∈ {sceptical, credulous}, the complexity of
σ -c-IN-STABILITY equals the complexity of necessary c acceptance w.r.t. semantics σ .

Proof. This is trivial from Definition 8 of stability and Definition 5 of necessary acceptance. �

We continue with relating IN- and OUT-STABILITY. Similar to what we did for IN- and OUT-
JUSTIFICATION in Lemma 1, we show that the complexity of IN-STABILITY is the same as the com-
plexity of OUT-STABILITY.

Lemma 5. For any given σ ∈ {GR, CP, PR, ST} and c ∈ {sceptical, credulous}, the complexity of
σ -c-OUT-STABILITY equals the complexity of σ -c-IN-STABILITY.

Proof sketch. We prove this by a reduction from σ -c-OUT-STABILITY to σ -c-IN-STABILITY and by a
reduction in the other direction. Below, we give proof sketch; the full proof can be found in Appendix B.

• For each instance (I, A) of the σ -c-OUT-STABILITY problem where I = 〈A,A?,R,R?〉 and
A ∈ A, one can construct I∗ = 〈A∪ {B},A?,R∪ {(A, B)},R?〉, where B /∈ A∪A?. Then (I, A)

is a positive instance of σ -c-OUT-STABILITY iff (I∗, B) is a positive instance of σ -c-IN-STABILITY.
• Similarly, each instance (I, A) of the σ -c-IN-STABILITY problem, where I = 〈A,A?,R,R?〉

and A ∈ A, can be transformed into (I∗, B) where I∗ = 〈A ∪ {B},A?,R ∪ {(A, B)},R?〉 with
B /∈ A∪A?. The instance (I, A) is positive for σ -c-IN-STABILITY iff (I∗, B) is a positive instance
for σ -c-OUT-STABILITY.

From these two reductions, it follows that σ -c-IN-STABILITY and σ -c-OUT-STABILITY have the same
complexity. �

Using Lemma 5, we can show that for any given σ ∈ {GR, CP, PR, ST} and c ∈ {sceptical, credulous},
we can derive the complexity of σ -c-OUT-STABILITY directly from the complexity of σ -c-IN-
STABILITY. In the following lemma, we relate UNDEC-STABILITY for specific semantics with possi-
ble sceptical and credulous acceptance (Definition 6). Similar to Lemma 2, we prove this for GR, CP and
PR semantics but not for ST semantics: the relation does not hold for ST semantics because arguments
cannot be ST-credulous-UNDEC.

Lemma 6 (Complexities UNDEC-STABILITY). For any given σ ∈ {GR, CP, PR}:
(1) If possible credulous acceptance w.r.t. σ semantics is in the complexity class C, then σ -

sceptical-UNDEC-STABILITY is in the complexity class co-C; and
(2) If possible sceptical acceptance w.r.t. σ semantics is in the complexity class C, then σ -

credulous-UNDEC-STABILITY is in the complexity class co-C.

Proof sketch. We only give a proof sketch for the first item here; full proofs of both items are in Ap-
pendix B. This proof consists of two reductions: we show that possible credulous acceptance w.r.t. σ

semantics reduces to the complementary problem of σ -sceptical-UNDEC-STABILITY and the other way
around. The proof strategy is similar to the proof of Lemma 2, illustrated in Fig. 6.



CORRECTED  P
ROOF

D. Odekerken et al. / Justification, stability and relevance in IAFs 15

• Let I1 = (I, A) where I = 〈A,A?,R,R?〉 and A ∈ A. Construct I2 = (I∗, A′) where
I∗ = 〈A ∪ {A′},A?,R ∪ {(A, A′), (A′, A′)},R?〉 and A′ /∈ A ∪ A?. Then I1 is a positive
instance of possible credulous acceptance w.r.t. σ semantics iff I2 is a negative instance of σ -
sceptical-UNDEC-STABILITY.

• Let I1 = (I, A) where I = 〈A,A?,R,R?〉 and A ∈ A. Now let I2 = (I∗, A′) where I∗ =
〈A ∪ {A′, B, C},A?,R ∪ {(A, B), (A, C), (B, C), (C, A′)},R?〉 and none of A′, B and C is in
A ∪ A?. I1 is a positive instance of σ -sceptical-UNDEC-STABILITY iff I2 is a negative instance of
possible credulous acceptance w.r.t. σ semantics. �

The results of Lemma 6 can be used to derive the complexity classes of UNDEC-STABILITY based on
existing results for possible acceptance from [3] for CP, GR and PR semantics.

Proposition 6. GR-sceptical-UNDEC-STABILITY, GR-credulous-UNDEC-STABILITY and CP-credulous-
UNDEC-STABILITY are CoNP-complete.

Proof. This follows directly from Lemma 6 and the fact that possible sceptical acceptance under GR

and CP semantics and possible credulous acceptance under GR semantics are NP-complete [3]. �

Proposition 7. CP-sceptical-UNDEC-STABILITY and PR-sceptical-UNDEC-STABILITY are CoNP-
complete.

Proof. This follows directly from Lemma 6 and the fact that possible credulous acceptance under CP

and PR semantics are NP-complete [3]. �

Proposition 8. PR-credulous-UNDEC-STABILITY is �
p

3 -complete.

Proof. This follows directly from Lemma 6 and the fact that possible sceptical acceptance under PR

semantics is �
p

3 -complete [3]. �

Finally, we turn to ST semantics. Our strategy for proving these complexities is similar to our approach
for the ST-UNDEC-JUSTIFICATION complexity proofs in the previous section.

Proposition 9. ST-sceptical-UNDEC-STABILITY is CoNP-complete.

Proof. The problem is in CoNP, as a negative instance (〈A,A?,R,R?〉, A) can be verified in polyno-
mial time given a certificate (AF′, S) such that AF′ is a completion of 〈A,A?,R,R?〉, A ∈ A and S

is a ST extension of AF′. If S is a ST extension then each argument in A, including A, is either in S or
attacked by S; therefore A cannot be stable-ST-sceptical-UNDEC w.r.t. 〈A,A?,R,R?〉.

For hardness, we can reduce from the CoNP-complete problem ST-sceptical-UNDEC-JUSTIFICATION:
any instance I1 = (〈A,R〉, A) of ST-sceptical-UNDEC-JUSTIFICATION can be solved by solving ST-
sceptical-UNDEC-STABILITY for I2 = (〈A, ∅,R, ∅〉, A). Given that 〈A,R〉 is the only completion of
〈A, ∅,R, ∅〉, I1 is positive iff I2 is positive. �

Proposition 10. ST-credulous-UNDEC-STABILITY and ST-sceptical-existent-UNDEC-STABILITY are
trivial.
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Table 3

Overview of all complexity results related to stability. If a reference is specified, this complexity result is trivial from an earlier
result in the literature. New results are printed bold; we refer to the corresponding proposition by “P” and the proposition
number. Full proofs for each of the propositions are presented in Appendix B. The complexities for IN- and OUT-STABILITY
are the same; this follows from Lemma 5

Justification status j Complexity j -STABILITY

ST-credulous-IN/OUT �
p
2 -c [3]

ST-credulous-UNDEC Trivial (no) P10
ST-sceptical-IN/OUT CoNP-c [3]
ST-sceptical-UNDEC CoNP-c P9
ST-sceptical-existent-IN/OUT �

p
2 -c [3]

ST-sceptical-existent-UNDEC Trivial (no) P10

CP-credulous-IN/OUT �
p
2 -c [3]

CP-credulous-UNDEC CoNP-c P6
CP-sceptical-IN/OUT CoNP-c [3]
CP-sceptical-UNDEC CoNP-c P7

Justification status j Complexity j -STABILITY

GR-credulous-IN/OUT CoNP-c P6
GR-credulous-UNDEC CoNP-c [3]
GR-sceptical-IN/OUT CoNP-c P6
GR-sceptical-UNDEC CoNP-c P6

PR-credulous-IN/OUT �
p
2 -c [3]

PR-credulous-UNDEC �
p
3 -c P8

PR-sceptical-IN/OUT �
p
2 -c [3]

PR-sceptical-UNDEC CoNP-c P7

Fig. 8. Illustration of the IAF I = 〈A,A?,R,R?〉 from Example 3.

Proof. For each argumentation framework AF = 〈A,R〉 such that a ST extension S exists, each argu-
ment in A is either in S or attacked by an argument in S. Therefore, A cannot be ST-credulous-UNDEC or
ST-sceptical-existent-UNDEC in AF. This applies for each AF, including all completions of each possible
IAF, so each instance of ST-credulous-UNDEC-STABILITY and ST-sceptical-existent-UNDEC-STABILITY

must be negative. �

To conclude this section, we have studied the complexity of the STABILITY problem for GR, CP, PR

and ST semantics, for sceptical and credulous (and sceptical-existent for ST semantics) acceptance and
labels IN, OUT and UNDEC. For an overview of the results, we refer to Table 3. In the following section,
we consider the problem of identifying relevance.

5. Relevance

For IAFs in which a given argument is not stable, a natural follow-up question would be: which un-
certainties should be resolved in order to reach a point where the argument is stable? These uncertainties
are relevant to investigate in the given IAF. In this section, we will define the problem of relevance and
study its complexity. First, we give some intuition on the notion of relevance in the context of stability.

Example 8. We return to the IAF I = 〈A,A?,R,R?〉 from Example 3, which is shown in Fig. 8
(which is a repetition of Fig. 2). Suppose that we want to know how we can make the certain argu-
ment C stable-GR-sceptical-IN. In order to do so, we should make sure that argument B is stable-GR-
sceptical-OUT, which can only be the case if it is attacked by argument A. So in order to make sure that
C is stable-GR-sceptical-IN, we need to make sure that argument A is present. In addition, argument
C is attacked by the uncertain argument D. If argument D turns out to be present, then C cannot be
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stable-GR-sceptical-IN as there is no suitable argument to defend C from D under grounded semantics.
Therefore it is relevant to make sure that argument D is absent. To conclude, the two relevant operations
in this case are adding argument A and removing argument D. Note that there is still some uncertainty
left in the resulting IAF: it is still unknown if the attack (C, B) should be present or absent. However,
adding or removing this attack does not influence the GR-sceptical-IN-stability status of C. Therefore,
these operations are not relevant.

The example showed that being certain about the existence of the attack (C, B) does not contribute
anything to the stability status of C in a situation where we already know that A is present and D is
absent: both with and without (C, B), C is stable-GR-sceptical-IN. In general, adding or removing an ar-
gument or attack is only relevant if there is a situation in which this argument or attack is really necessary
to obtain stability. In order to define which uncertainties are relevant to be resolved for obtaining some
stability status, we therefore need some notion of “partial” completions, in which only those uncertain-
ties are resolved that are required for stability. A partial completion of an IAF I is an IAF I ′ such that
a (possibly empty) part of the uncertain elements of I is resolved in I ′, while another (possibly empty)
part of the uncertain elements is still uncertain.4 Next, we formally define such partial completions.

Definition 9 (Partial completion). Given an IAF I = 〈A,A?,R,R?〉, a partial completion is an IAF
I ′ = 〈A′,A?′,R′,R?′〉, where:

• A ⊆ A′ ⊆ A ∪ A?;
• R|(A′∪A?′) ⊆ R′ ⊆ (R ∪ R?)|(A′∪A?′);
• A?′ ⊆ A?;
• R?′ ⊆ R?.

Note that, since I ′ is an IAF, it must still hold that A′∩A?′ = ∅; R′∩R?′ = ∅; R′ ⊆ (A′∪A?′)×(A′∪A?′)
and R?′ ⊆ (A′ ∪ A?′) × (A′ ∪ A?′). We denote all possible partial completions for I by part(I).

In order to be able to apply the semantics of [10], which are defined on AFs, to IAFs, we define the
certain projection of an IAF. This is an AF consisting of only the IAF’s certain arguments and the attacks
between them.

Definition 10 (Certain projection). Given an IAF I = 〈A,A?,R,R?〉, the certain projection cert(I)

is the argumentation framework AF = 〈A,R|A〉.
Example 9 (Partial completions and certain projections). Returning to the IAF I = 〈A,A?,R,R?〉,
given in Example 3 and illustrated in Fig. 8, the following IAFs are some (but not all) examples of
partial completions in part(I):

• I1 = 〈A ∪ A?, ∅,R ∪ R?, ∅〉: all uncertain arguments and attacks have become certain.
• I2 = 〈A, ∅, {(B, C)},∅〉: all uncertain arguments and attacks are removed, as well as all attacks

that are not in the restriction of R to A.
• I3 = 〈A ∪ {A},A?,R,R?〉: the argument A is moved from the uncertain to the certain part. The

argument D and the attack (C, B) are still uncertain.

The partial completions I1, I2 and I3 are illustrated on the left side of Fig. 9. The certain projec-
tion of I1 is 〈A ∪ A?,R ∪ R?〉. For I2, the certain projection is 〈A, {(B, C)}〉. Finally, cert(I3) =
〈{A, B, C, E}, {(A, B), (B, C))}〉. These AFs are illustrated on the right side of Fig. 9.

4Partial completions in this paper are a corrected version of specifications in [18].
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Fig. 9. Three partial completions of our incomplete argumentation framework and their certain projections.

Before proceeding to a formal definition of relevance that matches the intuitions in the example above,
we define the notion of minimal stable partial completions. In this definition, j refers to the justification
status: j ∈ {GR, CP, PR, ST} × {sceptical, credulous, sceptical-existent} × {IN, OUT, UNDEC}.
Definition 11 (Minimal stable-j partial completion). Given an IAF I = 〈A,A?,R,R?〉, a certain
argument A ∈ A and a justification status j , a minimal stable-j partial completion for A w.r.t. I is a
partial completion I ′ in part(I) such that A is stable-j in I ′ and there is no partial completion I ′′ in
part(I) such that A is stable-j in I ′′, I ′′ �= I ′ and I ′ ∈ part(I ′′).

Intuitively, the minimal stable-j partial completion for A is a partial completion in which A is stable-j ,
while A would not be stable-j in any partial completion with more uncertain elements.

Example 10 (Minimal stable-j partial completion). Recall the IAF I = 〈A,A?,R,R?〉 from Exam-
ple 3. Suppose that we are interested to know if argument C is stable-GR-sceptical-IN. I has one minimal
stable-GR-sceptical-IN partial completion, which is I4 = 〈{A, B, C, E},∅, {(A, B), (B, C)},R?〉. Given
that R? contains the attack (C, B) as its only uncertain element, I4 has three partial completions, result-
ing in two unique certain projections. These are 〈{A, B, C, E}, {(A, B), (B, C), (C, B)}〉 (depicted as
AF2 in Fig. 7) and 〈{A, B, C, E}, {(A, B), (B, C)}〉 (depicted as AF4 in the same figure). Since AF2

and AF4 each have a grounded extension – in both cases {A, C, E} – that contains C, C is stable-GR-
sceptical-IN in I4. In addition, note that I4 is minimal in that C would not be stable-GR-sceptical-IN in
partial completions with more uncertain elements:

• Suppose that the presence of argument A is unknown as in I5 = 〈{B, C, E}, {A}, {(A, B), (B, C)},
{(C, B)}〉. Then AF6 and AF8 would be certain projections of partial completions of I5. Since C is
not in the grounded extension of each of these AFs, C is not stable-GR-sceptical-IN w.r.t. I5.

• Alternatively, suppose that the absence of argument D is yet unknown, as in I3, defined earlier as
〈{A, B, C, E}, {D},R, {(C, B)}〉. Then AF1 and AF3 would also be certain projections of partial
completions of I3, where these AFs would not have C in their grounded extensions. Therefore, C

is not stable-GR-sceptical-IN w.r.t. I3.

This shows that I4 is a minimal stable-GR-sceptical-IN partial completion for C w.r.t. I. Note that,
although in this case there is a single minimal stable-GR-sceptical-IN partial completion for C w.r.t. I,
in general there can be multiple minimal stable partial completions.

For example, there are three minimal stable-CP-credulous-UNDEC partial completions for C w.r.t. I:

(1) 〈A∪ {A, D},∅,R, {(C, B)}〉 (having AF1 and AF3 as certain projections of partial completions);
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Fig. 10. Partial completion I4, which is the only minimal stable-GR-sceptical-IN partial completion for C w.r.t. I where
I = 〈{B, C, E}, {A, E},R,R?〉 and I4 = 〈{A, B, C, E},∅, {(A, B), (B, C)},R?〉.

(2) 〈A ∪ {D}, {A},R ∪ {(C, B)},∅〉 (for AF1 and AF5); and
(3) 〈A, {D},R \ {(A, B)} ∪ {(C, B)},∅〉 (for AF5 and AF6).

Using the notion of minimal stable-j partial completions, we can now define j -RELEVANCE.

Definition 12 (j -RELEVANCE). Given an IAF I = 〈A,A?,R,R?〉, an argument A ∈ A, an uncertain
argument or attack U ∈ A? ∪ R? and a justification status j ,

• Addition of U is j -relevant for A w.r.t. I iff there is a minimal stable-j partial completion I ′ =
〈A′,A?′,R′,R?′〉 for A w.r.t. I such that U ∈ A′ ∪ R′; and

• Removal of U is j -relevant for A w.r.t. I iff there is a minimal stable-j partial completion I ′ =
〈A′,A?′,R′,R?′〉 for A w.r.t. I such that U /∈ A′ ∪ A?′ ∪ R′ ∪ R?′.

In other words, addition of an uncertain element U is j -relevant if a minimal stable-j partial comple-
tion can be reached by moving U from the uncertain to the certain part of the IAF I; and removal of U

is j -relevant if completely removing U from I, possibly in combination with other actions, leads to a
minimal stable-j partial completion.

Example 11 (j -RELEVANCE). To illustrate j -relevance, we build on the minimal stable-j partial
completions from Example 10. Recall that I4, illustrated in Fig. 10, is the only minimal stable-GR-
sceptical-IN partial completion for C w.r.t. I where I = 〈{B, C, E}, {A, D},R,R?〉 and I4 =
〈{A, B, C, E},∅, {(A, B), (B, C)},R?〉. Given that A was an uncertain argument in I and is a certain ar-
gument in (the minimal stable-GR-sceptical-IN partial completion) I4, addition of A is GR-sceptical-IN-
relevant for C w.r.t. I. Furthermore, as D was an uncertain argument in I and is no longer present in I4,
the removal of D is GR-sceptical-IN-relevant for C w.r.t. I.

Considering the justification status CP-credulous-UNDEC, there are three minimal stable-CP-credulous-
UNDEC partial completions for C (see Example 10). The CP-credulous-UNDEC-relevant operations are:

• Addition of A;
• Addition of D;
• Addition of (C, B); and
• Removal of A.

Note that this example shows the possibility that both the addition and removal of some uncertain ar-
gument or attack are relevant. This example also demonstrates that performing a relevant action does
not necessarily lead to a stable situation, but may be just the first step in becoming stable. For instance,
the addition of A to I does not yet result in an IAF that is stable-CP-credulous-UNDEC as this IAF still
has at least one completion (to be precise, the completions AF2 and AF4 in Fig. 7) in which C is not
CP-credulous-UNDEC. In order to become stable, an additional relevant action (in this case, the addition
of D) is required.
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Like for justification and stability status, we formulate the identification of j -RELEVANCE as a deci-
sion problem:

j -RELEVANCE of action a
Given: An incomplete argumentation framework 〈A,A?,R,R?〉, a justification status j , an

action a ∈ {addition, removal}, an argument A ∈ A and an uncertain argument or
attack U ∈ A? ∪ R?.

Question: Is a of U j -relevant for A w.r.t. 〈A,A?,R,R?〉?

In the remainder of this section, we study the complexity of relevance for complete, grounded, pre-
ferred and stable semantics. This work builds on initial research in [18], where we proved the complex-
ity of IN-RELEVANCE under grounded semantics. In order to prove complexity of j -RELEVANCE for
each justification status j , we first give proofs for the upper bounds, that is: the membership in a given
complexity class, in Section 5.1. Subsequently, we provide lower bounds, that is: hardness results, for
RELEVANCE under grounded, complete and preferred semantics in Section 5.2. Finally, we prove the
remaining hardness results for stable semantics in Section 5.3.

5.1. Upper bounds

First, we will prove a general upper bound on j -RELEVANCE. In order to do so, we first prove
Lemma 7. This lemma shows that the relevance of adding an uncertain argument can be validated by
checking the justification status of the certain projections of two particular future partial completions.

Lemma 7. Given an IAF I = 〈A,A?,R,R?〉, a certain argument A ∈ A and a justification status j :

(1) For each U ∈ A?, addition of U is j -relevant for A w.r.t. I iff there exists some I ′ =
〈A′, {U},R′, ∅〉 ∈ part(I) such that A is not j in the certain projection of I ′, while A is j

in the certain projection of 〈A′ ∪ {U},∅,R′, ∅〉.
(2) For each U ∈ R?, addition of U is j -relevant for A w.r.t. I iff there exists some I ′ =

〈A′, ∅,R′, {U}〉 ∈ part(I) such that A is not j in the certain projection of I ′, while A is j

in the certain projection of 〈A′, ∅,R′ ∪ {U},∅〉.
(3) For each U ∈ A?, removal of U is j -relevant for A w.r.t. I iff there exists some I ′ =

〈A′, {U},R′, ∅〉 ∈ part(I) such that A is j in the certain projection of I ′, while A is not j

in the certain projection of 〈A′ ∪ {U},∅,R′, ∅〉.
(4) For each U ∈ R?, removal of U is j -relevant for A w.r.t. I iff there exists some I ′ =

〈A′, {U},R′, ∅〉 ∈ part(I) such that A is j in the certain projection of I ′, while A is not j

in the certain projection of 〈A′, ∅,R′ ∪ {U},∅〉.
Proof sketch. Let I = 〈A,A?,R,R?〉 be an incomplete argumentation framework, A ∈ A a certain
argument and j a justification status. We prove both directions of the first item here. For proofs for the
other items, we refer to Appendix C.

⇒ See Fig. 11 for an illustration of the steps in this proof.

(1) Suppose that addition of U ∈ A? is j -relevant for A w.r.t. I.
(2) Then by Definition 12 there is a minimal stable-j partial completion I∗ = 〈A∗,A?∗,R∗,R?∗〉

for A w.r.t. I such that U ∈ A∗.
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Fig. 11. Illustration of the steps in the proof of Lemma 7 item 1 (from left to right). The IAFs used in the proof are depicted
as rectangles; grey arrows between these rectangles represent partial completions – note that not all partial completions of all
IAFs are shown in the figure, but only those that we refer to in the proof. Rectangles corresponding to I ′′′ and I∗′ are coloured
blue, as these are the partial completions of I for which Lemma 7 shows some properties.

(3) Now construct the IAF I ′ from I∗ by moving U from the certain to the uncertain part: I ′ =
〈A∗ \ {U},A?∗ ∪ {U},R∗,R?∗〉.

(4) Given that I∗ was minimal and I∗ ∈ part(I ′), A cannot be stable-j w.r.t. I ′. So there must
be some I ′′ = 〈A′′,A?′′,R′′,R?′′〉 in part(I ′) such that A’s justification status in the certain
projection of I ′′ is not j – note that this means that U is not in A′′ (since A was stable-j in
I∗).

(5) Then A’s justification status in the certain projection of I ′′′ = 〈A′′, {U},R′′, ∅〉 is not j

(because this is the same as the certain projection of I ′′, i.e. 〈A′′,R′′|A′′ 〉).
(6) Next, construct I∗′ = 〈A′′ ∪ {U},∅,R′′, ∅〉 from I ′′′ by moving U from the uncertain part to

the certain part. Since I∗′ is in part(I∗) and A is stable-j in I∗, A must be j in the certain
projection of I∗′.

⇐ Suppose that there exists some I ′ = 〈A′, {U},R′, ∅〉 ∈ part(I) such that A is not j in cert(I ′)
and A is j in cert(〈A′ ∪ {U},∅,R′, ∅〉). Given that 〈A′∪{U},∅,R′, ∅〉 has only one completion
(i.e., its certain projection), A must be stable-j w.r.t. 〈A′ ∪ {U},∅,R′, ∅〉. Consequently, there
must be some minimal stable-j partial completion I ′′ = 〈A′′,A?′′,R′′,R?′′〉 for A w.r.t. I such
that 〈A′ ∪ {U},∅,R′, ∅〉 ∈ part(I ′′). Note that U ∈ A′′: otherwise 〈A′, ∅,R′, ∅〉 would also
be in part(I ′′), which contradicts the assumption that A is not j in cert(〈A′, {U},R′, ∅〉). To
conclude, addition of U is j -relevant for A w.r.t. I. �

In the following proposition, we use the results from Lemma 7 to prove a general upper bound on the
complexity of j -RELEVANCE.
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Proposition 11 (Upper bound j -RELEVANCE). Given an IAF I = 〈A,A?,R,R?〉, a certain argument
A ∈ A, an uncertain argument or attack U ∈ A? ∪ R? and a justification status j , if the problem of
deciding j ’s justification status in a given completion of I is in the complexity class C, then the problem
of deciding if addition or removal of U is j -relevant for A w.r.t. I is in the complexity class NPC .

Proof. In order to validate that a given U ∈ A? ∪ R? is j -relevant for a given A ∈ A, a suitable
polynomial-sized certificate would be some I ′ = 〈A′,A?′,R′,R?′〉 as specified in Lemma 7 (so A?′ ∪
R?′ = {U}). The following procedure can be used to validate that U is j -relevant for A w.r.t. I:

(1) Check in polynomial time if I ′ ∈ part(I) and store the result in r1;
(2) Call the C oracle for finding justification status j to check if A is j w.r.t. 〈A′,R′|A′ 〉 and store the

result in r2;
(3) Let AF ′ = 〈A′ ∪ {U},R′|A′∪{U}〉 if U ∈ A? and AF ′ = 〈A′, (R′ ∪ {U})|A′ 〉 otherwise. Then call

the C oracle to check if A is j w.r.t. AF ′ and store the result in r3.

Then by Lemma 7, addition of U is j -relevant for A w.r.t. I iff r1 ∧¬r2 ∧ r3. Removal of U is j -relevant
for A w.r.t. I iff r1 ∧ r2 ∧ ¬r3. Checking that r1 ∧ ¬r2 ∧ r3 (for addition) or I iff r1 ∧ r2 ∧ ¬r3 (for
removal) can be done in polynomial time. To conclude, the problem of deciding if addition or removal
of U is j -relevant for A w.r.t. I is in NPC . �

Proposition 11 gives a general upper bound that can be exploited to obtain an upper bound for
j -RELEVANCE for all justification statuses for which we know the complexity of j -JUSTIFICATION. For
example, given that ST-credulous-IN-JUSTIFICATION is in NP, both the addition and the removal variants
of ST-credulous-IN-RELEVANCE must be in NPNP, so in �

p

2 . For justification statuses for which the JUS-
TIFICATION problem is in P , like GR-credulous-IN, the RELEVANCE problem is in NP. If the JUSTIFICA-
TION problem is on the second level of the polynomial hierarchy, like PR-sceptical-OUT-JUSTIFICATION,
then the RELEVANCE variant is in �

p

3 . Having proved the upper bounds for all variants of the RELE-
VANCE problem, we turn to the lower bounds in the following two sections.

5.2. Lower bounds for grounded, complete and preferred semantics

In order to prove lower bounds for RELEVANCE under GR, CP and PR semantics, we give reductions
from the complementary problem of STABILITY, to which we will refer as the INSTABILITY problem.5

More formally, for every IAF I = 〈A,A?,R,R?〉, justification status j and certain argument A ∈ A,
the instance (I, A) is negative for j -STABILITY iff it is positive for j -INSTABILITY. In the following
lemma, we provide some relations between INSTABILITY and RELEVANCE that will turn out to be useful
for reductions from INSTABILITY to RELEVANCE for specific justification statuses.

Lemma 8 (Reduction INSTABILITY to RELEVANCE). Given an incomplete argumentation frame-
work I = 〈A,A?,R,R?〉, a certain argument A ∈ A, semantics σ ∈ {GR, CP, PR} and c ∈
{sceptical, credulous}:

(1) Construct I ′ and I ′′ as follows (see Fig. 12), where A′, A′′, U and U ′ are not in A ∪ A?:

• A′ = A ∪ {A′, A′′};
• R′ = R ∪ {(A, A′), (A′, A′′), (U, A′)};

5ST semantics will be covered in Section 5.3.
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Fig. 12. Illustration of the IAFs that are used to show Lemma 8 item 1. The IAFs given on the left are I ′ (upper) and I ′′ (lower).
The rounded rectangle with dotted borders represents the original IAF I (without A and in- and outgoing attacks). The grey
arrows point to certain projections AF1, AF2 and AF3 of partial completions. For each of these AFs, the possible justification
statuses are colour-coded: green arguments with boldface font are IN, yellow arguments are UNDEC and red arguments with
italic font are OUT. Note that, for a given justification status of A, there is only one possible justification status for each of the
additional arguments in {A′, A′′, U,U ′}.

• I ′ = 〈A′,A? ∪ {U},R′,R?〉; and
• I ′′ = 〈A′ ∪ {U},A? ∪ {U ′},R′ ∪ {(U ′, U)},R?〉.
The following three items are equivalent:

(a) A is not stable-σ -c-IN w.r.t. I; and
(b) addition of U is σ -c-IN-relevant for A′′ w.r.t. I ′; and
(c) removal of U ′ is σ -c-IN-relevant for A′′ w.r.t. I ′′.

(2) Let I ′ = 〈A,A? ∪{U},R∪{(U, A)},R?〉 and I ′′ = 〈A∪{U},A? ∪{U ′},R∪{(U, A), (U ′, U)},
R?〉 where U and U ′ are not in A ∪ A?. The following three items are equivalent:

(a) A is not stable-σ -c-OUT w.r.t. I; and
(b) addition of U is σ -c-OUT-relevant for A w.r.t. I ′; and
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(c) removal of U ′ is σ -c-OUT-relevant for A w.r.t. I ′′.

(3) Construct I ′ and I ′′ as follows, where A′, A′′, U and U ′ are not in A ∪ A?:

• A′ = A ∪ {A′, A′′};
• R′ = R ∪ {(A, A′), (A′, A′′), (U, A′), (U, A′′), (U, U)};
• I ′ = 〈A′,A? ∪ {U},R′,R?〉; and
• I ′′ = 〈A′ ∪ {U},A? ∪ {U ′},R′ ∪ {(U ′, U)},R?〉.
The following three items are equivalent:

(a) A is not stable-σ -c-UNDEC w.r.t. I; and
(b) addition of U is σ -c-UNDEC-relevant for A′′ w.r.t. I ′; and
(c) removal of U ′ is σ -c-UNDEC-relevant for A′′ w.r.t. I ′′.

Proof sketch. We only prove the first item here, related to IN justification statuses. For the other items,
see Appendix C. Let I ′ = 〈A ∪ {A′, A′′},A? ∪ {U},R ∪ {(A, A′), (A′, A′′), (U, A′)},R?〉 and let I ′′ =
〈A ∪ {A′, A′′, U},A? ∪ {U ′},R ∪ {(A, A′), (A′, A′′), (U, A′), (U ′, U)},R?〉 (see Fig. 12).

(a) ⇒ (b) and (c) If A is not stable-σ -c-IN w.r.t. I (a) then by Definition 8 of stability there is some
completion AF∗ = 〈A∗,R∗〉 of I in which A is not σ -c-IN. Next, we construct three argumenta-
tion frameworks based on AF, containing the argument A′′, and discuss its status.

• First, construct AF1 = 〈A∗ ∪ {A′, A′′},R∗ ∪ {(A, A′), (A′, A′′)}〉. Given that A′′ is attacked by
A′, which is only attacked by A in AF1, A′′ cannot be σ -c-IN in AF1.

• Next, construct AF2 = 〈A∗ ∪ {A′, A′′, U},R∗ ∪ {(A, A′), (A′, A′′), (U, A′)}〉. A′′ is σ -c-IN in
AF2, since the unattacked argument U attacks the only attacker of A′′ (i.e. A′).

• Let AF3 = 〈A∗ ∪ {A′, A′′, U, U ′},R∗ ∪ {(A, A′), (A′, A′′), (U, A′), (U ′, U)}〉. Given that A is
not σ -c-IN in AF∗, A cannot be σ -c-IN in AF3 either. Since the argument A′′ in AF3 is attacked
by A′, which is only attacked by A, A′′ cannot be σ -c-IN in AF3.

Now item (b) (addition of U is σ -c-IN-relevant for A′′ w.r.t. I ′) follows from Lemma 7, the fact
that the IAF 〈A∗ ∪ {A′, A′′}, {U},R∗ ∪ {(A, A′), (A′, A′′), (U, A′)},∅〉 is in part(I ′) and the
status of A′′ in AF1 and AF2.
Similarly, item (c) (removal of U ′ is σ -c-IN-relevant for A′′ w.r.t. I ′′) follows from Lemma 7,
the fact that the IAF 〈A∗ ∪ {A′, A′′, U}, {U ′},R∗ ∪ {(A, A′), (A′, A′′), (U, A′), (U ′, U)},∅〉 is in
part(I ′′) and the status of A′′ in AF2 and AF3.

(b) ⇒ (a) If addition of U is σ -c-IN-relevant for A′′ w.r.t. I ′ then there is some I∗′ in part(I ′) such
that A′′ is not σ -c-IN in cert(I∗′) = 〈A∗′,R∗′〉. Then A cannot be σ -c-IN in cert(I∗′) either
(since A attacks A′, which is the only attacker of A′′). Now construct AF′ = 〈A′,R′〉 where A′ =
A∗′ \{A′, A′′, U} and R′ = R∗′ \{(A, A′), (A′, A′′), (U, A′)}. Since A is not σ -c-IN in cert(I∗′),
it cannot be σ -c-IN in AF′. Given that AF′ is a completion of I, A cannot be stable-σ -c-IN w.r.t. I.

(c) ⇒ (a) If removal of U ′ is σ -c-IN-relevant for A′′ w.r.t. I ′′ then by Lemma 7, there is some I∗′′ in
part(I ′′) such that A′′ is not σ -c-IN in the certain projection of I∗′′ – without loss of generality,
let this certain projection be AF∗′′ = 〈A∗′′,R∗′′〉. Now construct AF′ = 〈A′,R′〉 where A′ =
A∗′′ \{A′, A′′, U, U ′} and R′ = R∗′′ \{(A, A′), (A′, A′′), (U, A′), (U ′, U)}; since A′′ is not σ -c-IN

in AF∗′, it cannot be that A is σ -c-IN in AF′. Given that AF′ is a completion of I, A cannot be
stable-σ -c-IN w.r.t. I. �
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Using Lemma 8 and the complexity results for STABILITY from Section 4, we obtain lower bounds for
both the addition and removal variants of RELEVANCE under complete, grounded and preferred seman-
tics. For some variants of the RELEVANCE problem, combining the upper bounds identified in Section 5.1
with these lower bounds already yields tight complexity results. We present these results in Propositions
12, 13 and 14. The “easiest” of these problems are NP-complete, as we show in Proposition 12.

Proposition 12. The following problems are NP-complete:

(1) CP-credulous-UNDEC-RELEVANCE;
(2) CP-sceptical-IN-RELEVANCE;
(3) CP-sceptical-OUT-RELEVANCE;
(4) GR-credulous-IN-RELEVANCE;
(5) GR-credulous-OUT-RELEVANCE;
(6) GR-credulous-UNDEC-RELEVANCE;
(7) GR-sceptical-IN-RELEVANCE;
(8) GR-sceptical-OUT-RELEVANCE; and
(9) GR-sceptical-UNDEC-RELEVANCE.

Proof sketch. For each of these problems, membership in NP follows from membership in P of the
corresponding JUSTIFICATION problems [10], listed in Table 1, and Proposition 11 (since NP = NPP).

For NP-hardness, we can give a reduction from the complementary of the corresponding STABILITY

problem, using Lemma 8. Here we only consider item 1; the other items are proved in Appendix C.
By Proposition 6, CP-credulous-UNDEC-STABILITY is CoNP-complete, which means that the comple-
mentary problem CP-credulous-UNDEC-INSTABILITY is NP-complete. By Lemma 8 item 3, each in-
stance I = 〈I, A〉 of CP-credulous-UNDEC-INSTABILITY can be transformed into an instance I ′ such
that I is a positive instance of CP-credulous-UNDEC-INSTABILITY iff I ′ is a positive instance of CP-
credulous-UNDEC-RELEVANCE. �

For each of the four justification statuses j for which we discuss RELEVANCE in Proposition 13, the
j -STABILITY problem is �

p

2 -complete, hence j -INSTABILITY must be �
p

2 -complete and j -RELEVANCE

(both addition and removal) must be �
p

2 -hard. In combination with the upper bound identified in Sec-
tion 5.1, this implies that the corresponding RELEVANCE problems are �

p

2 -complete.

Proposition 13. The following problems are �
p

2 -complete:

(1) CP-credulous-IN-RELEVANCE;
(2) CP-credulous-OUT-RELEVANCE;
(3) PR-credulous-IN-RELEVANCE; and
(4) PR-credulous-OUT-RELEVANCE.

Proof. For each of these problems, membership in �
p

2 follows from NP-completeness of the corre-
sponding JUSTIFICATION problems [8,9] in combination with Proposition 11. For �

p

2 -hardness, we can
give a reduction from the corresponding INSTABILITY problem, using Lemma 8.

(1) Since CP-credulous-IN-STABILITY is �
p

2 -complete (by Lemma 4 and [3, Theorem 24]), the
complementary problem (CP-credulous-IN-INSTABILITY) is �

p

2 -complete. By Lemma 8 item 1,
each instance I = 〈I, A〉 of CP-credulous-IN-INSTABILITY can be transformed into an instance
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I ′ = 〈I ′, A′′, U〉 (for addition) or I ′ = 〈I ′′, A′′, U ′〉 (for removal) such that I is a positive instance
of CP-credulous-IN-INSTABILITY iff I ′ is a positive instance of CP-credulous-IN-RELEVANCE.

(2) CP-credulous-OUT-STABILITY is �
p

2 -complete (by Lemma 4 and [3, Theorem 24] in combi-
nation with Lemma 5), which means that CP-credulous-IN-INSTABILITY is �

p

2 -complete. By
Lemma 8 item 2, each instance I = 〈I, A〉 of CP-credulous-OUT-INSTABILITY can be trans-
formed into an instance I ′ = 〈I ′, A, U〉 (for addition) or I ′ = 〈I ′′, A, U ′〉 (for removal) such
that I is a positive instance of CP-credulous-OUT-INSTABILITY iff I ′ is a positive instance of
CP-credulous-OUT-RELEVANCE.

(3) Since PR-credulous-IN-STABILITY is �
p

2 -complete (by Lemma 4 and [3, Theorem 24]), the
complementary problem (PR-credulous-IN-INSTABILITY) is �

p

2 -complete. By Lemma 8 item 1,
each instance I = 〈I, A〉 of PR-credulous-IN-INSTABILITY can be transformed into an instance
I ′ = 〈I ′, A′′, U〉 (for addition) or I ′ = 〈I ′′, A′′, U ′〉 (for removal) such that I is a positive instance
of PR-credulous-IN-INSTABILITY iff I ′ is a positive instance of PR-credulous-IN-RELEVANCE.

(4) PR-credulous-OUT-STABILITY is �
p

2 -complete (by Lemma 4 and [3, Theorem 24] in combi-
nation with Lemma 5), which means that PR-credulous-IN-INSTABILITY is �

p

2 -complete. By
Lemma 8 item 2, each instance I = 〈I, A〉 of PR-credulous-OUT-INSTABILITY can be trans-
formed into an instance I ′ = 〈I ′, A, U〉 (for addition) or I ′ = 〈I ′′, A, U ′〉 (for removal) such
that I is a positive instance of PR-credulous-OUT-INSTABILITY iff I ′ is a positive instance of
PR-credulous-OUT-RELEVANCE. �

Similarly, in Proposition 14 we show that PR-credulous-UNDEC-RELEVANCE must be �
p

3 -complete,
as PR-credulous-UNDEC-INSTABILITY is �

p

3 -hard and PR-credulous-UNDEC-JUSTIFICATION is on the
second level of the polynomial hierarchy.

Proposition 14. PR-credulous-UNDEC-RELEVANCE is �
p

3 -complete.

Proof. Membership in �
p

3 follows from �
p

2 -completeness of the corresponding JUSTIFICATION prob-
lem (Proposition 3) in combination with Proposition 11.

For �
p

3 -hardness, we reduce from PR-credulous-UNDEC-INSTABILITY, which is �
p

3 -complete since
the co-problem PR-credulous-UNDEC-STABILITY is �

p

3 -complete (Proposition 8). By Lemma 8 item
3, each instance I = 〈I, A〉 of PR-credulous-UNDEC-INSTABILITY can be transformed into an instance
I ′ = 〈I ′, A′′, U〉 (for addition) or I ′ = 〈I ′′, A′′, U ′〉 (for removal) such that I is a positive instance of PR-
credulous-UNDEC-INSTABILITY iff I ′ is a positive instance of PR-credulous-UNDEC-RELEVANCE. �

For some other variants of the RELEVANCE problem, the strategy used in Propositions 12, 13 and 14
does not yield tight complexity results. For instance, for CP-sceptical-UNDEC-RELEVANCE, using this
strategy we could only derive that the problem is in �

p

2 (because CP-sceptical-UNDEC-JUSTIFICATION

is CoNP-complete by Proposition 2) and that it is NP-hard (because CP-sceptical-UNDEC-STABILITY

is CoNP-complete by Proposition 7). For these variants, we use another approach, based on an al-
ternative reduction: for the sceptical IN- and OUT-RELEVANCE variants, we reduce from credu-
lous UNDEC-INSTABILITY; for the sceptical UNDEC-RELEVANCE variants, we reduce from credulous
IN-INSTABILITY. We will use these reductions to prove the remaining complexities for RELEVANCE

under complete, grounded and preferred semantics in Propositions 15 and 16. In order to use these
reductions, we need the following lemma:
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Lemma 9 (Reduction co-inverted-STABILITY to RELEVANCE). Given an incomplete argumentation
framework I = 〈A,A?,R,R?〉, a certain argument A ∈ A, semantics σ ∈ {GR, CP, PR}:

(1) Construct I ′ and I ′′ as follows, where A′, U and U ′ are fresh arguments not in A ∪ A?:

• A′ = A ∪ {A′};
• R′ = R ∪ {(A, A′), (A′, A′), (U, A′)};
• I ′ = 〈A′,A? ∪ {U},R′,R?〉; and
• I ′′ = 〈A′ ∪ {U},A? ∪ {U ′},R′ ∪ {(U ′, U)},R?〉.
The following items are equivalent:

(a) A is not stable-σ -credulous-IN w.r.t. I; and
(b) addition of U ′ is σ -sceptical-UNDEC-relevant for A′ w.r.t. I ′′; and
(c) removal of U is σ -sceptical-UNDEC-relevant for A′ w.r.t. I ′.

(2) Construct I ′ and I ′′ as follows, where A1, A2, A3, A4, U and U ′ are fresh arguments not in
A ∪ A?:

• A′ = A ∪ {A1, A2, A3, A4};
• R′ = R ∪ {(A, A1), (A, A2), (A1, A2), (A2, A3), (A3, A4), (U, U), (U, A3)};
• I ′ = 〈A′,A? ∪ {U},R′,R?〉; and
• I ′′ = 〈A′ ∪ {U},A? ∪ {U ′},R′ ∪ {(U ′, U)},R?〉.
The following items are equivalent:

(a) A is not stable-σ -credulous-UNDEC w.r.t. I; and
(b) addition of U ′ is σ -sceptical-IN-relevant for A3 w.r.t. I ′′; and
(c) removal of U is σ -sceptical-IN-relevant for A3 w.r.t. I ′; and
(d) addition of U ′ is σ -sceptical-OUT-relevant for A4 w.r.t. I ′′; and
(e) removal of U is σ -sceptical-OUT-relevant for A4 w.r.t. I ′.

Proof idea. The proof for this lemma, given in Appendix C, is structured in the same way as the proof
for Lemma 8. �

In the following two propositions, we will use Lemma 9 to prove the remaining complexities for
RELEVANCE under CP and PR semantics. First, we prove that CP-sceptical-UNDEC-RELEVANCE and
PR-sceptical-UNDEC-RELEVANCE are �

p

2 -complete.

Proposition 15. CP-sceptical-UNDEC-RELEVANCE and PR-sceptical-UNDEC-RELEVANCE are �
p

2 -
complete.

Proof. Membership in �
p

2 follows from CoNP-completeness of the corresponding JUSTIFICATION

problems (Proposition 2) in combination with Proposition 11.
For �

p

2 -hardness and σ ∈ {CP, PR}, we reduce from σ -credulous-IN-INSTABILITY, which is �
p

2 -
complete since the co-problem σ -credulous-IN-STABILITY is �

p

2 -complete (Lemma 4 and the results for
necessary credulous acceptance from [3, Theorem 24]). By Lemma 9 item 1, each instance I = 〈I, A〉
of σ -credulous-IN-INSTABILITY can be transformed into an instance I ′ = 〈I ′, A′′, U〉 (for addition) or
I ′ = 〈I ′′, A′′, U ′〉 (for removal) such that I is a positive instance of σ -credulous-UNDEC-INSTABILITY

iff I ′ is a positive instance of σ -sceptical-UNDEC-RELEVANCE. �
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In Proposition 16 we use Lemma 9 to show that PR-sceptical-IN- and -OUT-RELEVANCE are �
p

3 -hard.
Together with upper bounds from Section 5.1, this implies that PR-sceptical-IN- and -OUT-RELEVANCE

are �
p

3 -complete.

Proposition 16. PR-sceptical-IN-RELEVANCE and PR-sceptical-OUT-RELEVANCE are �
p

3 -complete.

Proof. Membership in �
p

3 follows from �
p

2 -completeness of the corresponding JUSTIFICATION prob-
lems ([11] and Lemma 1) in combination with Proposition 11.

For �
p

3 -hardness, we reduce from PR-credulous-UNDEC-INSTABILITY, which is �
p

3 -complete since
the co-problem PR-credulous-UNDEC-STABILITY is �

p

3 -complete (by Proposition 8 and Lemma 5). By
Lemma 9 item 2, each instance I = 〈I, A〉 of PR-credulous-UNDEC-INSTABILITY can be transformed
into:

(1) an instance I ′ = 〈I ′′, A′′′, U ′〉 such that I is a positive instance of PR-credulous-UNDEC-
INSTABILITY iff I ′ is a positive instance of PR-sceptical-IN-RELEVANCE (for addition); or

(2) an instance I ′ = 〈I ′, A′′′, U〉 such that I is a positive instance of PR-credulous-UNDEC-
INSTABILITY iff I ′ is a positive instance of PR-sceptical-IN-RELEVANCE (for removal); or

(3) an instance I ′ = 〈I ′′, A′′, U ′〉 such that I is a positive instance of PR-credulous-UNDEC-
INSTABILITY iff I ′ is a positive instance of PR-sceptical-OUT-RELEVANCE (for addition); or

(4) an instance I ′ = 〈I ′, A′′, U〉 such that I is a positive instance of PR-credulous-UNDEC-
INSTABILITY iff I ′ is a positive instance of PR-sceptical-OUT-RELEVANCE (for removal). �

At this point, we have proven all complexity results for RELEVANCE under complete, grounded and
preferred semantics as summarised in Table 4.

5.3. Lower bounds for stable semantics

In this section, we will consider the RELEVANCE problems under ST semantics. We will prove that the
IN and OUT variants of these problems are �

p

2 -complete in Proposition 17. For the hardness-proof in this
proposition, we require two transformations from �2-SAT instances into IAFs. Recall from Section 2.3
that the �2-SAT problem is to decide if there is some truth value assignment τX to variables of X

such that for each truth value assignment τY : �[τX, τY ] = False where � is a formula in CNF. The
transformations are given in the following definition:

Definition 13 (Transformations). Let (φ, X, Y ) be an instance of �2-SAT and let � = ∧
i ci and ci =∨

j αj for each clause ci in �, where αj are the literals over X ∪ Y that occur in clause ci . We define
two transformations for this instance. Let:

• A = {xi, xi |xi ∈ X} ∪ {yi, yi |yi ∈ Y } ∪ {ci |ci ∈ φ} ∪ {φ′, φ, φ};
• A? = {gi |xi ∈ X};
• R = {(xi, xi), (gi, xi)|xi ∈ X} ∪ {(yi, yi), (yi, yi)|yi ∈ Y } ∪ {(xk, ci)|xk ∈ ci} ∪ {(xk, ci)|¬xk ∈

ci} ∪ {(yk, ci)|yk ∈ ci} ∪ {(yk, ci)|¬yk ∈ ci} ∪ {(ci, φ
′)|ci ∈ �} ∪ {(φ′, φ), (χ, φ), (φ, φ)}.

A first transformation into an IAF can be constructed as: T1(φ, X, Y ) = 〈A,A? ∪{χ},R, ∅〉, where χ

is a fresh uncertain argument not in A ∪ A?. A second transformation is T2(φ, X, Y ) = 〈A ∪ {χ},A? ∪
{χ},R ∪ {(χ, χ)},∅〉 where χ and χ are not in A ∪ A?.
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Fig. 13. Visualisation of the IAF created for the clauses c1 = x1 ∨ ¬y1 and c2 = y1 ∨ y2 using transformation T1 of Definition
13.

Fig. 14. Visualisation of the IAF created for the clauses c1 = x1 ∨ ¬y1 and c2 = y1 ∨ y2 using transformation T2 of Definition
13.

An example of transformation T1 is illustrated in Fig. 13 for the instance (�, X, Y ) where the formula
� = (x1 ∨¬y1)∧ (y1 ∨y2), X = {x1} and Y = {y1, y2}. Figure 14 shows transformation T2 for the same
�2-SAT instance (�, X, Y ).

In the following lemma, we use the transformations T1 and T2 to identify equivalences between in-
stances of �2-SAT and RELEVANCE.

Lemma 10. Let (φ, X, Y ) be an instance of �2-SAT and let φ = ∧
i ci and ci = ∨

j αj for each clause
ci in φ, where αj are the literals over X ∪ Y that occur in clause ci . Now let I1 = T1(φ, X, Y ) and let
I2 = T2(φ, X, Y ), using the transformations T1 and T2 specified in Definition 13. The following items
are equivalent:

(1) (φ, X, Y ) is a positive instance of �2-SAT;
(2) Removal of χ is ST-sceptical-IN-relevant for φ w.r.t. I1;
(3) Addition of χ is ST-credulous-IN-relevant for φ w.r.t. I1;
(4) Addition of χ is ST-sceptical-IN-relevant for φ w.r.t. I2;
(5) Removal of χ is ST-credulous-IN-relevant for φ w.r.t. I2;
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(6) Removal of χ is ST-sceptical-OUT-relevant for φ w.r.t. I1;
(7) Addition of χ is ST-credulous-OUT-relevant for φ w.r.t. I1;
(8) Addition of χ is ST-sceptical-OUT-relevant for φ w.r.t. I2; and
(9) Removal of χ is ST-credulous-OUT-relevant for φ w.r.t. I2.

Proof sketch. We introduce an auxiliary statement, for which we prove that it equals all of the items
above:

(0) There is some I∗ ∈ part(〈A,A?,R, ∅〉) such that φ is ST-sceptical-IN in its certain projection
AF∗ (where A, A? and R are chosen as in Definition 13).

Using this additional item, we prove these items separately. For brevity, we only show the equivalence
between items 0 and 1 and 0 and 2 here; for full proofs for all equivalences, we refer to Appendix C.

(0) ⇒ (1) Suppose that there is some I∗ ∈ part(〈A,A?,R, ∅〉) such that φ is ST-sceptical-IN in the
certain projection AF∗ = 〈A∗,R∗〉 of I∗. Let τX be an assignment to variables in X such that it
assigns True to all xi ∈ X such that gi ∈ A∗ and False otherwise. Let τY be an arbitrary assignment
to all variables in Y . Given that φ is ST-sceptical-IN in AF∗, for each ST extension S of AF∗, at
least one of the arguments ci must have been in S, so there is at least one clause in the formula �

for which none of the variables was assigned True by τX and τY . Since we chose τY arbitrarily, we
have that (φ, X, Y ) is a positive instance of �2-SAT.

(1) ⇒ (0) Let (φ, X, Y ) be a positive instance of �2-SAT. Then there is some assignment τX to all
variables of X such that for each assignment τY to the variables of Y , �[τX, τY ] is False. Let
G = {gi |xi ∈ X and xi is assigned True by τX}. Construct I∗ = 〈A ∪ G,∅,R|A∪G, ∅〉 and let
AF∗ be its certain projection. Note that I∗ ∈ part(〈A,A?,R, ∅〉). Given that all arguments in
G are unattacked, each ST extension of AF∗ contains all arguments in G. Furthermore, for each
argument x ∈ X, each ST extension of AF∗ contains either x (if x is assigned True by τX) or y

(if x is assigned False by τY ). Additionally, for each argument y ∈ Y , each ST extension of AF∗
contains either y or y. Given that for each assignment τY to the variables of Y , φ[τX, τY ] is False,
it must be that for each ST extension S of this AF, at least one of the clause arguments ci is in S,
so φ′ is attacked by an argument in S; therefore φ ∈ S. Thus, φ is ST-sceptical-IN in AF∗.

(0) ⇒ (2) Suppose that there is some I∗ = 〈A∗,A?∗,R|A∗∪A?∗, ∅〉 in part(〈A,A?,R, ∅〉) such that φ

is ST-sceptical-IN in its certain projection AF∗. This implies that for I ′ = 〈A∗, {χ},R|A∗∪{χ}, ∅〉
it also holds that φ is ST-sceptical-IN in its certain projection AF′ = AF∗ = 〈A∗,R|A∗〉. Note that
I ′ ∈ part(I1). Now consider I ′′ = 〈A∗ ∪ {χ},∅,R|A∗∪{χ}, ∅〉 and its certain projection AF′′. In
AF′′, the argument φ is attacked by the unattacked argument χ , so φ is not ST-sceptical-IN in AF′′.
Then by Lemma 7 item 3, removal of χ is ST-sceptical-IN-relevant for φ w.r.t. I1.

(2) ⇒ (0) If removal of χ is ST-sceptical-IN-relevant for φ w.r.t. I1 then by Lemma 7 item 3 there is
some I ′ = 〈A∗, ∅,R|A∗, ∅〉 in I1 (where χ /∈ A∗, so I ′ ∈ part(〈A,A?,R, ∅〉)) such that φ is
ST-sceptical-IN in cert(I ′). �

The equivalences proven in Lemma 10 are exploited in Proposition 17 to show �
p

2 -completeness of
some of the RELEVANCE instances under ST semantics.

Proposition 17. The following problems are �
p

2 -complete:

• ST-credulous-IN-RELEVANCE;
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• ST-sceptical-IN-RELEVANCE;
• ST-credulous-OUT-RELEVANCE; and
• ST-sceptical-OUT-RELEVANCE.

Proof. From Proposition 11 and [8,9] it follows that these problems are in �
p

2 .
For the hardness proofs, we use Lemma 10.

(1) ST-credulous-IN-RELEVANCE is �
p

2 -hard because �2-SAT can be reduced to this problem:

• For the addition variant, convert a given �2-SAT instance (φ, X, Y ) to the IAF I1 =
T1(φ, X, Y ) and check that addition of χ is ST-credulous-IN-relevant for φ w.r.t. I1; this is
the case iff (φ, X, Y ) is a positive �2-SAT instance (by the equality between item 1 and item 3
of Lemma 10).

• For the removal variant, convert a given �2-SAT instance (φ, X, Y ) to the IAF I2 =
T2(φ, X, Y ) and check that removal of χ is ST-credulous-IN-relevant for φ w.r.t. I2; this is
the case iff (φ, X, Y ) is a positive �2-SAT instance (by the equality between item 1 and item 5
of Lemma 10).

(2) ST-sceptical-IN-RELEVANCE is �
p

2 -hard because �2-SAT can be reduced to this problem: for
addition, convert a given �2-SAT instance (φ, X, Y ) to the IAF I2 = T2(φ, X, Y ) and check that
addition of χ is ST-sceptical-IN-relevant for φ w.r.t. I2; this is the case iff (φ, X, Y ) is a positive
�2-SAT instance (by the equality between item 1 and item 4 of Lemma 10). For removal, the
proof is similar but we use the equality between item 1 and item 2.

(3) ST-credulous-OUT-RELEVANCE is �
p

2 -hard because �2-SAT can be reduced to this problem: for
addition, convert a given �2-SAT instance (φ, X, Y ) to the IAF I1 = T1(φ, X, Y ) and check
that addition of χ is ST-credulous-OUT-relevant for φ w.r.t. I1; this is the case iff (φ, X, Y ) is a
positive �2-SAT instance (by the equality between item 1 and item 7 of Lemma 10). For removal,
the proof is similar but we use the equality between item 1 and item 9.

(4) ST-sceptical-OUT-RELEVANCE is �
p

2 -hard because �2-SAT can be reduced to this problem: for
addition, convert a given �2-SAT instance (φ, X, Y ) to the IAF I2 = T2(φ, X, Y ) and check that
addition of χ is ST-credulous-IN-relevant for φ w.r.t. I2; this is the case iff (φ, X, Y ) is a positive
�2-SAT instance (by the equality between item 1 and item 8 of Lemma 10). For removal, the
proof is similar but we use the equality between item 1 and item 6. �

The problems ST-credulous-UNDEC-RELEVANCE and ST-sceptical-existent-UNDEC-RELEVANCE are
easy, as we show in Proposition 18, because these problems only have negative instances.

Proposition 18. ST-credulous-UNDEC-RELEVANCE and ST-sceptical-existent-UNDEC-RELEVANCE are
trivial.

Proof. For each argumentation framework AF = 〈A,R〉 such that a ST extension S exists, each argu-
ment in A is either in S or attacked by an argument in S. Therefore, A cannot be ST-credulous-UNDEC

or ST-sceptical-existent-UNDEC in AF. This applies for each AF, including all certain projections of all
partial completions of each possible IAF, so each instance of ST-credulous-UNDEC-RELEVANCE and
ST-sceptical-existent-UNDEC-RELEVANCE must be negative. �

Next, we consider the ST-sceptical-UNDEC-RELEVANCE problem.
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Proposition 19. ST-sceptical-UNDEC-RELEVANCE is �
p

2 -complete.

Proof sketch. First, we will show that ST-sceptical-UNDEC-RELEVANCE is in �
p

2 . By Proposition 5,
ST-sceptical-UNDEC-JUSTIFICATION is CoNP-complete. By Proposition 11, this implies that ST-
sceptical-UNDEC-RELEVANCE is in �

p

2 .
For the hardness proof, we use an existing result on the problem of necessary nonempty existence

under ST semantics from [21], which is defined as follows: given an IAF I, does each completion AF′
of I have a nonempty ST extension? It is shown in [21, Theorem 21] that this problem is �

p

2 -hard.
Let I = 〈A,A?,R,R?〉 be an arbitrary instance of the necessary nonempty existence problem under

ST semantics. If A = ∅ then I is a negative instance, because there is a completion AF′ = 〈A′,R′〉 of
I where A′ = ∅, which means that AF′ has no nonempty ST extension. Alternatively, assume that A
contains at least one argument and let A be an arbitrary argument in A. Then we transform I into an
instance (I ′, A, U) of the argument removal variant of the ST-sceptical-UNDEC-RELEVANCE problem,
where:

• U is a fresh uncertain argument, not occurring in A ∪ A?; and
• I ′ = 〈A,A? ∪ {U},R ∪ {(U, B)|B ∈ A ∪ A?},R?〉.

Then I is a positive instance of necessary nonempty existence under ST semantics iff (I ′, A, U) is a
negative instance of ST-sceptical-UNDEC-RELEVANCE – we prove this in Appendix C. This appendix
also contains proofs for the argument addition, attack addition and attack removal variants of the ST-
sceptical-UNDEC-RELEVANCE problem.

Given that the necessary nonempty existence problem under ST semantics is �
p

2 -hard, the comple-
mentary problem of ST-sceptical-UNDEC-RELEVANCE must be �

p

2 -hard. Together with the member-
ship result from the beginning of this proof, this implies that ST-sceptical-UNDEC-RELEVANCE is �

p

2 -
complete. �

The final variants of the RELEVANCE problem are ST-sceptical-existent-IN-RELEVANCE and ST-
sceptical-existent-OUT-RELEVANCE. These are on the second level of the polynomial hierarchy, as we
prove in Proposition 20.

Proposition 20. ST-sceptical-existent-IN-RELEVANCE and ST-sceptical-existent-OUT-RELEVANCE are
�

p

2 -complete.

Proof sketch. Membership in �
p

2 directly follows from the complexity of ST-sceptical-existent-IN-
and -OUT-JUSTIFICATION and Proposition 11, in the following way: ST-sceptical-existent-IN-
JUSTIFICATION is DP-complete by [12, page 92]. By Lemma 1, ST-sceptical-existent-OUT-
JUSTIFICATION is DP-complete as well. Then by Proposition 11 the problems of ST-sceptical-
existent-IN-RELEVANCE and ST-sceptical-existent-OUT-RELEVANCE are in NPDP = �

p

2 ; note that
NPDP ⊆ �

p

2 as any DP query can be answered by two (adaptive) SAT queries.
In order to prove �

p

2 -hardness, we reduce from possible sceptical-existent acceptance under ST se-
mantics (Definition 6), which was proven to be �

p

2 -hard in [3, Theorem 25]. Let (I, A) be an arbitrary
instance of possible sceptical-existent acceptance under ST semantics where I = 〈A,A?,R,R?〉. We
transform this into an instance (I ′, A, U) of ST-sceptical-existent-IN-RELEVANCE where U is a fresh
uncertain argument that is not in A ∪ A? and I ′ = 〈A,A? ∪ {U},R ∪ {(U, U)},R?〉. Then (I, A) is a
positive instance of possible sceptical-existent acceptance under ST semantics iff (I ′, A, U) is a positive
instance of ST-sceptical-existent-IN-RELEVANCE; this is proven in Appendix C.
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Table 4

Overview of all complexity results related to relevance. We refer to the corresponding proposition by “P” and the proposition
number. Full proofs for each of the propositions are presented in the appendix

Justification status j Complexity j -RELEVANCE

ST-credulous-IN/OUT �
p
2 -c P17

ST-credulous-UNDEC Trivial (no) P18
ST-sceptical-IN/OUT �

p
2 -c P17

ST-sceptical-UNDEC �
p
2 -c P19

ST-sceptical-existent-IN/OUT �
p
2 -c P20

ST-sceptical-existent-UNDEC Trivial (no) P18

CP-credulous-IN/OUT �
p
2 -c P13

CP-credulous-UNDEC NP-c P12
CP-sceptical-IN/OUT NP-c P12
CP-sceptical-UNDEC �

p
2 -c P15

Justification status j Complexity j -RELEVANCE

GR-credulous-IN/OUT NP-c P12
GR-credulous-UNDEC NP-c P12
GR-sceptical-IN/OUT NP-c P12
GR-sceptical-UNDEC NP-c P12

PR-credulous-IN/OUT �
p
2 -c P13

PR-credulous-UNDEC �
p
3 -c P14

PR-sceptical-IN/OUT �
p
3 -c P16

PR-sceptical-UNDEC �
p
2 -c P15

For ST-sceptical-existent-OUT-RELEVANCE, we transform an arbitrary instance of possible sceptical-
existent acceptance under ST semantics (I, A) to an instance (I ′′, A, U) of ST-sceptical-existent-OUT-
RELEVANCE, where U is a fresh uncertain argument that is not in A ∪ A?, B is a fresh argument that
is not in A ∪ A? and I ′′ = 〈A ∪ {B},A? ∪ {U},R ∪ {(B, A), (U, U)},R?〉. Then (I, A) is a positive
instance of possible sceptical-existent acceptance under ST semantics iff (I ′′, A, U) is a positive instance
of ST-sceptical-existent-OUT-RELEVANCE. �

This proposition completes our study on complexity for j -RELEVANCE for all justification statuses j

within the scope of this paper. These results, proven in Propositions 12–20, can be found in Table 4.

6. Related work

The computational complexity of various problems defined on argumentation frameworks is well-
studied; see [14] for an overview. Most studies only identify accepted arguments and do not distinguish
other justification statuses. Notable exceptions are [13] and [2], but neither of these works give com-
plexity results for separate statuses, as we do. In [13], the complexity of justification is studied for the
eight justification statuses proposed in [25]. These are related to, but not the same as the justification
statuses that we study: in their work, every subset of {IN, UNDEC, OUT} is a justification status, which
should be interpreted as “there is at least one extension where the argument has this label”. Accordingly,
the justification status {IN} w.r.t. some semantics σ from [25] corresponds to our σ -sceptical-IN justi-
fication status; their {OUT} corresponds to our σ -sceptical-OUT and their {UNDEC} corresponds to our
σ -sceptical-UNDEC justification status. There is however no direct mapping between the other statuses.
As an additional difference, the authors of [13] give an aggregated result for all statuses, whereas we
prove the complexity for each justification status separately. [2] consider the same three justification
statuses as we do, but give complexity results for an aggregation of these statuses: they introduce the no-
tions of determinism, totality and functionality and provide complexity results for determining these for
a given argument. They define an argument as deterministic if has the same label (IN, OUT or UNDEC) in
all extensions. An argument is total if it is IN or OUT in all extensions; arguments are functional if they
are both deterministic and total.
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Complexity studies on problems defined on IAFs emerged more recently. For example, variants of the
verification problem on IAFs are studied in [4]. The problems of stability and relevance differ from the
verification problem as they are defined on arguments rather than sets of arguments. More related is [3]:
the authors study potential and necessary credulous and sceptical acceptance in IAFs, where necessary
sceptical acceptance of a given argument A, for example, means that in each partial completion’s certain
projection, each extension (under a given semantics) contains A. The notions of necessary credulous and
sceptical acceptance are very similar to specific stability problems: in fact, we used results regarding their
complexity for proving the complexity of stable-IN statuses. Finally, the notion of stability, which was
originally defined on structured argumentation frameworks in [23], is transposed to the context of IAFs
in [15] and preliminary complexity results for stability under four semantics are provided. In our work,
we define a more fine-grained notion of stability and provide more precise complexity characterisations.

Our notion of relevance has not been introduced or studied before the early version of this work in [18].
Relevance is related to the notion of influenced sets in e.g. [1], which intuitively are sets of arguments
whose justification status may change after an update. However, this notion is less strict than relevance:
there are situations in which some argument A would be in the influenced set of adding an uncertain
attack (B, C), while addition of (B, C) is not relevant for A. Other work related to relevance is [20]
on the notion of independence in abstract argumentation. Building on the graph-theoretical criterion of
d-separation, the authors introduce independence between argument sets, where the evaluation of one
set of arguments can be independent of the evaluation of another set of arguments if the status of a third
set of arguments is already known. This seems to be related to our notion of relevance, which also can be
seen as a kind of dependence, but in contrast to (ir)relevance, their notion of independence is conditional.
Finally, our notion of relevance is related to work on repairing abstract argumentation frameworks [24].
An AF can be repaired if it is possible to remove (a subset-minimal set of) arguments such that some
argument becomes accepted. It is therefore related to our notion of IN-relevance, but a difference is that
relevance is defined on incomplete argumentation frameworks rather than normal AFs, and therefore
puts a constraint on the arguments that can be removed.

7. Conclusion

We have studied the complexity of detecting stability and relevance in incomplete argumentation
frameworks. First, we redefined stability [15–17,23] on IAFs. Our definition is a more fine-grained
notion than the existing definition on IAFs [15], since it distinguishes between IN, OUT and UNDEC

justification statuses. This distinction is appropriate in, for example, applications in inquiry [17,23],
where a dialogue discussing a given argument should be terminated if more information cannot change
the argument’s (exact) justification status.

As second main contribution of this paper, we performed a complexity analysis for the relevance
problem on incomplete argumentation frameworks. Relevance was introduced before for incomplete
argumentation frameworks in an early version of this work in [18], but that paper did not contain a full
complexity analysis for all relevance statuses considered in this paper. In contrast to the earlier version,
we provide complexity results for complete, preferred and stable semantics and study not only IN-, but
also OUT- and UNDEC-relevance. Returning to the application in inquiry [16,17], the identification of
relevant elements can be used to select the next question, reaching a stable situation in an efficient way.

It is unlikely that the stability and relevance problem itself can be solved efficiently for all inputs: our
complexity analysis revealed that the nontrivial variants of the relevance and stability problems have a



CORRECTED  P
ROOF

D. Odekerken et al. / Justification, stability and relevance in IAFs 35

complexity ranging from the first to the third level of the polynomial hierarchy (cf. Table 1). Interestingly,
even within the same semantics, there are differences in the complexity of UNDEC-STABILITY problems
and the corresponding IN-STABILITY problems – we consider this to be an additional reason to study a
fine-grained notion of stability and relevance.

In order to apply these theoretical concepts in practice, we plan to develop algorithms for evaluating
or estimating stability and relevance in future work. In addition, we will study stability and relevance in
structured argumentation frameworks, such as a dynamic version of ASPIC+, for various semantics.

Appendix A. Proofs justification status

Lemma 2 (Complementary relation IN- and UNDEC-JUSTIFICATION). For any given σ ∈ {GR, CP, PR},
for each argumentation theory AF = 〈A,R〉 and argument A ∈ A, each of the following holds:

(1) A is σ -credulous-IN in AF iff A′ is not σ -sceptical-UNDEC in 〈A∪ {A′},R∪ {(A, A′), (A′, A′)}〉;
(2) A is σ -sceptical-IN in AF iff A′ is not σ -credulous-UNDEC in 〈A∪ {A′},R∪ {(A, A′), (A′, A′)}〉;
(3) A is σ -credulous-UNDEC in AF iff A′ is not σ -sceptical-IN in 〈A∪{A′, B, C},R∪{(A, B), (A, C),

(B, C), (C, A′)}〉; and
(4) A is σ -sceptical-UNDEC in AF iff A′ is not σ -credulous-IN in 〈A∪{A′, B, C},R∪{(A, B), (A, C),

(B, C), (C, A′)}〉.
Proof. Consider an arbitrary semantics σ ∈ {GR, CP, PR}, argumentation theory AF = 〈A,R〉 and
argument A ∈ A. We prove the four items separately.

(1) Construct AF′ = 〈A ∪ {A′},R ∪ {(A, A′), (A′, A′)}〉; for an illustration, see the first and second
columns of Fig. 6.

⇒ Suppose that A is σ -credulous-IN in AF: then there is some σ -extension S of AF containing
A. Note that S also must be a σ -extension of AF′: all arguments in A attacking attackers
of A are still in A ∪ {A′} and S ∪ {A′} is not a σ -extension as it is not conflict-free. Then
there exists some σ -extension (i.e. S) of AF′ in which A′ is attacked by S, so A′ is not
σ -sceptical-UNDEC in AF′.

⇐ Suppose that A′ is not σ -sceptical-UNDEC in AF′; then there exists some σ -extension S of AF′
such that either A′ ∈ S or some argument attacking A′ is in S. Given that A′ is self-attacking,
A′ /∈ S, so A′ is attacked by some argument in S, which can only be A. Furthermore note
that S is also a σ -extension of AF, since the arguments that are acceptable w.r.t. S in AF are
exactly the same as the arguments acceptable w.r.t. S in AF′. To conclude, there exists some
σ -extension (i.e. S) of AF in which A ∈ S, so A is σ -credulous-IN in AF.

(2) Construct AF′ = 〈A ∪ {A′},R ∪ {(A, A′), (A′, A′)}〉.
⇒ Suppose that A is σ -sceptical-IN in AF: A is in each σ -extension of AF. Then A is also in

each σ -extension of AF′, so for each σ -extension S of AF′, A′ is attacked by S. Accordingly,
A′ is not σ -credulous-UNDEC in AF′.

⇐ If A′ is not σ -credulous-UNDEC in AF′ then each σ -extension of AF′ contains an argument
attacking A′, which can only be A. Given that each σ -extension of AF is also a σ -extension
of AF′, A must be in each σ -extension of AF, and therefore is σ -sceptical-IN w.r.t. AF.

(3) Construct AF′ = 〈A ∪ {A′, B, C},R ∪ {(A, B), (A, C), (B, C), (C, A′)}〉; for an illustration, see
the first and third columns of Fig. 6.
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⇒ Suppose that A is σ -credulous-UNDEC in AF: there is some σ -extension S of AF such that
neither A, nor any attacker of A is in S. Given that all arguments in S are acceptable w.r.t.
S and all attackers of A in AF′ are attackers of A in AF, there must be some σ -extension S ′
of AF′ such that S ⊆ S ′. Having that neither A, nor any of its attackers is in S ′, B is not in
S ′ or attacked by any argument in S ′. Then, C is not attacked by any argument in S ′, so A′
cannot be in S ′. This implies that S ′ = S is a σ -extension of AF′ not containing A′, so A′ is
not σ -sceptical-IN in AF′.

⇐ If A′ is not σ -sceptical-IN in AF′ then some σ -extension S of AF′ does not contain A′. This
implies that the arguments A and B are not in S either: otherwise, they would defend A′
against C. So S contains exactly those arguments in A that are acceptable w.r.t. S, which
implies that S is a σ extension of AF as well. Finally note that S cannot attack any argument
in A attacking A: otherwise, such an argument would defend B against A and then B would
be in S. Given that A is not in S, nor attacked by any argument in S, while S is a σ extension
of AF, we derive that A is σ -credulous-UNDEC in AF.

(4) Construct AF′ = 〈A ∪ {A′, B, C},R ∪ {(A, B), (A, C), (B, C), (C, A′)}〉.
⇒ If A is σ -sceptical-UNDEC in AF then no σ -extension of AF contains A or any attacker of

A. This implies that no σ -extension of AF′ would contain A or any of its attackers. Since
each σ -extension of AF′ is complete, it could not contain B or C, and therefore not A′. This
implies that A′ is not σ -credulous-IN in AF′.

⇐ If A′ is not σ -credulous-IN in AF′ then no σ -extension of AF′ contains A′. Because of the
completeness criterion of σ semantics, no σ -extension of AF′ would contain A, B or any
argument in A attacking A. Therefore for each σ -extension S of AF′, all arguments in S are
in A \ {A} and do not attack A. Then no σ -extension of AF can contain A or any attacker of
A either. This implies that A is σ -sceptical-UNDEC in AF. �

Lemma 3 (Complexities UNDEC-JUSTIFICATION). For any given σ ∈ {GR, CP, PR}:
(1) If the complexity of σ -credulous-IN-JUSTIFICATION is C, then the complexity of σ -sceptical-

UNDEC-JUSTIFICATION is co-C; and
(2) If the complexity of σ -sceptical-IN-JUSTIFICATION is C, then the complexity of σ -credulous-

UNDEC-JUSTIFICATION is co-C.

Proof. We prove these two items separately:

(1) The first item can be proved by two reductions:

• Each instance I1 = (〈A,R〉, A) of σ -credulous-IN-JUSTIFICATION can, in polynomial
time, be converted to an instance I2 = (〈A ∪ {A′},R ∪ {(A, A′), (A′, A′)}〉, A′) of σ -
sceptical-UNDEC-JUSTIFICATION where, by Lemma 2 item 1, I1 is a positive instance iff
I2 is a negative instance. So σ -credulous-IN-JUSTIFICATION reduces to σ -sceptical-UNDEC-
JUSTIFICATION.

• Similarly, each instance I1 = (〈A,R〉, A) of σ -sceptical-UNDEC-JUSTIFICATION can, in poly-
nomial time, be converted to an instance I2 = (〈A ∪ {A′, B, C},R ∪ {(A, B), (A, C), (B, C),

(C, A′)}〉, A′) of σ -credulous-IN-JUSTIFICATION where, by Lemma 2 item 4, I1 is a posi-
tive instance iff I2 is a negative instance. So σ -sceptical-UNDEC-JUSTIFICATION reduces to
σ -credulous-IN-JUSTIFICATION.
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(2) The second item can be proved by two other reductions:

• Each instance I1 = (〈A,R〉, A) of σ -sceptical-IN-JUSTIFICATION can, in polynomial
time, be converted to an instance I2 = (〈A ∪ {A′},R ∪ {(A, A′), (A′, A′)}〉, A′) of σ -
credulous-UNDEC-JUSTIFICATION where, by Lemma 2 item 2, I1 is a positive instance iff
I2 is a negative instance. So σ -sceptical-IN-JUSTIFICATION reduces to σ -credulous-UNDEC-
JUSTIFICATION.

• Similarly, each instance I1 = (〈A,R〉, A) of σ -credulous-UNDEC-JUSTIFICATION can, in
polynomial time, be converted to an instance I2 = (〈A ∪ {A′, B, C},R ∪ {(A, B), (A, C),

(B, C), (C, A′)}〉, A′) of σ -sceptical-IN-JUSTIFICATION where, by Lemma 2 item 3, I1 is a
positive instance iff I2 is a negative instance. So σ -credulous-UNDEC-JUSTIFICATION reduces
to σ -sceptical-IN-JUSTIFICATION. �

Appendix B. Proofs stability

Lemma 5. For any given σ ∈ {GR, CP, PR, ST} and c ∈ {sceptical, credulous}, the complexity of
σ -c-OUT-STABILITY equals the complexity of σ -c-IN-STABILITY.

Proof. We prove this by a reduction from σ -c-OUT-STABILITY to σ -c-IN-STABILITY and by a reduction
in the other direction.

• First, consider an arbitrary instance (I, A) of the σ -c-OUT-STABILITY problem where I =
〈A,A?,R,R?〉 and A ∈ A. Construct I∗ = 〈A∪ {B},A?,R∪ {(A, B)},R?〉, where B /∈ A∪A?.

∗ If the instance (I, A) is positive, then A is stable-σ -c-OUT in I. Let AF∗′ = 〈A∗′,R∗′〉 be an
arbitrary completion of I∗. Note that 〈A∗′ \ {B},R∗′ \ {(A, B)}〉 must be a completion of I
where A is σ -c-OUT. Then A must also be σ -c-OUT in AF∗′, which implies that B is σ -c-IN

in AF∗′. Generalising over all completions of I∗, we derive that B is stable-σ -c-IN w.r.t. I∗. So
(I∗, B) is a positive instance of σ -c-IN-STABILITY.

∗ Alternatively, the instance is negative: A is not stable-σ -c-OUT in I. Then there is some comple-
tion AF′ = 〈A′,R′〉 of I such that A is not σ -c-OUT in AF′. Construct AF∗′ = 〈A′ ∪ {B},R′ ∪
{(A, B)}〉 and note that AF∗′ is a completion of I∗. Since A was not σ -c-OUT in AF′, it cannot be
σ -c-OUT in AF∗′ either. As a consequence, B is not σ -c-IN in AF∗′, hence (I∗, B) is a negative
instance of σ -c-IN-STABILITY.

To conclude, σ -c-OUT-STABILITY can be reduced to σ -c-IN-STABILITY.
• Now, consider an arbitrary instance (I, A) of the σ -c-IN-STABILITY problem where I =

〈A,A?,R,R?〉 and A ∈ A. Construct I∗ = 〈A ∪ {B},A?,R ∪ {(A, B)},R?〉 with B /∈ A ∪ A?.

∗ If the instance (I, A) is positive, then A is stable-σ -c-IN in I. Let AF∗′ = 〈A∗′,R∗′〉 be an
arbitrary completion of I∗. Note that 〈A∗′ \ {B},R∗′ \ {(A, B)}〉 must be a completion of I
where A is σ -c-IN. Then A must also be σ -c-IN in AF∗′, which implies that B is σ -c-OUT in
AF∗′. Generalising over all completions of I∗, we derive that B is stable-σ -c-OUT w.r.t. I∗. So
(I∗, B) is a positive instance of σ -c-OUT-STABILITY.

∗ Alternatively, the instance is negative: A is not stable-σ -c-IN in I. Then there is some completion
AF′ = 〈A′,R′〉 of I such that A is not σ -c-IN in AF′. Construct AF∗′ = 〈A′∪{B},R′∪{(A, B)}〉
and note that AF∗′ is a completion of I∗. Since A was not σ -c-IN in AF′, it cannot be σ -c-IN in
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AF∗′ either. As a consequence, B is not σ -c-OUT in AF∗′, hence (I∗, B) is a negative instance of
σ -c-OUT-STABILITY.

To conclude, we have also shown that σ -c-IN-STABILITY can be reduced to σ -c-OUT-STABILITY.

From these two reductions, it follows that σ -c-IN-STABILITY and σ -c-OUT-STABILITY have the same
complexity. �

Lemma 6 (Complexities UNDEC-STABILITY). For any given σ ∈ {GR, CP, PR}:
(1) If possible credulous acceptance w.r.t. σ semantics is in the complexity class C, then σ -

sceptical-UNDEC-STABILITY is in the complexity class co-C; and
(2) If possible sceptical acceptance w.r.t. σ semantics is in the complexity class C, then σ -

credulous-UNDEC-STABILITY is in the complexity class co-C.

Proof. We prove the two items of this lemma separately.

(1) The proof for the first item consists of two reductions: we show that possible credulous acceptance
w.r.t. σ semantics reduces to the complementary problem of σ -sceptical-UNDEC-STABILITY and
the other way around.

• Let I1 = (I, A) be an instance of possible credulous acceptance w.r.t. σ semantics
where I = 〈A,A?,R,R?〉 and A ∈ A. Construct I2 = (I∗, A′), an instance of σ -
sceptical-UNDEC-STABILITY, where I∗ = 〈A ∪ {A′},A?,R ∪ {(A, A′), (A′, A′)},R?〉 and
A′ /∈ A ∪ A?. For an illustration, see the first and second columns in Fig. 15. I1 is a positive
instance iff I2 is a negative instance, as we show next:
⇒ Suppose that I1 is positive: I has some completion 〈A′,R′〉 for which there is a σ extension

S containing A. Then S is also a σ extension of AF′ = 〈A′∪{A′},R′∪{(A, A′), (A′, A′)}〉,
so A is not σ -sceptical-UNDEC in AF′. Note that AF′ is a completion of I∗, so A′ is not
stable-σ -sceptical-UNDEC w.r.t. I∗. Therefore, I2 is a negative instance.

⇐ Suppose that I2 is negative: there is some completion 〈A ∪ A∗′ ∪ {A′},R ∪ R∗′ ∪
{(A, A′), (A′, A′)}〉 of I∗ with some σ extension S such that S either contains A′ or some
argument attacking A′. S cannot contain A′ as S must be conflict-free under σ semantics,
so there must be some argument attacking A′ in S, which can only be A. Since S is also a
σ extension of 〈A ∪ A∗,R ∪ R∗〉, which is a completion of I ′, I1 is a positive instance of
possible credulous acceptance w.r.t. σ semantics.

Fig. 15. Illustration of the incomplete argumentation frameworks that are used in transformations between stability problem
instances that are used for proving Lemma 6. This figure is a repetition of Fig. 6 that was used for proving Lemma 2, but now
the dotted, rounded rectangles represent the part of the incomplete argumentation framework except (attacks related to) A.
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• Let I1 = (I, A) be an instance of σ -sceptical-UNDEC-STABILITY where I = 〈A,A?,R,R?〉
and A ∈ A. Now let I2 = (I∗, A′) be an instance of possible credulous acceptance w.r.t. σ

semantics, where I∗ = 〈A ∪ {A′, B, C},A?,R ∪ {(A, B), (A, C), (B, C), (C, A′)},R?〉 and
none of A′, B and C is in A ∪A?. For an illustration, see the first and third columns in Fig. 15.
We claim that I1 is a positive instance iff I2 is a negative instance:
⇒ Suppose that I1 is positive: there is no completion of I such that A nor any argument

attacking A is in any σ extension of that completion. Now suppose towards a contradiction
that A′ is possibly credulously accepted w.r.t. I∗. In other words, there is some completion
〈A∗′,R∗′〉 of I∗ which has some extension S containing A′. Given that A′ is only attacked
by C in 〈A∗′,R∗′〉 and C is attacked by A and B (and σ is complete), it must be that either
A or B is in S. In case B is in S, it must be defended against A, so some argument attacking
A must be in S. But that would imply that there is some completion of I having some σ

extension S ′ such that either A ∈ S ′ or some argument attacking A is in S ′, which would
contradict our assumption. So A′ is not possibly credulously accepted w.r.t. I∗. Therefore,
I2 is a negative instance.

⇐ Suppose that I2 is negative: no completion of I∗ has a σ extension that contains A′. Towards
a contradiction, suppose that I1 is negative as well. Then there is some completion 〈A′,R′〉
of I that has some σ extension S containing A or an argument attacking A.

∗ First suppose that A ∈ S. Now consider the argumentation framework AF∗′ = 〈A′ ∪
{B, C, A′},R′ ∪ {(A, B), (A, C), (B, C), (C, A′)}〉 and the set S∗′ = S ∪ {A′}. Given
that S is a σ extension of 〈A′,R′〉, it must be that S∗′ is a σ extension of AF∗′.

∗ Alternatively, suppose that some argument attacking A is in S. Now consider the argu-
mentation framework AF∗′ = 〈A′ ∪ {B, C, A′},R′ ∪ {(A, B), (A, C), (B, C), (C, A′)}〉
and the set S∗′ = S ∪ {B, A′}. Given that S is a σ extension of 〈A′,R′〉, it must be that
S∗′ is a σ extension of AF∗′.

In both cases, there is a completion of I∗ with a σ extension that contains A′. But this
contradicts our assumption that I2 is negative, so I1 must have been positive.

(2) The proof for the second item is similar and consists of two reductions as well.

• Let I1 = (I, A) be an instance of possible sceptical acceptance w.r.t. σ semantics
where I = 〈A,A?,R,R?〉 and A ∈ A. Let I2 = (I∗, A′) be an instance of σ -
credulous-UNDEC-STABILITY, where I∗ = 〈A ∪ {A′},A?,R ∪ {(A, A′), (A′, A′)},R?〉 and
A′ /∈ A ∪ A?. For an illustration, see the first and second columns in Fig. 15. I1 is positive iff
I2 is negative:
⇒ If I1 is positive then there exists some completion 〈A′,R′〉 of I such that each of its σ

extensions contains A. Each σ extension of AF′ = 〈A′ ∪ {A′},R′ ∪ {(A, A′), (A′, A′)}〉
is also a σ extension of 〈A′,R′〉, so A′ is not σ -credulous-UNDEC in AF′. Since AF′ is
a completion of I∗, A′ is not stable-σ -credulous-UNDEC w.r.t. I∗, hence I2 is a negative
instance.

⇐ If I2 is negative then there exists some completion AF∗ = 〈A ∪ A∗ ∪ {A′},R ∪ R∗ ∪
{(A, A′), (A′, A′)}〉 of I∗ such that each σ extension contains some argument attacking
A′, which can only be A. Since each σ extension of AF′ = 〈A ∪ A∗,R ∪ R∗〉 is also a σ

extension of AF∗, A must be σ -sceptical-IN in AF′. Since AF′ is a completion of I, I1 is a
positive instance of possible sceptical acceptance w.r.t. σ semantics.
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• Let I1 = (I, A) be an instance of σ -sceptical-UNDEC-STABILITY where I = 〈A,A?,R,R?〉
and A ∈ A. Now let I2 = (I∗, A′) be an instance of possible credulous acceptance w.r.t. σ

semantics, where I∗ = 〈A ∪ {A′, B, C},A?,R ∪ {(A, B), (A, C), (B, C), (C, A′)},R?〉 and
none of A′, B and C is in A ∪A?. For an illustration, see the first and third columns in Fig. 15.
I1 is a positive instance iff I2 is a negative instance:
⇒ If I1 is positive then for each completion of I and for each σ extension S of that completion,

A is not in S and not attacked by any argument in S. If I2 would be positive as well,
then there would be some completion AF∗′ of I∗ such that A′ is in some σ extension
S. Then, by completeness of σ , either A or B (and therefore an argument attacking A)
must have been in S. This implies that A was not σ -sceptical-UNDEC (but -IN/-OUT) in
AF∗′ = 〈A ∪ A∗′ ∪ {A′, B, C},R ∪ R∗′ ∪ {(A, B), (A, C), (B, C), (C, A′)}〉. However,
then S \ {A′, B, C} must have been a σ extension of AF′ where AF′ = 〈A∪A∗′,R∪R∗′〉,
which is a completion of I. This contradicts our earlier assumption that I1 is positive, so
I2 must have been negative.

⇐ If I2 is a negative instance then for each completion of I∗ and for each σ extension S in
that completion, A′ was not in S. Assume towards a contradiction that I1 was a negative
instance; then there is some completion AF′ = 〈A′,R′〉 of I having some σ extension
S such that A is either in S or attacked by any argument in S. Now construct AF∗ =
〈A′ ∪ {A′, B, C},R′ ∪ {(A, B), (A, C), (B, C), (C, A′)}〉. Given that S is a σ extension
of AF′, either S ∪ {A′} (if A ∈ S) or S ∪ {B, A′} (if A /∈ S) must be a σ extension of
AF∗. In any case, A′ is contained in a σ extension of AF∗, while AF∗ is a completion of
I∗, which contradicts the fact that I2 is negative. We must therefore conclude that I1 was
negative. �

Appendix C. Proofs relevance

Lemma 7. Given an IAF I = 〈A,A?,R,R?〉, a certain argument A ∈ A and a justification status j :

(1) For each U ∈ A?, addition of U is j -relevant for A w.r.t. I iff there exists some I ′ =
〈A′, {U},R′, ∅〉 ∈ part(I) such that A is not j in the certain projection of I ′, while A is j

in the certain projection of 〈A′ ∪ {U},∅,R′, ∅〉.
(2) For each U ∈ R?, addition of U is j -relevant for A w.r.t. I iff there exists some I ′ =

〈A′, ∅,R′, {U}〉 ∈ part(I) such that A is not j in the certain projection of I ′, while A is j

in the certain projection of 〈A′, ∅,R′ ∪ {U},∅〉.
(3) For each U ∈ A?, removal of U is j -relevant for A w.r.t. I iff there exists some I ′ =

〈A′, {U},R′, ∅〉 ∈ part(I) such that A is j in the certain projection of I ′, while A is not j

in the certain projection of 〈A′ ∪ {U},∅,R′, ∅〉.
(4) For each U ∈ R?, removal of U is j -relevant for A w.r.t. I iff there exists some I ′ =

〈A′, {U},R′, ∅〉 ∈ part(I) such that A is j in the certain projection of I ′, while A is not j

in the certain projection of 〈A′, ∅,R′ ∪ {U},∅〉.

Proof. Let I = 〈A,A?,R,R?〉 be an incomplete argumentation framework, A ∈ A a certain argument
and j a justification status.

(1) We prove both directions of the first item.
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⇒ See Fig. 11 for an illustration of the steps in this proof.

(a) Suppose that addition of U ∈ A? is j -relevant for A w.r.t. I.
(b) Then by Definition 12 there is a minimal stable-j partial completion I∗ = 〈A∗,A?∗,

R∗,R?∗〉 for A w.r.t. I such that U ∈ A∗.
(c) Now construct the IAF I ′ from I∗ by moving U from the certain to the uncertain part:

I ′ = 〈A∗ \ {U},A?∗ ∪ {U},R∗,R?∗〉.
(d) Given that I∗ was minimal and I∗ ∈ part(I ′), A cannot be stable-j w.r.t. I ′. So there

must be some I ′′ = 〈A′′,A?′′,R′′,R?′′〉 in part(I ′) such that A’s justification status in
the certain projection of I ′′ is not j – note that this means that U is not in A′′ (since A

was stable-j in I∗).
(e) Then A’s justification status in the certain projection of I ′′′ = 〈A′′, {U},R′′, ∅〉 is not j

(because this is the same as the certain projection of I ′′, i.e. 〈A′′,R′′|A′′ 〉).
(f) Next, construct I∗′ = 〈A′′ ∪ {U},∅,R′′, ∅〉 from I ′′′ by moving U from the uncertain

part to the certain part. Since I∗′ is in part(I∗) and A is stable-j in I∗, A must be j in
the certain projection of I∗′.

⇐ Suppose that there exists some I ′ = 〈A′, {U},R′, ∅〉 ∈ part(I) such that A is not j

in cert(I ′) and A is j in cert(〈A′ ∪ {U},∅,R′, ∅〉). Given that 〈A′ ∪ {U},∅,R′, ∅〉
has only one completion (i.e., its certain projection), A must be stable-j w.r.t. 〈A′ ∪
{U},∅,R′, ∅〉. Consequently, there must be some minimal stable-j partial completion
I ′′ = 〈A′′,A?′′,R′′,R?′′〉 for A w.r.t. I such that 〈A′ ∪ {U},∅,R′, ∅〉 ∈ part(I ′′). Note
that U ∈ A′′: otherwise 〈A′, ∅,R′, ∅〉 would also be in part(I ′′), which contradicts the as-
sumption that A is not j in cert(〈A′, {U},R′, ∅〉). To conclude, addition of U is j -relevant
for A w.r.t. I.

(2) This proof is analogous to the proof of item 1, except that U is moved between certain and uncer-
tain attacks rather than between certain and uncertain arguments.

(3) We prove both directions of the third item.

⇒ The steps in this proof are similar to the steps in item (1).

(a) Suppose that removal of U ∈ A? is j -relevant for A w.r.t. I.
(b) Then by Definition 12 there is a minimal stable-j partial completion I∗ = 〈A∗,A?∗,

R∗,R?∗〉 for A w.r.t. I such that U /∈ A∗ ∪ A?∗.
(c) Now construct the IAF I ′ by adding U to the uncertain arguments and adding the attacks

from R related to U to the certain attacks: I ′ = 〈A∗,A?∗ ∪ {U},R∗ ∪ {(X, Y ) ∈ R|U ∈
{X, Y } and {X, Y } ⊆ A?∗ ∪ {U}},R?∗〉.
Note that I∗ ∈ part(I ′).

(d) Given that I∗ was minimal, A cannot be stable-j w.r.t. I ′, hence there must be some
I ′′ = 〈A′′,A?′′,R′′,R?′′〉 in part(I ′) such that A is not j in cert(I ′′).

(e) Then A’s justification status in the certain projection of I ′′′ = 〈A′′, ∅,R′′, ∅〉 (which is
the same as cert(I ′′),i.e. 〈A′′,R′′|A′′ 〉) is not j either. Note that A′′ must contain U :
otherwise, I ′′′ would have been in part(I∗).

(f) Next, construct I∗′′ = 〈A′′ \ {U},∅,R′′|A′′\{U}, ∅〉 from I ′′′ by removing U from the
uncertain arguments. Since I∗′′ is in part(I∗) and A is stable-j in I∗, A must be j in
cert(I∗′). This implies that A’s justification status is j as well in the certain projection
of I∗′ = 〈A′′ \ {U}, {U},R′′, ∅〉, which is the same as cert(I∗′′).
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⇐ Suppose that there exists some I ′ = 〈A′, {U},R′, ∅〉 ∈ part(I) such that A is j in cert(I ′)
and A is not j in cert(〈A′ ∪ {U},∅,R′, ∅〉). Then A is stable-j w.r.t. 〈A′, ∅,R′, ∅〉. Con-
sequently, there must be some minimal stable-j partial completion I ′′ = 〈A′′,A?′′,R′′,R?′′〉
for A w.r.t. I such that I ∈ part(I ′′). Note that U /∈ A′′ ∪ A?′′: otherwise 〈A′ ∪
{U},∅,R′, ∅〉 would be in part(I ′′), which contradicts the assumption that A is not j

in cert(〈A′ ∪ {U},∅,R′, ∅〉). To conclude, removal of U is j -relevant for A w.r.t. I.

(4) This proof is analogous to the proof of item 3, except that U is moved between certain and uncer-
tain attacks rather than between certain and uncertain arguments. �

Lemma 8 (Reduction INSTABILITY to RELEVANCE). Given an incomplete argumentation frame-
work I = 〈A,A?,R,R?〉, a certain argument A ∈ A, semantics σ ∈ {GR, CP, PR} and c ∈
{sceptical, credulous}:

(1) Construct I ′ and I ′′ as follows (see Fig. 12), where A′, A′′, U and U ′ are not in A ∪ A?:

• A′ = A ∪ {A′, A′′};
• R′ = R ∪ {(A, A′), (A′, A′′), (U, A′)};
• I ′ = 〈A′,A? ∪ {U},R′,R?〉; and
• I ′′ = 〈A′ ∪ {U},A? ∪ {U ′},R′ ∪ {(U ′, U)},R?〉.
The following three items are equivalent:

(a) A is not stable-σ -c-IN w.r.t. I; and
(b) addition of U is σ -c-IN-relevant for A′′ w.r.t. I ′; and
(c) removal of U ′ is σ -c-IN-relevant for A′′ w.r.t. I ′′.

(2) Let I ′ = 〈A,A? ∪{U},R∪{(U, A)},R?〉 and I ′′ = 〈A∪{U},A? ∪{U ′},R∪{(U, A), (U ′, U)},
R?〉 where U and U ′ are not in A ∪ A?. The following three items are equivalent:

(a) A is not stable-σ -c-OUT w.r.t. I; and
(b) addition of U is σ -c-OUT-relevant for A w.r.t. I ′; and
(c) removal of U ′ is σ -c-OUT-relevant for A w.r.t. I ′′.

(3) Construct I ′ and I ′′ as follows, where A′, A′′, U and U ′ are not in A ∪ A?:

• A′ = A ∪ {A′, A′′};
• R′ = R ∪ {(A, A′), (A′, A′′), (U, A′), (U, A′′), (U, U)};
• I ′ = 〈A′,A? ∪ {U},R′,R?〉; and
• I ′′ = 〈A′ ∪ {U},A? ∪ {U ′},R′ ∪ {(U ′, U)},R?〉.
The following three items are equivalent:

(a) A is not stable-σ -c-UNDEC w.r.t. I; and
(b) addition of U is σ -c-UNDEC-relevant for A′′ w.r.t. I ′; and
(c) removal of U ′ is σ -c-UNDEC-relevant for A′′ w.r.t. I ′′.

Proof. In the following, we prove all three items separately.

(1) We start by proving the first item, related to IN justification statuses. Let I ′ = 〈A∪{A′, A′′},A? ∪
{U},R ∪ {(A, A′), (A′, A′′), (U, A′)},R?〉 and let I ′′ = 〈A ∪ {A′, A′′, U},A? ∪ {U ′},R ∪
{(A, A′), (A′, A′′), (U, A′), (U ′, U)},R?〉 (see Fig. 12).
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(a) ⇒ (b) and (c) Suppose that A is not stable-σ -c-IN w.r.t. I (a). Then by Definition 8 of stabil-
ity there is some completion AF∗ = 〈A∗,R∗〉 in which A is not σ -c-IN. Next, we construct
three argumentation frameworks based on AF, containing the argument A′′, and discuss its
status.

• First, construct AF1 = 〈A∗∪{A′, A′′},R∗∪{(A, A′), (A′, A′′)}〉. Given that A′′ is attacked
by A′, which is only attacked by A in AF1, A′′ cannot be σ -c-IN in AF1.

• Next, construct AF2 = 〈A∗∪{A′, A′′, U},R∗∪{(A, A′), (A′, A′′), (U, A′)}〉. A′′ is σ -c-IN

in AF2, since the unattacked argument U attacks the only attacker of A′′ (i.e. A′).
• Let AF3 = 〈A∗ ∪ {A′, A′′, U, U ′},R∗ ∪ {(A, A′), (A′, A′′), (U, A′), (U ′, U)}〉. Given that

A is not σ -c-IN in AF∗, A cannot be σ -c-IN in AF3 either. Since the argument A′′ in AF3

is attacked by A′, which is only attacked by A, A′′ cannot be σ -c-IN in AF3.

Now item (b) (addition of U is σ -c-IN-relevant for A′′ w.r.t. I ′) follows from Lemma 7,
the fact that the incomplete argumentation framework 〈A∗ ∪ {A′, A′′}, {U},R∗ ∪ {(A, A′),
(A′, A′′), (U, A′)},∅〉 is in part(I ′) and the status of A′′ in AF1 and AF2.
Similarly, item (c) (removal of U ′ is σ -c-IN-relevant for A′′ w.r.t. I ′′) follows from Lemma 7,
the fact that the incomplete argumentation framework 〈A∗ ∪ {A′, A′′, U}, {U ′},R∗ ∪
{(A, A′), (A′, A′′), (U, A′), (U ′, U)},∅〉 is in part(I ′′) and the status of A′′ in AF2 and
AF3.

(b) ⇒ (a) Suppose that addition of U is σ -c-IN-relevant for A′′ w.r.t. I ′. Then by Lemma 7,
there is some I∗′ in part(I ′) such that A′′ is not σ -c-IN in the certain projection of I∗′
– let us call this certain projection AF∗′ = 〈A∗′,R∗′〉. Then A cannot be σ -c-IN in AF∗′
either (since A attacks A′, which is the only attacker of A′′). Now construct AF′ = 〈A′,R′〉
where A′ = A∗′ \ {A′, A′′, U} and R′ = R∗′ \ {(A, A′), (A′, A′′), (U, A′)}. Since A is not
σ -c-IN in AF∗′, it cannot be σ -c-IN in AF′. Given that AF′ is a completion of I, A cannot be
stable-σ -c-IN w.r.t. I.

(c) ⇒ (a) Suppose that removal of U ′ is σ -c-IN-relevant for A′′ w.r.t. I ′′. Then by Lemma 7,
there is some I∗′′ in part(I ′′) such that A′′ is not σ -c-IN in the certain projection
of I∗′′ – without loss of generality, let this certain projection be AF∗′′ = 〈A∗′′,R∗′′〉.
Now construct AF′ = 〈A′,R′〉 where A′ = A∗′′ \ {A′, A′′, U, U ′} and R′ = R∗′′ \
{(A, A′), (A′, A′′), (U, A′), (U ′, U)}; since A′′ is not σ -c-IN in AF∗′, it cannot be that A

is σ -c-IN in AF′. Given that AF′ is a completion of I, A cannot be stable-σ -c-IN w.r.t. I.

(2) We proceed by proving the second item, related to OUT justification statuses. Let I ′ = 〈A,A? ∪
{U},R∪{(U, A)},R?〉 and let I ′′ = 〈A∪{U},A?∪{U ′},R∪{(U, A), (U ′, U)},R?〉 (see Fig. 16).

(a) ⇒ (b) and (c) Suppose that A is not stable-σ -c-OUT w.r.t. I (a). Then there is some comple-
tion AF1 = 〈A∗,R∗〉 of I such that A is not σ -c-OUT. Next, we construct two additional
argumentation frameworks based on AF1, containing the argument A.

• First, construct AF2 = 〈A∗ ∪ {U},R∗ ∪ {(U, A)}〉. A is σ -c-OUT in AF2, since the
unattacked argument U attacks A.

• Let AF3 = 〈A∗ ∪ {U, U ′},R∗ ∪ {(U, A), (U ′, U)}〉. Given that A is not σ -c-OUT in AF1,
A cannot be σ -c-OUT in AF3 either.

Now item (b) (addition of U is σ -c-OUT-relevant for A w.r.t. I ′) follows from Lemma 7, the
fact that the IAF 〈A∗, {U},R∗ ∪ {(U, A)}, ∅〉 is in part(I ′) and the status of A in AF1 and
AF2.
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Fig. 16. Illustration of the IAF used to show Lemma 8 item 2. The IAFs given on the left are I ′ (upper) and I ′′ (lower). The
rounded rectangle with dotted borders represents the original IAF I (without A and in- and outgoing attacks). The grey arrows
point to certain projections AF1, AF2 and AF3 of partial completions. For each of these AFs, the possible justification statuses
are colour-coded: green arguments with boldface font are IN, yellow arguments are UNDEC and red arguments with italic font
are OUT. Note that, for a given justification status of A, there is only one possible justification status for each of the additional
arguments in {U, U ′}.

Similarly, item (c) (removal of U ′ is σ -c-OUT-relevant for A w.r.t. I ′′) follows from
Lemma 7, the fact that the IAF 〈A∗ ∪ {U}, {U ′},R∗ ∪ {(U, A), (U ′, U)},∅〉 is in part(I ′′)
and the status of A in AF2 and AF3.

(b) ⇒ (a) Suppose that addition of U is σ -c-OUT-relevant for A w.r.t. I ′. Then by Lemma 7,
there is some I∗′ in part(I ′) such that A is not σ -c-OUT in its certain projection AF∗′ =
〈A′,R′〉. Note that U cannot be in A′: otherwise, A would be σ -c-OUT. Given that AF∗′ is a
completion of I, A cannot be stable-σ -c-OUT w.r.t. I.

(c) ⇒ (a) Suppose that removal of U ′ is σ -c-OUT-relevant for A w.r.t. I ′′. Then by Lemma 7,
there is some I∗′′ in part(I ′′) such that A is not σ -c-OUT in AF∗′′ = 〈A∗′′,R∗′′〉, the
certain projection of I∗′′. Now construct AF′ = 〈A′,R′〉 where A′ = A∗′′ \ {U, U ′} and
R′ = R∗′′\{(U, A), (U ′, U)}; since A is not σ -c-OUT in AF∗′, it cannot be that A is σ -c-OUT

in AF′. Given that AF′ is a completion of I, A cannot be stable-σ -c-OUT w.r.t. I.

(3) Finally, we prove the third item, related to UNDEC justification statuses. Let I ′ = 〈A ∪
{A′, A′′},A? ∪ {U},R ∪ {(A, A′), (A′, A′′), (U, A′), (U, A′′), (U, U)},R?〉 and let I ′′ = 〈A ∪
{A′, A′′, U},A? ∪ {U ′},R ∪ {(A, A′), (A′, A′′), (U, A′), (U, A′′), (U, U), (U ′, U)},R?〉
(see Fig. 17).

(a) ⇒ (b) and (c) If A is not stable-σ -c-UNDEC w.r.t. I (a) then there is some completion
AF∗ = 〈A∗,R∗〉 of I in which A is not σ -c-UNDEC. Next, we construct three argumen-
tation frameworks based on AF∗, containing the argument A′′, and discuss its status.

• First, construct AF1 = 〈A∗∪{A′, A′′},R∗∪{(A, A′), (A′, A′′)}〉. Given that A′′ is attacked
by A′, which is only attacked by A in AF∗, A′′ cannot be σ -c-UNDEC in AF1.

• Next, construct AF2 = 〈A∗ ∪ {A′, A′′, U},R∗ ∪ {(A, A′), (A′, A′′), (U, A′), (U, A′′),
(U, U)}〉. A′′ is σ -c-UNDEC in AF2, since the self-attacking argument U attacks each
attacker of A′′ (i.e. A′ and U itself).

• Let AF3 = 〈A∗ ∪ {A′, A′′, U, U ′},R∗ ∪ {(A, A′), (A′, A′′), (U, A′), (U, A′′), (U, U),

(U ′, U)}〉. Given that A is not σ -c-UNDEC in AF∗, A cannot be σ -c-UNDEC in AF3 either.



CORRECTED  P
ROOF

D. Odekerken et al. / Justification, stability and relevance in IAFs 45

Fig. 17. Illustration of the IAF used to show Lemma 8 item 3. The IAFs given on the left are I ′ (upper) and I ′′ (lower). The
rounded rectangle with dotted borders represents the original IAF I (without A and in- and outgoing attacks). The grey arrows
point to certain projections AF1, AF2 and AF3 of partial completions. For each of these AFs, the possible justification statuses
are colour-coded: green arguments with boldface font are IN, yellow arguments are UNDEC and red arguments with italic font
are OUT. Note that, for a given justification status of A, there is only one possible justification status for each of the additional
arguments in {A′, A′′, U,U ′}.

Since the argument A′′ in AF3 is, apart from the argument U that is definitely σ -c-OUT,
attacked by A′, which is only attacked by A, A′′ cannot be σ -c-UNDEC in AF3.

Now item (b) (addition of U is σ -c-UNDEC-relevant for A′′ w.r.t. I ′) follows from
Lemma 7, the fact that the incomplete argumentation framework 〈A∗ ∪ {A′, A′′}, {U},R∗ ∪
{(A, A′), (A′, A′′), (U, A′), (U, A′′), (U, U)}, ∅〉 is in part(I ′) and the status of A′′ in AF1

and AF2.
Similarly, item (c) (removal of U ′ is σ -c-UNDEC-relevant for A′′ w.r.t. I ′′) follows from
Lemma 7, the fact that the incomplete argumentation framework 〈A∗ ∪ {A′, A′′, U}, {U ′},
R∗ ∪ {(A, A′), (A′, A′′), (U, A′), (U, A′′), (U, U), (U ′, U)},∅〉 is in part(I ′′) and the sta-
tus of A′′ in AF2 and AF3.
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(b) ⇒ (a) Suppose that addition of U is σ -c-UNDEC-relevant for A′′ w.r.t. I ′. Then by Lemma 7,
there is some I∗′ in part(I ′) such that A′′ is not σ -c-UNDEC in the certain projection of
I∗′ – let us call this certain projection AF∗′ = 〈A∗′,R∗′〉. Then A cannot be σ -c-UNDEC in
AF∗′ either. Now construct AF′ = 〈A′,R′〉 where A′ = A∗′ \ {A′, A′′, U} and R′ = R∗′ \
{(A, A′), (A′, A′′), (U, A′), (U, A′′), (U, U)}. Since A is not σ -c-UNDEC in AF∗′, it cannot
be σ -c-UNDEC in AF′. Given that AF′ is a completion of I, A cannot be stable-σ -c-UNDEC

w.r.t. I.
(c) ⇒ (a) If removal of U ′ is σ -c-UNDEC-relevant for A′′ w.r.t. I ′′ then by Lemma 7, there is

some I∗′′ in part(I ′′) such that A′′ is not σ -c-UNDEC in the certain projection of I∗′′ – let
this certain projection be AF∗′′ = 〈A∗′′,R∗′′〉. Now construct AF′ = 〈A′,R′〉 where A′ =
A∗′′\{A′, A′′, U, U ′} and R′ = R∗′′\{(A, A′), (A′, A′′), (U, A′), (U, A′′), (U, U), (U ′, U)};
since A′′ is not σ -c-UNDEC in AF∗′, it cannot be that A is σ -c-UNDEC in AF′. Given that AF′
is a completion of I, A cannot be stable-σ -c-UNDEC w.r.t. I. �

Proposition 12. The following problems are NP-complete:

(1) CP-credulous-UNDEC-RELEVANCE;
(2) CP-sceptical-IN-RELEVANCE;
(3) CP-sceptical-OUT-RELEVANCE;
(4) GR-credulous-IN-RELEVANCE;
(5) GR-credulous-OUT-RELEVANCE;
(6) GR-credulous-UNDEC-RELEVANCE;
(7) GR-sceptical-IN-RELEVANCE;
(8) GR-sceptical-OUT-RELEVANCE; and
(9) GR-sceptical-UNDEC-RELEVANCE.

Proof. For each of these problems, membership in NP follows from membership in P of the correspond-
ing JUSTIFICATION problems [10], listed in Table 1, and Proposition 11 (since NP = NPP).

For NP-hardness, we can give a reduction from the complementary of the corresponding STABILITY

problem, using Lemma 8.

(1) By Proposition 6, CP-credulous-UNDEC-STABILITY is CoNP-complete, which means that the
complementary problem CP-credulous-UNDEC-INSTABILITY is NP-complete. By Lemma 8 item
3, each instance I = 〈I, A〉 of CP-credulous-UNDEC-INSTABILITY can be transformed into
an instance I ′ = 〈I ′, A′′, U〉 (for addition) or I ′ = 〈I ′′, A′′, U ′〉 (for removal) such that I

is a positive instance of CP-credulous-UNDEC-INSTABILITY iff I ′ is a positive instance of CP-
credulous-UNDEC-RELEVANCE.

(2) The problem CP-sceptical-IN-STABILITY is CoNP-complete [3], hence CP-sceptical-IN-
INSTABILITY is NP-complete. By Lemma 8 item 1, each instance I = 〈I, A〉 of CP-
sceptical-IN-INSTABILITY can be transformed into an instance I ′ = 〈I ′, A′′, U〉 (for addition) or
I ′ = 〈I ′′, A′′, U ′〉 (for removal) such that I is a positive instance of CP-sceptical-IN-INSTABILITY

iff I ′ is a positive instance of CP-sceptical-IN-RELEVANCE.
(3) The problem CP-sceptical-OUT-STABILITY is CoNP-complete by [3] in combination with

Lemma 5, hence CP-sceptical-OUT-INSTABILITY is NP-complete. By Lemma 8 item 2, each
instance I = 〈I, A〉 of CP-sceptical-OUT-INSTABILITY can be transformed into an instance
I ′ = 〈I ′, A, U 〉 (for addition) or I ′ = 〈I ′′, A, U ′〉 (for removal) such that I is a positive instance
of CP-sceptical-OUT-INSTABILITY iff I ′ is a positive instance of CP-sceptical-OUT-RELEVANCE.
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(4) The problem GR-credulous-IN-STABILITY is CoNP-complete [3], hence GR-credulous-IN-
INSTABILITY is NP-complete. By Lemma 8 item 1, each instance I = 〈I, A〉 of GR-
credulous-IN-INSTABILITY can be transformed into an instance I ′ = 〈I ′, A′′, U〉 (for ad-
dition) or I ′ = 〈I ′′, A′′, U ′〉 (for removal) such that I is a positive instance of GR-
credulous-IN-INSTABILITY iff I ′ is a positive instance of GR-credulous-IN-RELEVANCE.

(5) The problem GR-credulous-OUT-STABILITY is CoNP-complete by [3] in combination with
Lemma 5, hence GR-credulous-OUT-INSTABILITY is NP-complete. By Lemma 8 item 2, each
instance I = 〈I, A〉 of CP-sceptical-OUT-INSTABILITY can be transformed into an instance I ′ =
〈I ′, A, U〉 (for addition) or I ′ = 〈I ′′, A, U ′〉 (for removal) such that I is a positive instance of
GR-credulous-OUT-INSTABILITY iff I ′ is a positive instance of GR-credulous-OUT-RELEVANCE.

(6) By Proposition 6, GR-credulous-UNDEC-STABILITY is CoNP-complete, which means that the
complementary problem GR-credulous-UNDEC-INSTABILITY is NP-complete. By Lemma 8 item
3, each instance I = 〈I, A〉 of GR-credulous-UNDEC-INSTABILITY can be transformed into
an instance I ′ = 〈I ′, A′′, U〉 (for addition) or I ′ = 〈I ′′, A′′, U ′〉 (for removal) such that I

is a positive instance of GR-credulous-UNDEC-INSTABILITY iff I ′ is a positive instance of GR-
credulous-UNDEC-RELEVANCE.

(7) The problem GR-sceptical-IN-STABILITY is CoNP-complete [3], hence GR-sceptical-IN-
INSTABILITY is NP-complete. By Lemma 8 item 1, each instance I = 〈I, A〉 of GR-
sceptical-IN-INSTABILITY can be transformed into an instance I ′ = 〈I ′, A′′, U〉 (for addition) or
I ′ = 〈I ′′, A′′, U ′〉 (for removal) such that I is a positive instance of GR-sceptical-IN-INSTABILITY

iff I ′ is a positive instance of GR-sceptical-IN-RELEVANCE.
(8) The problem GR-sceptical-OUT-STABILITY is CoNP-complete by [3] in combination with

Lemma 5, hence GR-sceptical-OUT-INSTABILITY is NP-complete. By Lemma 8 item 2, each
instance I = 〈I, A〉 of GR-sceptical-OUT-INSTABILITY can be transformed into an instance
I ′ = 〈I ′, A, U 〉 (for addition) or I ′ = 〈I ′′, A, U ′〉 (for removal) such that I is a positive instance
of GR-sceptical-OUT-INSTABILITY iff I ′ is a positive instance of GR-sceptical-OUT-RELEVANCE.

(9) By Proposition 6, GR-sceptical-UNDEC-STABILITY is CoNP-complete, which means that the
complementary problem GR-sceptical-UNDEC-INSTABILITY is NP-complete. By Lemma 8 item
3, each instance I = 〈I, A〉 of GR-sceptical-UNDEC-INSTABILITY can be transformed into
an instance I ′ = 〈I ′, A′′, U〉 (for addition) or I ′ = 〈I ′′, A′′, U ′〉 (for removal) such that I

is a positive instance of GR-sceptical-UNDEC-INSTABILITY iff I ′ is a positive instance of GR-
sceptical-UNDEC-RELEVANCE. �

Lemma 9 (Reduction co-inverted-STABILITY to RELEVANCE). Given an incomplete argumentation
framework I = 〈A,A?,R,R?〉, a certain argument A ∈ A, semantics σ ∈ {GR, CP, PR}:

(1) Construct I ′ and I ′′ as follows, where A′, U and U ′ are fresh arguments not in A ∪ A?:

• A′ = A ∪ {A′};
• R′ = R ∪ {(A, A′), (A′, A′), (U, A′)};
• I ′ = 〈A′,A? ∪ {U},R′,R?〉; and
• I ′′ = 〈A′ ∪ {U},A? ∪ {U ′},R′ ∪ {(U ′, U)},R?〉.
The following items are equivalent:

(a) A is not stable-σ -credulous-IN w.r.t. I; and
(b) addition of U ′ is σ -sceptical-UNDEC-relevant for A′ w.r.t. I ′′; and
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(c) removal of U is σ -sceptical-UNDEC-relevant for A′ w.r.t. I ′.

(2) Construct I ′ and I ′′ as follows, where A1, A2, A3, A4, U and U ′ are fresh arguments not in
A ∪ A?:

• A′ = A ∪ {A1, A2, A3, A4};
• R′ = R ∪ {(A, A1), (A, A2), (A1, A2), (A2, A3), (A3, A4), (U, U), (U, A3)};
• I ′ = 〈A′,A? ∪ {U},R′,R?〉; and
• I ′′ = 〈A′ ∪ {U},A? ∪ {U ′},R′ ∪ {(U ′, U)},R?〉.
The following items are equivalent:

(a) A is not stable-σ -credulous-UNDEC w.r.t. I; and
(b) addition of U ′ is σ -sceptical-IN-relevant for A3 w.r.t. I ′′; and
(c) removal of U is σ -sceptical-IN-relevant for A3 w.r.t. I ′; and
(d) addition of U ′ is σ -sceptical-OUT-relevant for A4 w.r.t. I ′′; and
(e) removal of U is σ -sceptical-OUT-relevant for A4 w.r.t. I ′.

Proof. We prove these two items separately.

(1) Let I = 〈A,A?,R,R?〉 be an IAF, A ∈ A be a certain argument and σ some semantics in
{GR, CP, PR}. Construct I ′ and I ′′ as specified above (see also Fig. 18).

Fig. 18. Illustration of the IAF used to show Lemma 9 item 1. The IAFs given on the left are I ′ (upper) and I ′′ (lower). The
rounded rectangle with dotted borders represents the original IAF I (without A and in- and outgoing attacks). The grey arrows
point to certain projections AF1, AF2 and AF3 of partial completions. For each of these AFs, the possible justification statuses
are colour-coded: green arguments with boldface font are IN, yellow arguments are UNDEC and red arguments with italic font
are OUT. Note that, for a given justification status of A, there is only one possible justification status for each of the additional
arguments in {A′, U, U ′}.
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(a) ⇒ (b) and (c) Suppose that A is not stable-σ -credulous-IN w.r.t. I. Then by Definition 8
of stability there is some completion AF∗ = 〈A∗,R∗〉 of I such that A is not in any σ -
extension. Next, construct and consider the following three AFs:

• Let AF1 = 〈A∗ ∪ {A′},R∗ ∪ {(A, A′), (A′, A′)}〉. Given that A is not in any σ -extension
of 〈A∗,R∗〉 and A′ is self-attacking, A′ cannot be in, nor attacked by any argument in any
σ -extension of AF1. Consequently, A′ is σ -sceptical-UNDEC in AF1.

• Now consider AF2 = 〈A∗ ∪ {A′, U},R∗ ∪ {(A, A′), (A′, A′), (U, A′)}〉. Since A′ is at-
tacked by the unattacked argument U , A′ is attacked by an argument in some σ -extension
of AF2 and therefore not σ -sceptical-UNDEC in AF2.

• Finally construct AF3 = 〈A∗ ∪ {A′, U, U ′},R∗ ∪ {(A, A′), (A′, A′), (U, A′), (U ′, U)}〉.
Note that U is attacked by the unattacked argument U ′, which means that U ′ is in each σ -
extension of AF3. Consequently, none of the arguments attacking A′ (A, U and A′ itself)
is in any σ -extension of AF3. In addition, A′ cannot be in any σ -extension of AF3 as it is
self-attacking. This implies that A′ is σ -sceptical-UNDEC in AF3.

We continue proving item (b). Note that the partial completion 〈A∗ ∪ {A′, U}, {U ′},R∗ ∪
{(A, A′), (A′, A′), (U, A′), (U ′, U)},∅〉 is in part(I ′′). Then by Lemma 7 and the status of
A′ in AF2 and AF3, addition of U ′ is σ -sceptical-UNDEC-relevant for A′ w.r.t. I ′.
Item (c) follows from the fact that 〈A∗ ∪ {A′}, {U},R∗ ∪ {(A, A′), (A′, A′), (U, A′)},∅〉 is
in part(I ′), Lemma 7 and the status of A′ in AF1 and AF2.

(b) ⇒ (a) Suppose that addition of U ′ is σ -sceptical-UNDEC-relevant for A′ w.r.t. I ′′. Then by
Lemma 7, there is some I∗ in part(I ′′) such that A′ is σ -sceptical-UNDEC w.r.t. its cer-
tain projection AF∗ = 〈A∗,R∗〉. This implies that A is not in any σ -extension of AF∗

(otherwise, A′ would be out in that extension). Now construct AF′ = 〈A′,R′〉 where
A′ = A∗ \ {A′, U, U ′} and R′ = R∗ \ {(A, A′), (A′, A′), (U, A′), (U ′, U)}. Since A′ is
not in any σ -extension of AF∗, it cannot be in any σ -extension of AF′ either (because all
arguments defending A in A∗ are also in A′). Therefore, given that AF′ is a completion of
I, A is not stable-σ -credulous-IN w.r.t. I.

(c) ⇒ (a) Finally, suppose that removal of U is σ -sceptical-UNDEC-relevant for A′ w.r.t. I ′. Then
by Lemma 7, there is some I∗ in part(I ′) such that A′ is σ -sceptical-UNDEC w.r.t. its cer-
tain projection AF∗ = 〈A∗,R∗〉. Consequently, A cannot be in any σ -extension of AF∗. Con-
struct AF′ = 〈A′,R′〉 where A′ = A∗ \ {A′, U} and R′ = R∗ \ {(A, A′), (A′, A′), (U, A′)}
and note that A cannot be in any σ -extension of AF either. Given that AF′ is a completion of
I, A cannot be stable-σ -credulous-IN w.r.t. I.

(2) Let I = 〈A,A?,R,R?〉 be an IAF, A ∈ A be a certain argument and σ some semantics in
{GR, CP, PR}. Construct I ′ and I ′′ as specified above (see also Fig. 19).

(a) ⇒ (b), (c), (d) and (e) Suppose that A is not stable-σ -credulous-UNDEC w.r.t. I. Then there
is some completion AF∗ = 〈A∗,R∗〉 of I such that for each σ -extension, A is either in,
or attacked by some argument in this extension. Next, construct and consider the following
three AFs:

• Let AF1 = 〈A1,R1〉 where A1 = A∗ ∪ {A1, A2, A3, A4} and R1 = R∗ ∪
{(A, A1), (A, A2), (A1, A2), (A2, A3), (A3, A4)}. Consider an arbitrary σ -extension S of
AF1 and let S ′ = S \ {A1, A2, A3, A4}. Note that S ′ must be a σ -extension of AF∗. Recall
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Fig. 19. Illustration of the IAF used to show Lemma 9 item 2. The IAFs given on the left are I ′ (upper) and I ′′ (lower). The
rounded rectangle with dotted borders represents the original IAF I (without A and in- and outgoing attacks). The grey arrows
point to certain projections AF1, AF2 and AF3 of partial completions. For each of these AFs, the possible justification statuses
are colour-coded: green arguments with boldface font are IN, yellow arguments are UNDEC and red arguments with italic font
are OUT. Note that, for a given justification status of A, there is only one possible justification status for each of the additional
arguments in {A1, A2, A3, A4, U, U ′}.

that A is either in, or attacked by an argument in S ′. This implies that A is either in S or
attacked by some argument in S. In both cases, A2 is attacked by an argument in S (either
A or A1), which by completeness of σ semantics implies that A3 ∈ S, while A4 is attacked
by an argument (A3) in S. Thus A3 is σ -sceptical-IN in AF1 and A4 is σ -sceptical-OUT

in AF1.
• Now consider AF2 = 〈A2,R2〉 where A2 = A∗ ∪ {A1, A2, A3, A4, U} and R2 =

R∗ ∪ {(A, A1), (A, A2), (A1, A2), (A2, A3), (A3, A4), (U, U), (U, A3)}. Since AF2 has
at least one extension under σ semantics, there is some σ extension S. Given that A3 is
attacked by the self-attacking argument U , which is not attacked by any other argument,
A3 cannot be in S and A4 is not attacked by any argument in S. This implies that A3 is
not σ -sceptical-IN in AF2 and A4 is not σ -sceptical-OUT in AF2.
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• Finally construct AF3 = 〈A3,R3〉 where A3 = A∗ ∪ {A1, A2, A3, A4, U, U ′} and
R3 = R∗ ∪ {(A, A1), (A, A2), (A1, A2), (A2, A3), (A3, A4), (U, U), (U, A3), (U

′, U)}.
Consider an arbitrary σ -extension S of AF3 and let S ′ = S \ {A1, A2, A3, A4, U, U ′}.
Note that S ′ must be a σ -extension of AF∗. Given that A is in S ′ or attacked by an ar-
gument in S ′, it must be that either A is in S and A1 is attacked by an argument in S or
A is attacked by an argument in S and A1 is in S. In both cases, A2 is attacked by an
argument in S. Given that U ′ is unattacked as well, U is also attacked by an argument in
S. This implies that A3 is in S and A4 is attacked by an argument in S. In other words, A3

is σ -sceptical-IN in AF3 and A4 is σ -sceptical-OUT in AF3.

We continue proving items (b) and (d). Note that the partial completion 〈A2, {U ′},R3, ∅〉
is in part(I ′′). Then by Lemma 7 and the status of A3 in AF2 and AF3, addition of U ′ is
σ -sceptical-IN-relevant for A3 w.r.t. I ′′ and σ -sceptical-OUT-relevant for A4 w.r.t. I ′′.
Items (c) and (e) follow from the fact that 〈A1, {U},R2, ∅〉 is in part(I ′), Lemma 7 and
the justification statuses of A3 and A4 in AF1 and AF2.

(d) ⇒ (b) If addition of U ′ is σ -sceptical-out-relevant for A4 w.r.t. I ′′ then by Lemma 7 there
exists some I∗ = 〈A′, {U},R′, ∅〉 ∈ part(I ′′) such that A4 is not σ -sceptical-out-relevant
in the certain projection of I∗, while A4 is σ -sceptical-out-relevant in the certain projection
of 〈A′ ∪ {U},∅,R′, ∅〉. Given that A4 is (only) attacked by A3, A3 is not σ -sceptical-in-
relevant in the certain projection of I∗, while A3 is σ -sceptical-in-relevant in the certain
projection of 〈A′ ∪ {U},∅,R′, ∅〉. By Lemma 7, addition of U ′ is σ -sceptical-in-relevant for
A3 w.r.t. I ′′.

(e) ⇒ (c) Similarly, if removal of U is σ -sceptical-out-relevant for A4 w.r.t. I ′ then by Lemma 7
removal of U is σ -sceptical-in-relevant for A3 w.r.t. I ′.

(b) ⇒ (a) Suppose that addition of U ′ is σ -sceptical-IN-relevant for A3 w.r.t. I ′′. Then by
Lemma 7, there is some I∗ in part(I ′′) such that A3 is σ -sceptical-IN w.r.t. its cer-
tain projection AF∗ = 〈A∗,R∗〉. Construct AF′ = 〈A′,R′〉 where A′ = A∗ \
{A1, A2, A3, A4, U, U ′} and R′ = R∗ \ {(A, A1), (A, A2), (A1, A2), (A2, A3), (A3, A4),

(U, U), (U, A3), (U
′, U)}. Now suppose, towards a contradiction, that A is stable-σ -

credulous-UNDEC w.r.t. I. Then there would be some σ extension S ′ of AF′ such that A /∈ S ′
and A is not attacked by any argument in S ′ (since AF′ is a completion of I). Reconsider-
ing AF∗, the set S = S ′ ∪ {U ′} would be a σ extension of AF∗. Note that A3 is not in
S, which contradicts our assumption that A3 is σ -sceptical-IN w.r.t. AF∗. Hence A is not
stable-σ -credulous-UNDEC w.r.t. I.

(c) ⇒ (a) Finally, suppose that removal of U is σ -sceptical-UNDEC-relevant for A3 w.r.t. I ′.
Then by Lemma 7, there is some I∗ in part(I ′) such that A3 is σ -sceptical-UNDEC

w.r.t. its certain projection AF∗ = 〈A∗,R∗〉. Construct AF′ = 〈A′,R′〉 where A′ =
A∗ \ {A1, A2, A3, A4, U} and R′ = R∗ \ {(A, A1), (A, A2), (A1, A2), (A2, A3), (A3, A4),

(U, U), (U, A3)}. If A would be stable-σ -credulous-UNDEC w.r.t. I, then there would be
some σ extension S ′ of AF′ such that A /∈ S ′ and A is not attacked by any argument in S ′
(since AF′ is a completion of I), thus S = S ′ ∪ {U ′} would be a σ extension of AF∗ not
containing A3. Since this contradicts our earlier assumption, A cannot be in any σ -extension
of AF∗. �

Lemma 10. Let (φ, X, Y ) be an instance of �2-SAT and let φ = ∧
i ci and ci = ∨

j αj for each clause
ci in φ, where αj are the literals over X ∪ Y that occur in clause ci . Now let I1 = T1(φ, X, Y ) and let
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I2 = T2(φ, X, Y ), using the transformations T1 and T2 specified in Definition 13. The following items
are equivalent:

(1) (φ, X, Y ) is a positive instance of �2-SAT;
(2) Removal of χ is ST-sceptical-IN-relevant for φ w.r.t. I1;
(3) Addition of χ is ST-credulous-IN-relevant for φ w.r.t. I1;
(4) Addition of χ is ST-sceptical-IN-relevant for φ w.r.t. I2;
(5) Removal of χ is ST-credulous-IN-relevant for φ w.r.t. I2;
(6) Removal of χ is ST-sceptical-OUT-relevant for φ w.r.t. I1;
(7) Addition of χ is ST-credulous-OUT-relevant for φ w.r.t. I1;
(8) Addition of χ is ST-sceptical-OUT-relevant for φ w.r.t. I2; and
(9) Removal of χ is ST-credulous-OUT-relevant for φ w.r.t. I2.

Proof. We introduce an auxiliary statement, for which we prove that it equals all of the items above:

(0) There is some I∗ ∈ part(〈A,A?,R, ∅〉) such that φ is ST-sceptical-IN in its certain projection
AF∗ (where A, A? and R are chosen as in Definition 13).

Using this additional item, we prove these items separately.

(0) ⇒ (1) Suppose that there is some I∗ ∈ part(〈A,A?,R, ∅〉) such that φ is ST-sceptical-IN in the
certain projection AF∗ = 〈A∗,R∗〉 of I∗. Let τX be an assignment to variables in X such that it
assigns True to all xi ∈ X such that gi ∈ A∗ and False otherwise. Let τY be an arbitrary assignment
to all variables in Y . Given that φ is ST-sceptical-IN in AF∗, for each ST extension S of AF∗, at
least one of the arguments ci must have been in S, so there is at least one clause in the formula �

for which none of the variables was assigned True by τX and τY . Since we chose τY arbitrarily, we
have that (φ, X, Y ) is a positive instance of �2-SAT.

(1) ⇒ (0) Let (φ, X, Y ) be a positive instance of �2-SAT. Then there is some assignment τX to all
variables of X such that for each assignment τY to the variables of Y , �[τX, τY ] is False. Let
G = {gi |xi ∈ X and xi is assigned True by τX}. Construct I∗ = 〈A ∪ G,∅,R|A∪G, ∅〉 and let
AF∗ be its certain projection. Note that I∗ ∈ part(〈A,A?,R, ∅〉). Given that all arguments in
G are unattacked, each ST extension of AF∗ contains all arguments in G. Furthermore, for each
argument x ∈ X, each ST extension of AF∗ contains either x (if x is assigned True by τX) or y

(if x is assigned False by τY ). Additionally, for each argument y ∈ Y , each ST extension of AF∗
contains either y or y. Given that for each assignment τY to the variables of Y , φ[τX, τY ] is False,
it must be that for each ST extension S of this AF, at least one of the clause arguments ci is in S,
so φ′ is attacked by an argument in S; therefore φ ∈ S. Thus, φ is ST-sceptical-IN in AF∗.

(0) ⇒ (2) Suppose that there is some I∗ = 〈A∗,A?∗,R|A∗∪A?∗, ∅〉 in part(〈A,A?,R, ∅〉) such that φ

is ST-sceptical-IN in its certain projection AF∗. This implies that for I ′ = 〈A∗, {χ},R|A∗∪{χ}, ∅〉
it also holds that φ is ST-sceptical-IN in its certain projection AF′ = AF∗ = 〈A∗,R|A∗〉. Note that
I ′ ∈ part(I1). Now consider I ′′ = 〈A∗ ∪ {χ},∅,R|A∗∪{χ}, ∅〉 and its certain projection AF′′. In
AF′′, the argument φ is attacked by the unattacked argument χ , so φ is not ST-sceptical-IN in AF′′.
Then by Lemma 7 item 3, removal of χ is ST-sceptical-IN-relevant for φ w.r.t. I1.

(2) ⇒ (0) If removal of χ is ST-sceptical-IN-relevant for φ w.r.t. I1 then by Lemma 7 item 3 there is
some I ′ = 〈A∗, ∅,R|A∗, ∅〉 in I1 (where χ /∈ A∗, so I ′ ∈ part(〈A,A?,R, ∅〉)) such that φ is
ST-sceptical-IN in cert(I ′).
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(0) ⇒ (3) Suppose that there is some I∗ = 〈A∗,A?∗,R|A∗∪A?∗, ∅〉 in part(〈A,A?,R, ∅〉) such that
φ is ST-sceptical-IN in its certain projection AF∗. Then φ is ST-sceptical-OUT and therefore not
ST-credulous-IN in AF∗. This implies that for I ′ = 〈A∗, {χ},R|A∗∪{χ}, ∅〉 it also holds that φ is
not ST-credulous-IN in its certain projection AF′ = AF∗ = 〈A∗,R|A∗〉. Note that I ′ ∈ part(I1).
Now consider I ′′ = 〈A∗∪{χ},∅,R|A∗∪{χ}, ∅〉 and its certain projection AF′′. In AF′′, the argument
φ is attacked by the unattacked argument χ , so φ is not ST-sceptical-IN in AF′′, so φ is ST-
credulous-IN in AF′′. Then by Lemma 7 item 1, addition of χ is ST-credulous-IN-relevant for φ

w.r.t. I1.
(3) ⇒ (0) If addition of χ is ST-credulous-IN-relevant for φ w.r.t. I1 then by Lemma 7 item 1 there

is some I ′ = 〈A∗, {χ},R|A∗∪{χ}, ∅〉 such that φ is not ST-credulous-IN in cert(I ′), so φ is
ST-sceptical-OUT in cert(I ′), which implies that φ is ST-sceptical-IN in cert(I ′).

(0) ⇒ (4) Suppose that there is some I∗ = 〈A∗,A?∗,R|A∗∪A?∗, ∅〉 in part(〈A,A?,R, ∅〉) such that φ

is ST-sceptical-IN in its certain projection AF∗. This implies that for I ′ = 〈A∗ ∪ {χ, χ},∅, (R ∪
{(χ, χ)})|A∗∪{χ,χ}, ∅〉 it also holds that φ is ST-sceptical-IN in its certain projection AF′. Note that
I ′ ∈ part(I2). Now consider I ′′ = 〈A∗ ∪ {χ}, {χ}, (R ∪ {(χ, χ)})|A∗∪{χ,χ}, ∅〉 and its certain
projection AF′′. In AF′′, the argument φ is attacked by the unattacked argument χ , so φ is not
ST-sceptical-IN in AF′′. Then by Lemma 7 item 1, addition of χ is ST-sceptical-IN-relevant for φ

w.r.t. I2.
(4) ⇒ (0) If addition of χ is ST-sceptical-IN-relevant for φ w.r.t. I2 then by Lemma 7 item 1 there is

some I ′ = 〈A∗ ∪{χ, χ},∅, (R∪{(χ, χ)})|A∗∪{χ,χ}, ∅〉 in part(I2) such that φ is ST-sceptical-IN

in cert(I ′). Then φ would also be ST-sceptical-IN in cert(I ′′) where I ′′ = 〈A∗, ∅,R|A∗, ∅〉,
which is in part(〈A,A?,R, ∅〉).

(0) ⇒ (5) Suppose that there is some I∗ = 〈A∗,A?∗,R|A∗∪A?∗, ∅〉 in part(〈A,A?,R, ∅〉) such that φ

is ST-sceptical-IN in its certain projection AF∗; then φ is ST-credulous-IN in AF∗. This implies that
for I ′ = 〈A∗ ∪ {χ, χ},∅, (R ∪ {(χ, χ)})|A∗∪{χ,χ}, ∅〉 it also holds that φ is not ST-credulous-IN

in its certain projection AF′. Note that I ′ ∈ part(I2). Now consider I ′′ = 〈A∗ ∪ {χ}, {χ}, (R ∪
{(χ, χ)})|A∗∪{χ,χ}, ∅〉 and its certain projection AF′′. In AF′′, the argument φ is attacked by the
unattacked argument χ , so φ is ST-credulous-IN in AF′′. Then by Lemma 7 item 3, removal of χ

is ST-credulous-IN-relevant for φ w.r.t. I2.
(5) ⇒ (0) If removal of χ is ST-credulous-IN-relevant for φ w.r.t. I2 then by Lemma 7 item 3 there

is some I ′ = 〈A∗ ∪ {χ, χ},∅, (R ∪ {(χ, χ)})|A∗∪{χ,χ}, ∅〉 in part(I2) such that φ is not
ST-credulous-IN in cert(I ′), so φ is ST-sceptical-OUT and φ is ST-sceptical-IN in cert(I ′).
Then φ would also be ST-sceptical-IN in cert(I ′′) where I ′′ = 〈A∗, ∅,R|A∗, ∅〉, which is in
part(〈A,A?,R, ∅〉).

(0) ⇒ (6) Suppose that there is some I∗ = 〈A∗,A?∗,R|A∗∪A?∗, ∅〉 in part(〈A,A?,R, ∅〉) such that φ

is ST-sceptical-IN in its certain projection AF∗; then φ is ST-sceptical-OUT in AF∗. This implies
that for I ′ = 〈A∗, {χ},R|A∗∪{χ}, ∅〉 it also holds that φ is ST-sceptical-OUT in its certain projec-
tion AF′ = AF∗. Note that I ′ ∈ part(I1). Now consider I ′′ = 〈A∗ ∪ {χ},∅,R|A∗∪{χ}, ∅〉 and its
certain projection AF′′. In AF′′, the argument φ is attacked by the unattacked argument χ , so φ is
not ST-sceptical-OUT in AF′′. Then by Lemma 7 item 3, removal of χ is ST-sceptical-OUT-relevant
for φ w.r.t. I1.

(6) ⇒ (0) If removal of χ is ST-sceptical-OUT-relevant for φ w.r.t. I1 then by Lemma 7 item 3 there is
some I ′ = 〈A∗, ∅,R|A∗, ∅〉 in part(I1) such that φ is ST-sceptical-OUT in cert(I ′), so φ is
ST-sceptical-IN in cert(I ′). Since χ is not in A∗, I ′ is also in part(〈A,A?,R, ∅〉).
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(0) ⇒ (7) Suppose that there is some I∗ = 〈A∗,A?∗,R|A∗∪A?∗, ∅〉 in part(〈A,A?,R, ∅〉) such that φ

is ST-sceptical-IN in its certain projection AF∗; then φ is not ST-credulous-OUT in AF∗. This im-
plies that for I ′ = 〈A∗, {χ},R|A∗∪{χ}, ∅〉 it also holds that φ is not ST-credulous-OUT in its certain
projection AF′ = AF∗. Note that I ′ ∈ part(I1). Now consider I ′′ = 〈A∗ ∪ {χ},∅,R|A∗∪{χ}, ∅〉
and its certain projection AF′′. In AF′′, the argument φ is attacked by the unattacked argument χ ,
so φ is ST-sceptical-OUT in AF′′. Then by Lemma 7 item 1, addition of χ is ST-credulous-OUT-
relevant for φ w.r.t. I1.

(7) ⇒ (0) If addition of χ is ST-credulous-OUT-relevant for φ w.r.t. I1 then by Lemma 7 item 1 there is
some I ′ = 〈A∗, {χ},R|A∗∪{χ}, ∅〉 in part(I1) such that φ is not ST-credulous-OUT in cert(I ′),
so φ is ST-sceptical-IN in cert(I ′). Since χ is not in A∗, I ′ is also in part(〈A,A?,R, ∅〉).

(0) ⇒ (8) Suppose that there is some I∗ = 〈A∗,A?∗,R|A∗∪A?∗, ∅〉 in part(〈A,A?,R, ∅〉) such that φ

is ST-sceptical-IN in its certain projection AF∗; then φ is ST-sceptical-OUT in AF∗. This implies
that for I ′ = 〈A∗ ∪ {χ, χ},∅, (R ∪ {(χ, χ)})|A∗∪{χ,χ}, ∅〉 it also holds that φ is ST-sceptical-OUT

in its certain projection AF′. Note that I ′ ∈ part(I2). Now consider I ′′ = 〈A∗ ∪ {χ}, {χ}, (R ∪
{(χ, χ)})|A∗∪{χ,χ}, ∅〉 and its certain projection AF′′. In AF′′, the argument φ is attacked by the
unattacked argument χ , so φ is not ST-sceptical-OUT in AF′′. Then by Lemma 7 item 1, addition
of χ is ST-sceptical-OUT-relevant for φ w.r.t. I2.

(8) ⇒ (0) If addition of χ is ST-sceptical-OUT-relevant for φ w.r.t. I2 then by Lemma 7 item 1 there
is some I ′ = 〈A∗ ∪ {χ, χ},∅, (R ∪ {(χ, χ)})|A∗∪{χ,χ}, ∅〉 in part(I2) such that φ is ST-
sceptical-OUT in cert(I ′), so φ is ST-sceptical-IN in cert(I ′). Then φ would also be ST-
sceptical-IN in cert(I ′′) where I ′′ = 〈A∗, ∅,R|A∗, ∅〉, which is in part(〈A,A?,R, ∅〉).

(0) ⇒ (9) Suppose that there is some I∗ = 〈A∗,A?∗,R|A∗∪A?∗, ∅〉 in part(〈A,A?,R, ∅〉) such that
φ is ST-sceptical-IN in its certain projection AF∗; then φ is not ST-credulous-OUT in AF∗. This
implies that for I ′ = 〈A∗ ∪ {χ, χ},∅, (R ∪ {(χ, χ)})|A∗∪{χ,χ}, ∅〉 it also holds that φ is not
ST-credulous-OUT in its certain projection AF′. Note that I ′ ∈ part(I2). Now consider I ′′ =
〈A∗ ∪ {χ}, {χ}, (R ∪ {(χ, χ)})|A∗∪{χ,χ}, ∅〉 and its certain projection AF′′. In AF′′, the argument
φ is attacked by the unattacked argument χ , so φ is ST-credulous-OUT in AF′′. Then by Lemma 7
item 3, removal of χ is ST-credulous-OUT-relevant for φ w.r.t. I2.

(9) ⇒ (0) If removal of χ is ST-credulous-OUT-relevant for φ w.r.t. I2 then by Lemma 7 item 3 there
is some I ′ = 〈A∗ ∪ {χ, χ},∅, (R ∪ {(χ, χ)})|A∗∪{χ,χ}, ∅〉 in part(I2) such that φ is not ST-
credulous-OUT in cert(I ′), so φ is ST-sceptical-IN in cert(I ′). Then φ would also be ST-
sceptical-IN in cert(I ′′) where I ′′ = 〈A∗, ∅,R|A∗, ∅〉, which is in part(〈A,A?,R, ∅〉). �

Proposition 19. ST-sceptical-UNDEC-RELEVANCE is �
p

2 -complete.

Proof. First, we will show that ST-sceptical-UNDEC-RELEVANCE is in �
p

2 . By Proposition 5,
ST-sceptical-UNDEC-JUSTIFICATION is CoNP-complete. By Proposition 11, this implies that ST-
sceptical-UNDEC-RELEVANCE is in �

p

2 .
For the hardness proof, we use an existing result on the problem of necessary nonempty existence

under ST semantics from [21], which is defined as follows: given an IAF I, does each completion AF′
of I have a nonempty ST extension? It is shown in [21, Theorem 21] that this problem is �

p

2 -hard.
Let I = 〈A,A?,R,R?〉 be an arbitrary instance of the necessary nonempty existence problem under

ST semantics. If A = ∅ then I is a negative instance, because there is a completion AF′ = 〈A′,R′〉 of
I where A′ = ∅, which means that AF′ has no nonempty ST extension. Alternatively, assume that A
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contains at least one argument and let A be an arbitrary argument in A. Then we transform I into an in-
stance (I ′, A, U) of the argument removal variant of the ST-sceptical-UNDEC-RELEVANCE problem,
where:

• U is a fresh uncertain argument, not occurring in A ∪ A?; and
• I ′ = 〈A,A? ∪ {U},R ∪ {(U, B)|B ∈ A ∪ A?},R?〉.

Next, we will show that I is a positive instance of necessary nonempty existence under ST semantics iff
(I ′, A, U) is a negative instance of ST-sceptical-UNDEC-RELEVANCE:

⇒ First suppose that I is a positive instance of necessary nonempty existence under ST semantics.
Now let I ′′ = 〈A′′,A?′′,R′′,R?′′〉 be an arbitrary partial completion of I ′ (which is the IAF
in the transformed problem). We will prove that there is no completion of I ′′ where A is ST-
sceptical-UNDEC by distinguishing two options:

• If U ∈ A′′ then each argument other than U (including A) in each completion of I ′′ is attacked
by the unattacked argument U , so {U} is a ST extension. Since A is attacked by an argument in
the ST extension, it cannot be ST-sceptical-UNDEC. This holds for every completion of I ′′.

• Otherwise, U /∈ A′′. Then every completion of I ′′ is also a completion of I. Given that I is
a positive instance of necessary nonempty existence under ST semantics, each completion of
I has a (nonempty) ST extension, which must include either A or some argument attacking A.
Then there is no completion of I in which A is ST-sceptical-UNDEC, which implies that there
is no completion of I ′′ either in which A is ST-sceptical-UNDEC.

Given that there is no completion of I ′′ in which A is ST-sceptical-UNDEC, there can be no partial
completion I ′′′ of I ′′ such that A is stable-ST-sceptical-UNDEC w.r.t. cert(I ′′′). Then there is
no minimal stable-ST-sceptical-UNDEC partial completion for A w.r.t. I, which implies that the
removal of U is not ST-sceptical-UNDEC relevant for A w.r.t. I ′′. In other words: (I ′, A, U) is a
negative instance of ST-sceptical-UNDEC-RELEVANCE.

⇐ Now suppose that I is a negative instance of necessary nonempty existence under ST semantics.
Then there is some completion AF′ = 〈A′,R′〉 of I that has no nonempty ST extension. Recall
that A′ contains at least one argument (A), so AF′ cannot have an empty ST extension (as any ST

extension must contain either A or an attacker of A). This implies that AF′ has no ST extension at
all – which means that A must be ST-sceptical-UNDEC in AF′. Now construct I∗ = 〈A′, {U},R′ ∪
{(U, B)|B ∈ A∪A?},∅〉. Note that I∗ is a partial completion of I ′ and that cert(I∗) = AF′. So
I ′ has a partial completion I∗ such that A is ST-sceptical-UNDEC in cert(I∗).
Now consider the IAF I∗′ = 〈A′ ∪ {U},∅,R′ ∪ {(U, B)|B ∈ A ∪ A?},∅〉, which is also a
partial completion of I ′. A is not ST-sceptical-UNDEC in cert(I∗), because cert(I∗) has a ST

extension {U} and U attacks A.
Given that I ′ has a partial completion I∗ such that A is ST-sceptical-UNDEC in cert(I∗)
while A is not ST-sceptical-UNDEC in cert(I∗′) and thanks to specific properties of I∗ and
I∗′ (having only U and no uncertain element), by Lemma 7 it must be that the removal
of U is ST-sceptical-UNDEC-relevant w.r.t. I ′. So (I ′, A, U) is a positive instance of ST-
sceptical-UNDEC-RELEVANCE.

Similarly, we can transform I into an instance (I ′′, A, U ′) of the argument addition variant of the
ST-sceptical-UNDEC-RELEVANCE problem, where:

• U is a fresh argument, not occurring in A ∪ A?;
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• U ′ is a fresh uncertain argument, not occurring in A ∪ A?; and
• I ′′ = 〈A ∪ {U},A? ∪ {U ′},R ∪ {(U, B)|B ∈ A ∪ A?} ∪ {(U ′, U)},R?〉.

Then I is a positive instance of necessary nonempty existence under ST semantics iff (I ′′, A, U ′) is a
negative instance of ST-sceptical-UNDEC-RELEVANCE.

For the attack addition variant of the ST-sceptical-UNDEC-RELEVANCE problem, the transformation
from I into (I ′′′, A, (U ′, U)) is very similar:

• U and U ′ are fresh arguments, not occurring in A ∪ A?; and
• I ′′′ = 〈A ∪ {U, U ′},∅,R ∪ {(U, B)|B ∈ A ∪ A?},R? ∪ {(U ′, U)}〉.

Then I is a positive instance of necessary nonempty existence under ST semantics iff (I ′′′, A, (U ′, U))

is a negative instance of ST-sceptical-UNDEC-RELEVANCE.
Finally, the transformation for the attack removal variant of the ST-sceptical-UNDEC-RELEVANCE

problem from I into (I ′′′, A, (U ′′, U ′)) is:

• U , U ′ and U ′′ are fresh arguments, not occurring in A ∪ A?; and
• I ′′′′ = 〈A ∪ {U, U ′, U ′′},∅,R ∪ {(U, B)|B ∈ A ∪ A?} ∪ {(U ′, U)},R? ∪ {(U ′′, U ′)}〉.

Then I is a positive instance of necessary nonempty existence under ST semantics iff (I ′′′′, A, (U ′′, U ′))
is a negative instance of ST-sceptical-UNDEC-RELEVANCE.

We have shown for each of the four variants of the relevance problem that I is a positive instance
of necessary nonempty existence under ST semantics iff the transformed instance is a negative in-
stance of ST-sceptical-UNDEC-RELEVANCE. Given that the necessary nonempty existence problem un-
der ST semantics is �

p

2 -hard, the complementary problem of ST-sceptical-UNDEC-RELEVANCE must
be �

p

2 -hard. Together with the membership result from the beginning of this proof, this implies that
ST-sceptical-UNDEC-RELEVANCE is �

p

2 -complete. �

Proposition 20. ST-sceptical-existent-IN-RELEVANCE and ST-sceptical-existent-OUT-RELEVANCE are
�

p

2 -complete.

Proof. Membership in �
p

2 directly follows from the complexity of ST-sceptical-existent-IN-
and -OUT-JUSTIFICATION and Proposition 11, in the following way: ST-sceptical-existent-IN-
JUSTIFICATION is DP-complete by [12, page 92]. By Lemma 1, ST-sceptical-existent-OUT-
JUSTIFICATION is DP-complete as well. Then by Proposition 11 the problems of ST-sceptical-
existent-IN-RELEVANCE and ST-sceptical-existent-OUT-RELEVANCE are in NPDP = �

p

2 ; note that
NPDP ⊆ �

p

2 as any DP query can be answered by two (adaptive) SAT queries.
In order to prove �

p

2 -hardness, we reduce from possible sceptical-existent acceptance under ST se-
mantics (Definition 6), which was proven to be �

p

2 -hard in [3, Theorem 25]. Let (I, A) be an arbitrary
instance of possible sceptical-existent acceptance under ST semantics where I = 〈A,A?,R,R?〉. We
transform this into an instance (I ′, A, U) of ST-sceptical-existent-IN-RELEVANCE where U is a fresh
uncertain argument that is not in A ∪ A? and I ′ = 〈A,A? ∪ {U},R ∪ {(U, U)},R?〉. Next, we will
prove that (I, A) is a positive instance of possible sceptical-existent acceptance under ST semantics iff
(I ′, A, U) is a positive instance of ST-sceptical-existent-IN-RELEVANCE.

⇒ If (I, A) is a positive instance of possible sceptical-existent acceptance under ST semantics then
there is some completion AF′ = 〈A′,R′〉 of I that has a ST extension and such that A is in each
ST extension of AF′.
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Construct the IAF I ′′ = 〈A′, {U},R′ ∪ {(U, U)},∅〉; note that cert(I ′′) = AF′ and I ′′ ∈
part(I ′). So A is ST-sceptical-existent-IN w.r.t. cert(I ′′).
Also construct I ′′′ = 〈A′ ∪ {U},∅,R′ ∪ {(U, U)},∅〉 – this is a partial completion of I ′ as well.
The certain projection of I ′′′ contains the self-attacking argument U , which is not attacked by
any other argument. Consequently, cert(I ′′′) cannot have a ST extension, so A cannot be ST-
sceptical-existent-IN w.r.t. cert(I ′′′).
Then by Lemma 7, the removal of U is ST-sceptical-existent-IN-relevant w.r.t. I. In other words,
(I ′, A, U) is a positive instance of ST-sceptical-existent-IN-RELEVANCE.

⇐ If (I, A) is a negative instance of possible sceptical-existent acceptance under ST semantics then
there is no partial completion I ′′ of I such that A is ST-sceptical-existent-IN in cert(I ′′). Next,
we will show that there is no partial completion I ′′′ of I ′ either for which A is ST-sceptical-
existent-IN in cert(I ′′′). Let I ′′′ = 〈A′′′,A?′′′,R′′′,R?′′′〉 be an arbitrary partial completion of
I ′.

• If U ∈ A′′′ then cert(I ′′′) contains the self-attacking argument U that is not attacked by any
other argument. This implies that cert(I ′′′) does not have a ST extension. Consequently, A

cannot be ST-sceptical-existent-IN in cert(I ′′′).
• Alternatively, U /∈ A′′′. In that case, I ′′′ is also a partial completion of I, so A cannot be

ST-sceptical-existent-IN in cert(I ′′′).

Since I ′′′ was chosen arbitrarily from part(I ′), there can be no partial completion of I ′′′
such that A is ST-sceptical-existent-IN in cert(I ′′′). This implies that there is no ST-sceptical-
existent-IN-relevant operation w.r.t. I ′. Therefore, (I ′, A, U) is a negative instance of ST-
sceptical-existent-IN-RELEVANCE.

For ST-sceptical-existent-OUT-RELEVANCE, we transform an arbitrary instance of possible sceptical-
existent acceptance under ST semantics (I, A) to an instance (I ′′, A, U) of ST-sceptical-existent-OUT-
RELEVANCE, where U is a fresh uncertain argument that is not in A ∪ A?, B is a fresh argument that
is not in A ∪ A? and I ′′ = 〈A ∪ {B},A? ∪ {U},R ∪ {(B, A), (U, U)},R?〉. Then (I, A) is a positive
instance of possible sceptical-existent acceptance under ST semantics iff (I ′′, A, U) is a positive instance
of ST-sceptical-existent-OUT-RELEVANCE. �
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