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Abstract. In this paper, we propose an argumentation formalism that allows for both deductive and abductive argumentation,
where ‘deduction’ is used as an umbrella term for both defeasible and strict ‘forward’ inference. Our formalism is based on
an extended version of our previously proposed information graph (IG) formalism, which provides a precise account of the
interplay between deductive and abductive inference and causal and evidential information. In the current version, we consider
additional types of information such as abstractions which allow domain experts to be more expressive in stating their knowl-
edge, where we identify and impose constraints on the types of inferences that may be performed with the different types of
information. A new notion of attack is defined that captures a crucial aspect of abductive reasoning, namely that of competi-
tion between abductively inferred alternative explanations. Our argumentation formalism generates an abstract argumentation
framework and thus allows arguments to be formally evaluated. We prove that instantiations of our argumentation formalism
satisfy key rationality postulates.
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1. Introduction

In the legal and forensic domains, reasoning about evidence plays a central role in the rational pro-
cess of proof [2,4]. To aid in this process, various graph-based tools exist that allow domain experts to
make sense of a mass of evidence in a case, such as mind maps [23,35], argument diagrams [6,23] and
Wigmore charts [40]. Because of their informal nature, these tools typically do not directly allow for
formal evaluation using AI techniques such as computational argumentation [13]. Hence, we wish to
formalise and disambiguate analyses performed using such tools in a manner that (1) allows for formal
evaluation and that (2) adheres to principles from the literature on reasoning about evidence [2,4,17,25],
while (3) allowing inference to be performed and visualised in a manner that is closely related to the
way inference is performed and visualised by domain experts using such tools.

As we described in previous work [39], principles from the literature on reasoning about evidence state
that inference is often performed using domain-specific generalisations [2,4,6], also called defaults [25,
32], which capture knowledge about the world in conditional form. A distinction can be made between
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causal generalisations (e.g. ‘fire typically causes smoke’) and evidential generalisations (e.g. ‘smoke is
evidence for fire’) [4,25]. In the current paper, we also consider generalisations that are neither causal nor
evidential; examples are abstractions [4,12] and mere statistical correlations. Inference can be performed
in a deductive or forward fashion, where from a generalisation (e.g. ‘fire typically causes smoke’) and its
antecedent (fire), the consequent (smoke) is strictly or defeasibly inferred, and in an abductive [12,17] or
backward fashion, where from a causal generalisation or an abstraction and by affirming the consequent
(smoke), the antecedent (fire) is defeasibly inferred. Note that the term ‘deduction’ is not consistently
used in the literature, as it can either mean strict inference, in which the consequent universally holds
given the antecedents (e.g. [20]) or defeasible inference, in which the consequent tentatively holds given
the antecedents (e.g. [33]). To cover both meanings, in this paper ‘deduction’ is used as an umbrella term
for both defeasible ‘forward’ inference and strict ‘forward’ inference.

Pearl [25, p. 264] argued that people generally consider it difficult to express knowledge using only
causal generalisations, and in an empirical study, van den Braak and colleagues [36] found that while
there are situations in which subjects consistently choose either causal or evidential modelling tech-
niques, there are also many examples in which people use both types of generalisations in their rea-
soning. For instance, subjects often considered testimonies to be evidential, whereas a motive for com-
mitting an act is considered a cause for committing that act. This discussion illustrates that in formal
accounts of reasoning about evidence, it is important to allow for causal and evidential generalisations
[4]. Moreover, in this paper we show that it is important to also allow for abstractions and other types
of generalisations, as these allow domain experts to be more expressive in stating their knowledge. The
need for including these types of generalisations will become apparent from the examples we consider
and the conceptional analysis of reasoning about evidence we provide.

When performing analyses using aforementioned tools such as mind maps, domain experts naturally
mix the different types of generalisations and perform both deductive and abductive inferences, where
the used generalisations and the inference type (deduction, abduction) are typically left implicit. Hence,
in previous work [39] we set out to formalise analyses performed using these tools by providing a precise
account of the interplay between the different types of inferences and generalisations and the constraints
on performing inference we need to impose in terms of the information graph (IG) formalism. In this
paper, we propose an extension of the IG-formalism, where in addition to causal and evidential general-
isations we now also allow for abstractions and introduce a category of generalisations termed ‘other’,
consisting of generalisations that are neither causal nor evidential nor abstraction such as aforemen-
tioned mere correlations, thereby increasing the expressivity of the IG-formalism. We particularly focus
on identifying conditions under which performing inference with abstractions can lead to undesirable
results. Specifically, care should be taken that no version of an event at a lower level of abstraction is
inferred if an alternative version of this event at a lower level of abstraction was already previously
inferred. Hence, we extend on the constraints imposed by Pearl’s C–E system [25] which say that, in
performing inference, care should be taken that no cause for an effect is inferred in case an alternative
cause for this effect was already previously inferred. Moreover, in this paper we also consider excep-
tional circumstances under which the constraints of Pearl’s C–E system should not be imposed, namely
in case enabling conditions [11] are provided under which a generalisation may be used in performing
inference. Based on these constraints and our conceptional analysis of reasoning about evidence, we
define how deductive and abductive inference may be performed with IGs. Most existing formalisms
that allow both inference types with causal and evidential information, abstractions, and other types of
information are logic-based (e.g. [4,5,12,20]); instead, we opt for a graph-based formalism to remain
closely related to the way analyses are visualised using aforementioned graph-based tools.
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The information specified in an IG serves as a source of information that can be used to facilitate the
construction of AI systems for which formal semantics are defined. In earlier work [39], we investigated
the application of our IG-formalism in facilitating the construction of Bayesian networks (BNs) [16],
graphical models of joint probability distributions. In this paper, we instead focus on argumentation,
where we propose an argumentation formalism based on IGs that allows for both deductive and abductive
argumentation [38]. Previous work on abduction includes work on formal logical models of abductive
reasoning (e.g. [12,17]) and the work of Kakas and colleagues on abductive logic programming [19].
However, to the best of our knowledge, our proposed formalism is one of the first formalisms that models
combined abductive and deductive reasoning in a formalism for structured argumentation. The closest
to the current paper is Bex’s integrated theory of causal and evidential arguments [5], which is based on
the ASPIC+ framework [20]. In Bex’s integrated theory, the roles of generalisation and inference are not
separated; instead, causal and evidential inferences are defined and arguments are constructed by forward
chaining such inferences. In contrast to [5] we put special emphasis on the constraints that need to be
imposed on the types of inferences that may be performed with the different types of generalisations,
where we formally prove that arguments based on IGs indeed adhere to the identified constraints. Finally,
compared to the ASPIC+ framework [20], which only allows for deductive reasoning, we allow for
both deductive and abductive reasoning and introduce a new type of conflict, namely conflict between
competing alternative explanations [17], which is currently not accounted for in that framework. The
relations to existing formalisms is further discussed in Section 6.

Our approach generates an abstract argumentation framework as in Dung [13], that is, a set of argu-
ments with a binary attack relation, which thus allows arguments to be formally evaluated according
to Dung’s argumentation semantics. Besides allowing for rebuttal and undercutting attack, which are
among the types of attacks that are typically distinguished in structured argumentation [20,27], we also
define the notion of alternative attack among arguments based on IGs, a concept based on the notion of
competing alternative explanations that is inspired by [3,5]. Alternative attack captures a crucial aspect
of abductive reasoning, namely that of conflict between abductively inferred conclusions [17].

Our argumentation formalism extends a preliminary version proposed in [38] that was based on a more
restricted version of our IG-formalism [39] in which only causal and evidential generalisations without
enablers were considered. Moreover, in comparison to our earlier work [38] we now also prove that key
rationality postulates [9] are satisfied by instantiations of our formalism, which implies that anomalous
results as identified by [9] are avoided.

To summarise the main contributions of this paper, we propose an argumentation formalism that allows
for both deductive and abductive argumentation, the latter of which has received relatively little attention
in argumentation. Our argumentation formalism is based on an extended version of our IG-formalism,
where in addition to causal and evidential generalisations we now also allow for abstractions and other
types of generalisations, as well as generalisations that include enabling conditions, where constraints are
imposed on the types of inferences that may be performed with these new types of generalisations. A new
notion of attack is defined, namely alternative attack. Our approach allows arguments to be evaluated
using Dung’s semantics. We formally prove that instantiations of our argumentation formalism satisfy
key rationality postulates [9].

The paper is structured as follows. In Section 2 we provide a conceptual analysis of reasoning about
evidence. In Section 3 we present examples of analyses performed using informal reasoning tools typ-
ically used by domain experts, namely Wigmore charts and mind maps, which illustrates that both de-
ductive and abductive inference is performed by domain experts using both causal and evidential gen-
eralisations, abstractions, and other types of generalisations. Based on these examples, in Section 4 we
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motivate and define our IG-formalism. In Section 5 we then define our argumentation formalism based
on our IG-formalism and prove formal properties of our approach. In Section 6 we discuss related work.
In Section 7 we summarise our findings and conclude.

2. Reasoning about evidence

In this section, we provide a conceptual analysis of reasoning about evidence, where we review the
terminology used to describe it and introduce assumptions that demarcate the scope of the work pre-
sented in this paper. This analysis extends the analysis provided in our previous work [39] in which only
causal and evidential generalisations without enablers were considered. More specifically, we now also
consider abstractions and other types of generalisations, as well as generalisations that include enabling
conditions. The concepts and assumptions introduced in this section are formalised in Sections 4 and 5.

Inference is the process of drawing conclusions from premises starting from the evidence, where ev-
idence is that what has been established with certainty in the context under consideration. For instance,
in the context of a legal trial, the evidence consists of that what is actually observed by a judge or jury,
such as documents (e.g. police and autopsy reports) and other tangible evidence, as well as testimo-
nial evidence [2]. Inference is often performed using domain-specific generalisations [2,4,6], also called
defaults [25,32], which capture knowledge about the world in conditional form. Generalisations can
either be strict or defeasible, where defeasible generalisations are of the form ‘If a1, . . . , an, then usu-
ally/normally/typically b’ and strict generalisations are of the form ‘If a1, . . . , an, then always b’. Here,
claims a1, . . . , an are called the antecedents of the generalisation and b its consequent, where we assume
that claims are literal propositions and that generalisations have one or more antecedents and exactly one
consequent. In case a generalisation has multiple antecedents, it expresses that only the antecedents to-
gether allow us to infer the consequent. We semi-formally denote generalisations as a1, . . . , an → b,
among others to ease the description of examples in this section and in Section 3. For defeasible gen-
eralisations, exceptional circumstances can be provided under which the generalisation may not hold,
whereas strict generalisations hold without exception. An example of a (defeasible) generalisation is ‘If
fire, then typically smoke’, where ‘fire’ is its antecedent and ‘smoke’ its consequent. An example of an
exception to this generalisation is that sufficient oxygen is present for complete combustion to occur.

A distinction can be made between causal and evidential generalisations [4,25], where instead of writ-
ing these generalisations in the form ‘If . . . , then . . .’, causal generalisations are written as ‘c1, . . . , cn

usually/normally/typically cause e’ (e.g. ‘fire typically causes smoke’) and evidential generalisations are
written as ‘e1, . . . , en are evidence for c’ (e.g. ‘smoke is evidence for fire’). For a causal generalisation,
its antecedents express causes for the consequent, and for an evidential generalisation, its consequent
expresses the usual cause for its antecedents. In the context of commonsense reasoning about evidence,
causal and evidential generalisations are often assumed to be defeasible (see e.g. [4,18]); in this paper,
this assumption is also made. The examples considered throughout this paper illustrate that causal and
evidential generalisations are typically not strict.1

In this paper, we also consider generalisations that are neither causal nor evidential. For instance, ab-
stractions [4,12] allow for reasoning at different levels of abstraction. More precisely, abstractions are
of the form ‘p1, . . . , pn can usually/normally/typically/always be considered a specialisation of q’ (e.g.
guns can usually be considered deadly weapons), where antecedents p1, . . . , pn are considered to be

1Note that strict generalisations such as strict rules from classical logic and definitions can be expressed using strict general-
isations of type ‘other’ and strict abstractions.
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Table 1

Table indicating for each generalisation type whether generalisations may be defeasible or strict

Causal generalisations Evidential generalisations Abstractions Other generalisations
Defeasible V V V V
Strict X X V V

more specific than the more abstract consequent q. As noted by Console and Dupré [12], abstractions
are syntactically the same as causal generalisations but they are semantically different in that the an-
tecedents of abstractions do not express causes for the consequent or vice versa. Abstractions may be
defeasible (cf. [4]) but may also be strict (cf. [12]); an example of a strict abstraction is generalisation
lung_cancer →a cancer, which states that lung cancer is a type of cancer. An example of defeasible
abstraction is gun →a deadly_weapon, where an example of an exception to this generalisation is that
the gun is a non-functional replica, or a water gun.

Another example of a different type of generalisation is a generalisation representing a mere statistical
correlation, such as a correlation between homelessness and criminality. While there may be one or
more confounding factors that cause both homelessness and criminality (e.g. unemployment), a domain
expert may be unaware of these factors or may wish to refrain from expressing them explicitly. In
this paper, we distinguish between generalisations that are causal, evidential, abstraction, or of another
type, where generalisations of type ‘other’ may be defeasible or strict. Specifically, as this category
contains all possible types of generalisations other than causal, evidential and abstraction, we allow
for the option to distinguish between strict and defeasible generalisations among these generalisations.
Table 1 provides an overview of the different generalisation types, where for each type it is indicated
whether generalisations may be defeasible or strict. The notation →c, →e, →a and →o is used for the
different types of generalisations, respectively.

Different types of inferences can be performed with generalisations depending on whether their ante-
cendents or consequent are affirmed in that they are either observed or inferred; here, a claim is inferred
iff it is either deductively or abductively inferred, where in deductive inference the consequent is inferred
from the antecedents and in abductive inference the antecendents are inferred from the consequent. These
two inference types are now considered in more detail.

2.1. Deductive inference

Inference can be performed in a deductive fashion, where from a generalisation and by affirming the
antecedents, the consequent is inferred by modus ponens on the generalisation. As noted in the introduc-
tion, the term ‘deduction’ is used for both defeasible and strict ‘forward’ inference; hence, deduction is
not necessarily a stronger or more reliable form of inference than abduction, which is a type of defeasi-
ble inference. Defeasible deduction can only be performed using defeasible generalisations (of any type)
and not using strict generalisations (see Table 2). Strict deductive inference can only be performed using
strict abstractions and strict generalisations of type ‘other’. For a given instance of deductive inference,
it will be explicitly specified whether it concerns strict or defeasible deductive inference.

Example 1. Consider causal generalisation g : fire →c smoke. By affirming g’s antecedent fire, its
consequent smoke is defeasibly deductively inferred.

The following example illustrates strict deductive inference.
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Table 2

Table indicating for defeasible and strict generalisations of every type which types of inferences may be performed

Causal
generalisations

Evidential
generalisations

Defeasible
abstractions

Strict
abstractions

Defeasible
other

generalisations

Strict other
generalisations

Defeasible deduction V V V X V X
Strict deduction X X X V X V
Abduction V X V V X X

Example 2. Consider strict abstraction g : lung_cancer →a cancer. Upon observing that a person has
lung cancer, we can strictly deductively infer that the person has cancer using g.

Prediction [33] is a specific type of deductive inference in which the consequent of a causal general-
isation is deductively inferred by affirming its antecedents. Specifically, as the antecedents of a causal
generalisation express causes for the consequent, the consequent is said to be predicted from the an-
tecedents in this case. Example 1 provides an example of prediction.

2.2. Abductive inference

Abduction [12,17], a type of defeasible inference, can be performed using causal generalisations and
abstractions: from a causal generalisation or an abstraction and by affirming the consequent, the an-
tecedents are inferred, since if the antecedents are true it would allow us to deductively infer the conse-
quent modus-ponens-style. Following [17], in case causes c1, . . . , cn and c′

1, . . . , c
′
m are abductively in-

ferred from common effect e using causal generalisations g1 : c1, . . . , cn →c e and g2 : c′
1, . . . , c

′
m →c e,

then ci and c′
j for i ∈ {1, . . . , n}, j ∈ {1, . . . , m}, ci �= c′

j are considered to be competing alternative
explanations for e. We assume that causes ci (and c′

j ) are not in competition among themselves.

Example 3. Consider the following causal generalisations:

g1 : fire →c smoke;
g2 : smoke_machine →c smoke.

By affirming the common consequent (smoke), fire and smoke_machine are abductively inferred, which
are then competing alternative explanations of smoke.

Abduction can also be performed using abstractions [4,12], where the used abstraction can either
be defeasible (cf. [4]) or strict (cf. [12]). An example of a model including strict abstractions is that
of Console and Dupré [12], in which both explanatory axioms (comparable to causal generalisations)
and abstraction axioms are used to explain observations. Multiple explanations that are inferred using
abstraction axioms can then be considered competing alternative explanations. Note that an abductive
inference step with a strict abstraction is still defeasible, as it concerns an inference step from the more
abstract consequent to a more specific antecedent. Following Console and Dupré [12] and Bex [4], we
allow for abduction using both strict and defeasible abstractions, where in performing abduction with ab-
stractions g1 : p1, . . . , pn →a q and g2 : p′

1, . . . , p
′
m →a q the antecedents pi and p′

j for i ∈ {1, . . . , n},
j ∈ {1, . . . , m}, ci �= c′

j are considered to be competing alternative explanations of the common conse-
quent q. We assume that antecedents pi (and p′

j ) are not in competition among themselves.
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Example 4. Consider the following defeasible abstractions:

g1 : gun →a deadly_weapon;
g2 : knife →a deadly_weapon.

By affirming the common consequent (deadly_weapon), gun and knife are abductively inferred using
generalisations g1 and g2, which are then competing alternative explanations of deadly_weapon.

The following example illustrates abductive inference with strict abstractions.

Example 5. Consider the following strict abstractions:

g′
1 : lung_cancer →a cancer;

g′
2 : colon_cancer →a cancer.

Upon observing that a person has cancer, lung_cancer and colon_cancer are abductively inferred, which
are then competing alternative explanations of cancer.

2.3. Representing causal knowledge

Abductive inference with causal generalisations and deductive inference with evidential gen-
eralisations are related: in some cases, we will accept not only causal generalisation ‘c usu-
ally/normally/typically causes e’ but also evidential generalisation ‘e is evidence for c’ [5,25], which
we will call the evidential counterpart of the causal generalisation. However, it can be argued that we
only accept the evidential counterpart of a causal generalisation if c is the usual cause of e, where we
assume that only one cause can be the usual cause of e.

Example 6. Fire can be considered the usual cause of smoke, so we will accept both causal generali-
sation g : fire →c smoke and its evidential counterpart g′ : smoke →e fire. In this case, abduction with
generalisation g can be encoded as deduction with generalisation g′. Because a smoke machine cannot
be considered the usual cause of smoke, we will accept causal generalisation smoke_machine →c smoke
but we will not accept evidential generalisation smoke →e smoke_machine.

Note that a causal generalisation g can only have an evidential counterpart g′ in case g has a single an-
tecedent, as we assume generalisations have a single consequent but multiple antecedents. Furthermore,
as we assume that only one cause can be the usual cause of e, only one of the causal generalisations
c1 →c e or c2 →c e can be replaced by an evidential generalisation. Hence, we do not consider c1 and c2

to be competing alternative explanations of e in case deductive inference is performed using evidential
generalisations e →e c1 and e →e c2.

2.4. Mixed inference and inference constraints

Deductive and abductive inference can be iteratively performed, where mixed abductive-deductive
inference is also possible.

Example 7. Suppose that from the causal generalisation g1 : fire →c smoke and by affirming its conse-
quent (smoke), its antecedent (fire) is inferred. Now, if the additional causal generalisation g2 : fire →c

heat is provided, then its consequent (heat) can be deductively inferred (or predicted) as the antecedent
(fire) has been previously abductively inferred.
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2.4.1. Constraints on performing inference with causal and evidential generalisations
Mixed deductive inference, using both causal and evidential generalisations, can also be performed

[5], but as noted by Pearl [25] care should be taken in performing mixed inference that no cause for an
effect is inferred in case an alternative cause for this effect was already previously inferred.

Example 8. Consider the example in which causal generalisation g1 : smoke_machine →c smoke and
evidential generalisation g2 : smoke →e fire are provided. Deductively chaining these generalisations
would make us infer that there is a fire when seeing a smoke machine, which is clearly undesirable.

Similarly, in performing mixed deductive-abductive inference, care should be taken that no cause for
an effect is inferred in case an alternative cause for this effect was already previously inferred.

Example 9. Consider Example 8, where instead of an evidential generalisation g2 : smoke →e fire a
causal generalisation g2 : fire →c smoke is provided. Upon seeing a smoke machine, this would make us
infer that there is a fire in case deductive inference and abductive inference are performed in sequence,
which is again undesirable.

Accordingly, we wish to prohibit these types of inference patterns, and refer to the constraint that no
cause for an effect should be inferred in case an alternative cause for this effect was already previously
inferred as Pearl’s constraint [25].

The above discussion can be extended to generalisations with multiple antecedents.

Example 10. Suppose that the following generalisations are provided:

g1 : high_body_temperature →e fever;
g2 : smoke →c coughing;
g3 : fever, coughing →e pneumonia.

Upon observing that a person has high body temperature and that there is smoke, this would make us
infer that the person has a fever and is coughing using generalisations g1 and g2, respectively. In turn,
this would make us infer that the person has pneumonia using generalisation g3, which is undesirable: as
a cause for coughing was already previously inferred (smoke), we should not be able to infer a different
cause for coughing (pneumonia). Specifically, fever is in itself not a sufficient condition for inferring
pneumonia: coughing is also necessary. Only in case a separate evidential generalisation g4 : fever →e

pneumonia is provided should we be able to infer pneumonia.

Similar problems arise in performing inference using causal generalisations with multiple antecedents.
Accordingly, we wish to extend Pearl’s constraint to generalisations with multiple antecedents. However,
there are exceptions under which we do not wish to prohibit the aforementioned types of inference pat-
terns, namely in case additional circumstances, also called enabling conditions [11], or enablers, are
provided under which a causal or evidential generalisation may be used in performing inference. Gener-
alisations that include enablers are of the general form e1, . . . , em, a1, . . . , an → b, where e1, . . . , em are
its enablers and a1, . . . , an its actual antecedents. For a causal generalisation, only its actual antecedents
and not its enablers express causes for the consequent. Similarly, for an evidential generalisation its con-
sequent only expresses the usual cause for its actual antecedents and not for its enablers. Causality is a
contentious topic, and it is easy to disagree about whether an event is an actual cause or an enabler. Cheng
and Novick [11] note that an event is typically viewed as an actual cause if it describes a situation that
deviates from ‘normal’ circumstances. For instance, lighting a match is considered a cause of fire, but
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the presence of oxygen is typically not consider a cause of fire as it is normal that oxygen is present. This
is, however, also context-dependent, and oxygen can be considered a cause of fire in situations where
oxygen is typically not present (e.g. in space). We note that generalisations capture knowledge about the
world as perceived by the person stating the knowledge, and that the distinction between enablers and
actual causes allows domain experts to be more expressive in stating their knowledge.

The following example illustrates that deductively chaining a causal and an evidential generalisation
does not lead to undesirable results for evidential generalisations that include enablers.

Example 11. Consider the example in which the following evidential generalisation is provided:

g1 : fire, dry_wood →e lightning_strike.

Generalisation g1 states that from the presence of dry_wood and fire we can conclude that there may have
been a lightning strike. In this case, dry_wood is an enabler of the generalisation, and lightning_strike
cannot be considered a cause for antecedent dry_wood. Only in case fire was previously deductively
inferred using a causal generalisation (e.g. g2 : torch →c fire) should the application of evidential gener-
alisation g1 be blocked. However, in case dry_wood was previously inferred using a causal generalisation
(e.g. g3 : warm_summer →c dry_wood) and fire is not inferred using a causal generalisation, then we
should be able to infer lightning_strike using generalisation g1.

Similarly, inference may be performed using causal generalisations that include enablers, but Pearl’s
constraint does not need to be reconsidered in this case as illustrated by the following example.

Example 12. Consider the example in which the following causal generalisations are provided:

g1 : torch →c fire;
g2 : match, oxygen →c fire.

In this case, the presence of oxygen is an enabler of generalisation g2, as it cannot be considered an
actual cause of fire. Upon striking a match in the presence of oxygen, we can deductively infer that
there is a fire using generalisation g2. Similar to Example 9, we should now not be able to abductively
infer torch using generalisation g1. Similarly, performing deduction and abduction in sequence using
generalisations g1 and g2 is undesirable.

To summarise this section, we wish to prohibit (1) subsequent deductive inference using a causal and
an evidential generalisation in case the consequent of the causal generalisation is an actual antecedent of
the evidential generalisation and not an enabler, and (2) subsequent deductive and abductive inference
using two causal generalisations with the same consequent. Note that, while these constraints deviate
from Pearl’s original constraints [25] as enabling conditions are now also taken into account, we will
refer to these constraints as Pearl’s constraint throughout this paper.

2.4.2. Constraints on performing inference with abstractions
When performing inference with abstractions, care should be taken that no version of an event at a

lower level of abstraction is abductively inferred if an alternative version of this event at a lower level
of abstraction was already previously inferred. In particular, performing deduction and abduction in that
order with two abstractions with the same consequent leads to undesirable results.

Example 13. Consider generalisations g1 : gun →a deadly_weapon and g2 : knife →a deadly_weapon
from Example 4. Upon observing that a provided object is a gun, this would make us deductively infer
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that this object is a deadly_weapon using generalisation g1. Upon performing abduction with g2, this
would make us infer that the provided object is a knife, which is clearly undesirable.

Performing abduction and deduction in that order with two abstractions with the same consequent
does not lead to undesirable results.

Example 14. Consider abstractions g2 : knife →a deadly_weapon and g3 : knife →a metal_object.
Upon observing metal_object, we can abductively infer knife using generalisation g3. In turn, claim
deadly_weapon is deductively inferred using generalisation g2.

The following example illustrates that mixed inference, using either a causal generalisation and an
abstraction or an evidential generalisation and an abstraction, does not lead to undesirable results. Hence,
no additional inference constraints need to be imposed.

Example 15. Consider Example 5. Assume that in addition to strict abstractions g′
1 : lung_cancer →a

cancer and g′
2 : colon_cancer →a cancer, causal generalisation g′

3 : smoking →c cancer is provided.
Upon observing that a person smokes, we deductively infer that the person has cancer using general-
isation g′

3. Using generalisations g′
1 and g′

2, we can then in turn abductively infer that the person has
either lung cancer or colon cancer, which are then competing alternative explanations of cancer (see
Example 5). Note that it is not undesirable to infer lung_cancer or colon_cancer from cancer in this
case, as smoking and lung_cancer (colon_cancer) are not alternative explanations of cancer; instead,
smoking is a cause of cancer, while lung_cancer (colon_cancer) is not a cause of cancer but instead
describes claim cancer at a lower level of abstraction. Similar observations can be made by replacing
generalisation g′

3 by generalisation g′
4 : cancer →e smoking.

To summarise this section, we only wish to prohibit subsequent deduction and abduction using two
abstractions with the same consequent and not other inference patterns involving abstractions. Finally,
note that for generalisations of type ‘other’ no additional inference constraints are imposed.

2.5. Ambiguous inference

Situations may arise in practice in which both deduction and abduction can be performed with the
same causal generalisation or abstraction; the inference type is, therefore, ambiguous.

Example 16. Consider generalisation g1 : fire →c smoke. Suppose fire and smoke are not observed but
have been previously inferred, for instance via deduction using generalisations g2 : see_fire →e fire and
g3 : see_smoke →e smoke, where see_fire and see_smoke are provided as evidence. Then both deduction
and abduction can be performed with g1 to infer smoke from fire and fire from smoke.

Generally, we do not wish to prohibit this type of ambiguous inference patterns as we do not consider
them to be undesirable.

3. Examples of analyses performed using informal reasoning tools

In this section, we present examples of analyses performed using two tools that are typically used
by domain experts, namely Wigmore charts [40] and mind maps [23,35]. Based on these examples, we
motivate and illustrate the design choices for our IG-formalism in Section 4.
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3.1. Example of an analysis performed in a Wigmore chart

First, Wigmore charts are considered, which are diagrams familiar to legal experts in which symbols
indicating hypotheses and claims are joined by lines representing relations between these hypotheses
and claims. Wigmore charts were introduced by John Henry Wigmore [40] and were applied and further
developed by Anderson, Schum, Twining and others (e.g. [2,18]), who provided a modernised, more
user-friendly version of Wigmore’s charting method. In this section, we consider these modern versions
of Wigmore charts, specifically the version adopted by Kadane and Schum [18]. In their charts, each
symbol represents a unique claim. As noted by Kadane and Schum [18, p. 88], vertical arcs between
nodes in the chart indicate inferences between corresponding claims, where the generalisations used in
performing these inferences are not explicitly recorded in the chart. To be able to interpret whether infer-
ences are deductive or abductive, and hence what the antecedents and consequents are of generalisations
used in performing the inferences, the evidence in the chart also needs to be considered.

Example 17. An example of a modern Wigmore chart, adapted from Kadane and Schum [18, pp. 330–
331], is depicted in Fig. 1, which also serves as our running example. The Wigmore chart concerns parts
of an actual legal case, namely the well-known Sacco and Vanzetti case. The case concerns Sacco and
Vanzetti, who were convicted for shooting and killing payroll guard Berardelli during a robbery. In this
example, we only consider the part of the case concerning Sacco’s consciousness of guilt. During their
arrest, Sacco and Vanzetti were armed. According to the two arresting officers, Connolly and Spear,
Sacco and Vanzetti made suspicious hand movements, from which the prosecution concluded that they

Fig. 1. Wigmore chart concerning Sacco’s consciousness of guilt, along with the corresponding key list, adapted from Kadane
and Schum [18, pp. 330–331].



60 R. Wieten et al. / Deductive and abductive argumentation based on information graphs

intended to draw their concealed weapons in order to escape their arrest. This suggests that they were
conscious of having committed a criminal act.

On the right-hand side of Fig. 1 the corresponding key list is depicted, which indicates for every
number in the chart to which claim it corresponds. Claims provided by the defence and prosecution
are represented as diamonds and circles in the chart, respectively, where nodes corresponding to the
evidence are shaded. Finally, horizontal lines in the Wigmore chart indicate that information needs to be
combined to draw a conclusion.

As noted earlier, the generalisations used in performing the indicated inferences are left implicit in
the chart. Instead, in their analysis of the case some of the used generalisations are indicated in the text
(see e.g. [18, pp. 97–98]). For instance, generalisations used in the inferences from the testimonies are
of the general form ‘If a person testifying under oath tells us that event E occurred, then this event
(probably, usually, often, etc,) did occur.’ [18, p. 88]. As noted by Kadane and Schum [18, pp. 74–76],
in constructing their charts abduction is in some instances performed to generate interim hypotheses
between the evidence and the ultimate claim �3. However, Kadane and Schum do not explicitly indicate
which inferences in their charts are abductive and which are deductive.

Lastly, it is important to note that the manner in which claims and links conflict is not precisely speci-
fied in Kadane and Schum’s Wigmore charts, as also observed by Bex and colleagues [6] in formalising
such Wigmore charts as Pollock-style arguments [27]. For instance, multiple interpretations of the con-
flicts between the defence’s claims 462 and 465 and the prosecution’s claims 152 and 153 are possible.
One possible interpretation is that 462 and 465 indicate support for the negation of claim 153: as Sacco
carried his weapon for an innocent reason (either 462 or 465), he intended to surrender his weapon and,
therefore, did not intend to use it. Alternatively, 462 and 465 can be considered competing alternative
explanations of 152, and hence be interpreted as exceptions to the performed inference step from 152 to
153. Specifically, as Sacco carried his weapon for an innocent reason (462 or 465), this caused him to
draw his weapon (152) with the intention of surrendering it.

3.2. Example of an analysis performed using a mind mapping tool

Next, we present an example of an analysis performed using a mind mapping tool [23], which is
an example of a tool typically used by domain experts, for instance in crime analysis [35]. A mind
map usually takes the shape of a diagram in which hypotheses and claims are represented by boxes
and underlined text, and undirected edges symbolise relations between these hypotheses and claims.
An example is depicted in Fig. 2, which is based on a standard template used by the Dutch police for
criminal cases involving the suspicious death of a person. The mind map represents various scenario-
elements and the crime analyst uses evidence to support or oppose these elements, indicated in the mind
map by plus and minus symbols, respectively. Compared to Wigmore charts, which offer a wide range
of symbols and arcs to allow users to be expressive and precise in modelling legal reasoning, mind maps
are less precise and are used to obtain an overview of different possible alternative scenarios. In the
following example, only supporting evidence is considered, which allows us to focus on the manner in
which competing alternative explanations are captured in mind maps.

Example 18. An example of a partially filled in mind map is depicted in Fig. 2. In this example case,
a body was found; we are interested in the cause of death of this person. First, high-level hypothesis
‘Murder’ is examined. According to witness testimony (Testimony 1), the person was hit with a hammer
(Hammer); however, according to another testimony (Testimony 2), the person was hit with a stone
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Fig. 2. Example of a partially filled in mind map.

(Stone). By means of plus symbols and undirected edges connecting the evidence to these claims, it
is indicated that claims Testimony 1 and Testimony 2 support claims Hammer and Stone, respectively.
Hammer and Stone are connected via undirected edges to Hit angular, which indicates that hammers
and stones can generally be considered to be angular. In turn, claim Hit angular is connected to the
‘With’ question to indicate that it provides an answer to this question. As an answer to the ‘In which
way’ question, it is indicated that the person died because of a head wound (Head wound), which is
again supported by the claim that the person was hit with an angular object (Hit angular). An autopsy
report (Autopsy) further supports claim Head wound.

Next, high-level hypothesis ‘Accident’ is examined, which provides a competing alternative explana-
tion of Head wound. As an answer to the ‘In which way’ question, it is again indicated that the person
died because of a head wound and that this claim is supported by Autopsy; however, in contrast to the an-
swer to this question for high-level hypothesis ‘Murder’, it is indicated that the head wound was caused
as the person fell on a table by accident (Fell on table), a claim supported by Testimony 3.

As the edges in a mind map are undirected, it is unclear from the graphical representation alone which
types of generalisations and inferences were used in constructing this map. Establishing this with cer-
tainty would require directly consulting the domain experts involved in constructing the chart. We note,
however, that the reasoning performed in constructing this mind map can be interpreted in at least two
possible ways. One interpretation is that the domain expert first (preliminarily) inferred that the person
died because of a head wound from the autopsy report via deduction using the evidential generalisation
g1 : Autopsy →e Head wound, and then abductively inferred Hit angular using the causal generalisation
g2 : Hit angular →c Head wound. In turn, Hammer and Stone are abductively inferred from Hit angular
using the abstractions g3 : Hammer →a Hit angular and g4 : Stone →a Hit angular. These two claims
are then competing alternative explanations of Hit angular and are subsequently grounded in evidence,
namely via deduction from the testimonies using evidential generalisations g5 : Testimony 1 →e Ham-
mer and g6 : Testimony 2 →e Stone. An alternative interpretation is that the mind map was constructed
iteratively from the evidence, where from the testimonies the claims Hammer and Stone are inferred via
deduction using generalisations g5 and g6. Claim Hit angular is then inferred modus-ponens style: from
abstractions g3 and g4 and the previously inferred antecedents, the consequent is deductively inferred.
In this way, Hammer and Stone are not in competition for Hit angular.

This example illustrates that the types of generalisations and inferences involved in the analysis of
a case using a mind mapping tool are typically left implicit. Similarly, the manner in which claims
and links conflict is not precisely specified in mind maps: in particular, conflicts between competing
alternative explanations are not explicitly indicated in the graph.
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4. The information graph formalism

The examples from Section 3 make it plausible that both deductive and abductive inference is per-
formed by domain experts when performing analyses using reasoning tools they are familiar with. In
performing such analyses, the used generalisation, as well as the inference type (deduction, abduction),
are left implicit. Furthermore, the assumptions of domain experts underlying their analyses are typically
not explicitly stated, making these analyses ambiguous to interpret. For current purposes, we wish to pro-
vide a precise account of the interplay between the different types of inferences and generalisations that
formalises and disambiguates these analyses in a manner that makes the used generalisations explicit.
Information graphs (IGs), which we define in Section 4.1, are knowledge representations that explicitly
describe generalisations in the graph. In constructing an IG from an analysis performed using a tool, an
interpretation step may be required; we provide examples of this interpretation step by discussing possi-
ble formalisations of the Wigmore chart of Section 3.1 and the mind map of Section 3.2. In Section 4.2,
we define how deductive and abductive inferences can be read from IGs given the evidence, based on
our conceptual analysis of reasoning about evidence (Section 2). Compared to our previously proposed
IG-formalism [39] in which only causal and evidential generalisations were considered, abstractions and
other types of generalisations are now also considered, as well as generalisations that include enabling
conditions, where constraints are imposed on the types of inferences that may be performed with these
new types of generalisations.

4.1. Information graphs

First, the syntax of IGs is defined. Throughout this paper, boldface is used to indicate sets used in the
IG-formalism.

Definition 1 (Information graph). An information graph (IG) is a directed graph GI = (P, A), where
P is a set of nodes representing propositions from a propositional language consisting of only literals
and that is closed under classical negation, where the negation symbol is denoted by ¬. A is a set of
(hyper)arcs that divides into three pairwise disjoint subsets G, N and X of generalisation arcs, negation
arcs and exception arcs, defined in Definitions 2, 4, and 5, respectively.

For IGs, there is a one-to-one correspondence between nodes and propositions, generalisation arcs
and generalisations, exception arcs and exceptions, and negation arcs and negations. Throughout this
paper, in the context of IGs, the terms ‘node’ and ‘proposition’, ‘generalisation arc’ and ‘generalisation’,
‘exception arc’ and ‘exception’, and ‘negation arc’ and ‘negation’ are therefore used interchangeably.
We write p = −q in case p = ¬q or q = ¬p. Finally, note that while we currently only consider
classical negation, our IG-formalism may be extended in future work to allow for more general notions
of conflicts such as contrariness (cf. [20]).

Definition 2 (Generalisation arc). Let GI = (P, A) be an IG. A generalisation arc g ∈ G ⊆ A
is a directed (hyper)arc g : {p1, . . . , pn} → p, indicating a generalisation with antecedents P1 =
{p1, . . . , pn} ⊆ P and consequent p ∈ P \ P1. Here, propositions in P1 are called the tails of g, denoted
by Tails(g), and p is called the head of g, denoted by Head(g). G divides into four pairwise disjoint
subsets Gc, Ge, Ga and Go of causal generalisation arcs, evidential generalisation arcs, abstraction arcs,
and all other types of generalisation arcs, respectively. Generalisations in Gc and Ge are defeasible, Ga

divides into disjoint subsets Ga
s and Ga

d of strict and defeasible abstraction arcs, respectively, and Go
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divides into disjoint subsets Go
s and Go

d of strict and defeasible other types of generalisation arcs, re-
spectively. For g ∈ G, Tails(g) divides into disjoint subsets Enabler(g) and Ant(g) of propositions
representing enabling conditions and actual antecedents of the generalisation, respectively, where for
g ∈ Gc ∪ Ge it holds that Ant(g) �= ∅ and possibly Enabler(g) = ∅, and for g ∈ Ga ∪ Go it holds that
Enabler(g) = ∅ (i.e. Tails(g) = Ant(g)).

Curly brackets are omitted in case |Tails(g)| = 1. In figures in this paper, generalisation arcs are
denoted by solid (hyper)arcs, which are labelled ‘c’ for g ∈ Gc, ‘e’ for g ∈ Ge, and ‘a’ for g ∈ Ga,
where ‘o’ labels for g ∈ Go are omitted.

In accordance with our assumptions stated in Section 2, causal and evidential generalisations are de-
feasible and can include enablers. Abstractions and other types of generalisations can either be strict or
defeasible. A causal generalisation g : c → e may have an evidential counterpart of the form g′ : e → c

(see Section 2.3), but only if c is the usual cause of e. Definition 2 does not prohibit the coexistence of
a causal generalisation g : c → e and its evidential counterpart g′ : e → c in an IG, and inferences can
be read from IGs including both generalisations without yielding anomalous results; hence, both gener-
alisations may be included if considered desirable. However, it should be noted that g and g′ represent
the same knowledge, and that care should be taken in for instance modelling exceptions to generalisa-
tions (see Definition 5), as an exception to g can also be considered an exception to g′. Ultimately, it
is the responsibility of the knowledge engineer in consultation with the domain expert to decide which
knowledge to include in the IG and to ensure this knowledge is correctly and consistently represented.

In the following example, the Wigmore chart of Section 3.1 is modelled as an IG.

Example 19. In Fig. 3, an IG is depicted for a possible interpretation of the Wigmore chart of Fig. 1.
This interpretation is based on a previous interpretation of this Wigmore chart as a preliminary version
of an IG in which only causal and evidential information is considered and the roles of generalisation
and inference are not separated [37]. For every claim p in the Wigmore chart, a proposition node p is in-
cluded in P. As noted by Kadane and Schum [18, p. 88], the generalisations used in the inferences from
the testimonies are evidential. As propositions 150, 151, 463, 464, 466 and 470 denote testimonies, the
IG includes generalisation arcs g1 : {150, 151} → 149; g10 : {463, 464} → 462, g11 : 466 → 465 and
g12 : 470 → 469 in Ge. Here, testimonies 150, 151 and 463, 464 are combined in the antecedents of gen-
eralisations g1 and g10, respectively, as these sets of propositions concern testimonies to the same claim.
As 461 concerns Sacco’s testimony to denying 149, proposition ¬149 is included in P and generalisation
arc g2 : 461 → ¬149 is included in Ge.

Kadane and Schum do not indicate which (types of) generalisations were used in performing the infer-
ences between propositions 149 and �3. We note that the inferences between 149 and 155 fit a so-called
episode scheme for intentional actions [4, p. 64], a story scheme in which someone’s psychological state
causes them to form certain goals, which in turn lead to actions that have consequences. In this case,
Sacco intended to escape from his arrest (154; goal) as he was conscious of having committed a criminal
act (155; psychological state); therefore, we consider 155 a cause of 154. Sacco’s intention to use his
weapon (153) can then be considered a sub-goal of 154 and his intention to draw his concealed weapon
(152) a further sub-goal of 153. Sacco’s intention to draw his weapon (152) caused Sacco to attempt to
put his hand under his overcoat (149; action); therefore, we consider 152 a cause of 149. The IG there-
fore includes generalisation arcs g3 : 149 → 152; g4 : 152 → 153; g5 : 153 → 154 and g6 : 154 → 155
in Ge to denote these generalisations.

Proposition 155 can be considered an abstraction of 155a: being involved in a robbery and shooting
can generally be considered committing a criminal act. The involved generalisation is defeasible: in-
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Fig. 3. IG corresponding to an interpretation of the Wigmore chart of Fig. 1, where ‘e’ labels denote evidential generalisations,
‘c’ labels denote causal generalisations, ‘a’ labels denote abstractions, � is a negation arc and � is an exception arc.

volvement in a robbery and shooting does not imply that this involvement is of a criminal nature, as it
may also imply that the person under consideration is the victim. Proposition 155a can be considered a
strict abstraction of 156, as at a higher level of abstraction being conscious of having been involved in
the specific robbery and shooting that took place in South Braintree can be considered being conscious
of having been involved in a robbery and shooting. �3 can be considered a cause of 156: committing a
specific robbery and shooting typically causes a person (in this case Sacco) to be conscious of having
been involved in this act. Therefore, generalisation g7 : 155a → 155 is included in Ga

d, g8 : 156 → 155a

in Ga
s , and g9 : �3 → 156 in Gc. Finally, from 469 (Sacco believed he was being arrested because of his

political beliefs), we can conclude that Sacco was not conscious of having been involved in a robbery
and shooting (¬155a). We consider the relation between 469 and ¬155a to be defeasible and neither
causal nor evidential nor an abstraction, and therefore include g13 : 469 → ¬155a in Go

d.

In the following example, the mind map of Section 3.2 is modelled as an IG.

Example 20. Consider Fig. 4, which depicts an IG for a possible interpretation of the mind map of Fig. 2.
The generalisations used in the inferences from the testimonies, as well as from autopsy, are considered
to be evidential; therefore, generalisation arcs g1, g2, g5 and g8 are included in Ge. The relation between
hammer (stone) and hit_angular is neither causal nor evidential; instead, generalisation arcs g3 and g4

are included in Ga
d to express that, at a higher level of abstraction, both hammers and stones can generally

be considered angular objects. These generalisations are defeasible as not all hammers and stones are
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Fig. 4. IG corresponding to a possible interpretation of the mind map of Fig. 2.

Fig. 5. Illustration of the terminology used in Definition 3.

angular. Finally, hit_angular and fell_on_table can both be considered causes of head_wound; therefore,
generalisation arcs g6 and g7 are included in Gc.

The following example illustrates generalisation arcs that include enabling conditions.

Example 21. Consider g′
7 : {fell_on_table, no_helmet} → head_wound in Gc, which is an adjustment

to generalisation g7 of Example 20 which states that falling on a table causes a head wound in case
you are not wearing a helmet. As in Example 20, proposition fell_on_table expresses a cause for
head_wound and hence, fell_on_table is included in Ant(g′

7). Proposition no_helmet does not express
a cause for head_wound and can thus be considered an enabler of g′

7; therefore, no_helmet is included
in Enabler(g′

7). It should be noted that, while no_helmet does not express a cause for the consequent, it
still is a necessary condition of generalisation g′

7.

Specific configurations of generalisations express that two propositions are alternative explanations
of a common proposition, as captured by Definition 3. The terminology used is illustrated in Fig. 5.

Definition 3 (Alternative explanations). Let GI = (P, A) be an IG. Then p1, p2 ∈ P are alternative
explanations of q ∈ P, as indicated by generalisations g and g′ in G, iff one of the following holds:

(1) g ∈ Ge, Head(g) = p1, q ∈ Ant(g), and either:

1a) g′ ∈ Ge, g′ �= g, Head(g′) = p2, q ∈ Ant(g′), or;
1b) g′ ∈ Gc, Head(g′) = q, p2 ∈ Ant(g′).

(2) g ∈ Gc, Head(g) = q, p1 ∈ Ant(g), and either:

2a) g′ ∈ Gc, g′ �= g, Head(g′) = q, p2 ∈ Ant(g′), or;
2b) g′ ∈ Ge, Head(g′) = p2, q ∈ Ant(g′).

(3) g ∈ Ga, Head(g) = q, p1 ∈ Tails(g) and g′ ∈ Ga, g′ �= g, Head(g′) = q, p2 ∈ Tails(g′).
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Fig. 6. Adjustment to part of the IG of Fig. 3, where 462 and 465 indicate support for ¬153.

Note that cases 1b and 2b are symmetrical in terms of p1 and p2 and the used generalisations; we opt
to keep the distinction between these two cases as they simplify the proof of Proposition 1. In case 1a,
q is an actual antecedent and not an enabler of both g ∈ Ge and g′ ∈ Ge; hence, both p1 and p2 are
actual causes of q. Assuming that g and g′ both have multiple actual antecedents in case 1a, then p1 and
p2 are alternative explanations of every proposition q ∈ Ant(g) ∩ Ant(g′). Hence, it is meaningful to
define alternative explanations in the context in which generalisations have non-singleton sets of actual
antecedents; this similarly holds for the other cases of Definition 3. In case 1b, p2 is an actual antecedent
and not an enabler of g′ ∈ Gc and thus a cause of q, and q is an actual antecedent and not an enabler of
g ∈ Ge and thus p1 is a cause of q. In case 2a, p1 and p2 are actual antecedents of g ∈ Gc and g′ ∈ Gc,
respectively; hence, both p1 and p2 are actual causes of q. Finally, in case 3, p1 and p2 are antecedents
of g ∈ Ga and g′ ∈ Ga with the same consequent q, and hence are alternative explanations of q.

Example 22. Consider the IG of Fig. 4. According to condition 2a of Definition 3, hit_angular and
fell_on_table are alternative explanations of head_wound as indicated by generalisations g6 and g7.
Similarly, according to condition 3 of Definition 3, hammer and stone are alternative explanations of
hit_angular as indicated by generalisations g3 and g4.

A negation arc captures a conflict between a proposition and its negation expressed in an IG.

Definition 4 (Negation arc). Let GI = (P, A) be an IG. A negation arc n ∈ N ⊆ A is a bidirectional
arc n : p � q in GI that exists between a pair p, q ∈ P iff q = −p.

Example 23. Consider the running example. As both 149 and ¬149 are included in the IG of Fig. 3,
negation arc n1 : 149 � ¬149 is also included in the graph. Similarly, the IG of Fig. 3 includes negation
arc n2 : 155a � ¬155a. As noted in Section 3.1, one possible interpretation of the conflicts between
propositions 462, 465 and 153 is that 462 and 465 indicate support for ¬153. Accordingly, generalisa-
tions g14 : 462 → ¬153 and g15 : 465 → ¬153 can be included, as depicted in the adjusted IG of Fig. 6.
As these generalisations are defeasible and neither causal nor evidential nor an abstraction, g14 and g15

are included in Go
d. Negation arc n3 : 153 � ¬153 is then included in N. An alternative interpretation

of these conflicts is provided in Example 24.

As defeasible generalisations do not hold universally, exceptional circumstances can be provided un-
der which such a generalisation may not hold; hence, we allow exceptions to defeasible generalisations
to be specified in IGs by means of exception arcs.

Definition 5 (Exception arc). Let GI = (P, A) be an IG. An exception arc x ∈ X ⊆ A is a hyperarc
x : p � g, where p ∈ P is called an exception to defeasible generalisation g ∈ Gc ∪ Ge ∪ Ga

d ∪ Go
d.

An exception arc directed from p to g indicates that p provides exceptional circumstances under
which g may not hold.
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Example 24. Consider the running example. Instead of interpreting the conflicts between propositions
462, 465 and 153 as negations (see Example 23), an alternative interpretation is that 462 and 465 indicate
exceptions to generalisation g4 ∈ Ge. Specifically, 462 and 465 can be considered competing alternative
explanations of 152: as Sacco carried his weapon for an innocent reason (462 or 465), this caused him
to draw his weapon (152) with the intention of surrendering it. In Fig. 3, these exceptions are indicated
by curved hyperarcs x1 : 462 � g4 and x2 : 465 � g4 in X.

4.2. Reading inferences from information graphs

We now define how deductive and abductive inferences can be performed with constructed IGs. By
itself, a generalisation arc only expresses that the tails together allow us to infer the head in case this
generalisation is used in deductive inference, or that the tails together can be inferred from the head in
case of abductive inference. Only when considering the available evidence can directionality of inference
actually be read from the graph.

Definition 6 (Evidence set). Let GI = (P, A) be an IG. An evidence set is a subset E ⊆ P for which it
holds that for every p ∈ E, ¬p /∈ E.

The restriction that for every p ∈ E it holds that ¬p /∈ E ensures that not both a proposition and its
negation are observed.

In figures in this paper, nodes in GI corresponding to elements of E are shaded and all shaded nodes
correspond to elements of E. We emphasise that various evidence sets E can be used to establish (differ-
ent) inferences from the same IG.

Example 25. In Fig. 1, the evidence consists of the testimonies. In Figs 7 and 8, the IGs of Figs 3 and 6
are again depicted with nodes in E = {150, 151, 461, 463, 464, 466, 470} shaded.

We now define when we consider configurations of generalisation arcs and evidence to express de-
ductive and abductive inference.

4.2.1. Deductive inference
First, we specify under which conditions we consider a configuration of generalisation arcs and evi-

dence to express deductive inference, where strict and defeasible deduction are distinguished.

Definition 7 (Deductive inference). Let GI = (P, A) be an IG, and let E ⊆ P be an evidence set. Let
p1, . . . , pn, q ∈ P, with q /∈ E. Then given E, q is deductively inferred from propositions p1, . . . , pn

using a generalisation g : {p1, . . . , pn} → q in G iff ∀pi , i = 1, . . . , n:

(1) pi ∈ E, or;
(2) pi is deductively inferred from propositions r1, . . . , rm ∈ P using a generalisation g′ : {r1, . . . ,

rm} → pi , where g′ /∈ Gc if g ∈ Ge, pi /∈ Enabler(g), or;
(3) pi is abductively inferred from a proposition r ∈ P using a generalisation g′ : {pi, r1, . . . , rm} → r

in Gc ∪ Ga, g �= g′, r1, . . . , rm ∈ P (see Definition 8).

Here, proposition q is defeasibly deductively inferred from p1, . . . , pn, denoted p1, . . . , pn�gq, iff
g ∈ Gc ∪ Ge ∪ Ga

d ∪ Go
d, and proposition q is strictly deductively inferred from p1, . . . , pn, denoted

p1, . . . , pn⇀gq, iff g ∈ Ga
s ∪ Go

s .
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Fig. 7. The IG of Fig. 3, where evidence set E (shaded) and resulting inference steps (�) are also indicated.

Fig. 8. The IG of Fig. 6, where evidence set E (shaded) and resulting inference steps (�) are also indicated.

For ease of reference, symbols � and ⇀ are annotated with the name of the generalisation used in
performing a defeasible or strict inference. In accordance with our assumptions stated in Section 2.1,
deduction can be performed using all types of generalisations in G, where strict deduction can only be
performed using strict abstractions and strict other types of generalisations. The condition q /∈ E ensures
that deduction cannot be performed with a generalisation to infer its consequent in case its consequent is
already observed. Deduction can only be performed using a generalisation g ∈ G to infer its consequent
Head(g) from its antecedents Tails(g) in case every antecedent pi ∈ Tails(g) has been affirmed in that
either pi is observed (i.e. pi ∈ E), pi itself is deductively inferred, or pi is abductively inferred. In
correspondence with Pearl’s constraint (see Section 2.4.1), we assume in condition 2 that a proposition
q ∈ P cannot be deductively inferred from p1, . . . , pn ∈ P using a generalisation g ∈ Ge if at least
one of its actual antecedents pi ∈ Ant(g) is deductively inferred using a generalisation g′ ∈ Gc. In this
case, q and propositions ri ∈ Ant(g′) are considered alternative explanations of pi as indicated by g

and g′ (Definition 3, case 1b or case 2b). Condition 3 of Definition 7 is explained in Section 4.2.3, after
abductive inference is defined.
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Fig. 9. Examples of IGs illustrating the restrictions put on performing deduction within our IG-formalism (a–c).

Example 26. In the IG of Fig. 7, given E propositions 149, ¬149, 462, 465 and 469 are defeasibly
deductively inferred from 150 and 151, 461, 463 and 464, 466, and 470 using generalisations g1, g2,
g10, g11, and g12, respectively, as 150, 151, 461, 463, 464, 466, 470 ∈ E (Definition 7, condition 1).
Proposition 152 is then defeasibly deductively inferred from 149 using g3, as 149 is deductively inferred
(Definition 7, condition 2). Propositions 153, 154 and 155 are then iteratively defeasibly deductively
inferred using generalisations g4, g5 and g6, respectively. Finally, from 469, ¬155a is defeasibly deduc-
tively inferred using g13, as 469 is deductively inferred.

The following example illustrates strict deductive inference.

Example 27. Consider Example 2 from Section 2.1. In this example, generalisation arc g :
lung_cancer → cancer is included in Ga

s . As lung_cancer ∈ E, cancer is strictly deductively inferred
from lung_cancer (Definition 7, condition 1).

The next example illustrates the restrictions put on performing deduction in our IG-formalism.

Example 28. Figure 9a depicts an example of an IG in which q cannot be deductively inferred from p

using g1, as Head(g1) = q ∈ E. In Fig. 9b, q cannot be deductively inferred from p1 and p2 using g1, as
p2 /∈ E and p2 is neither deductively nor abductively inferred.

In Fig. 9c, Example 8 illustrating Pearl’s constraint is modelled. As smoke_machine ∈ E, smoke is
deductively inferred from smoke_machine using g1 by condition 1 of Definition 7. fire cannot in turn
be inferred from smoke using g2 by condition 2 of Definition 7, as g2 ∈ Ge and smoke is deductively
inferred using g1 ∈ Gc.

4.2.2. Abductive inference
Next, we specify under which conditions we consider a configuration of generalisation arcs and evi-

dence to express abductive inference.

Definition 8 (Abductive inference). Let GI = (P, A) be an IG, and let E ⊆ P be an evidence set. Let
p1, . . . , pn, q ∈ P, with {p1, . . . , pn} ∩ E = ∅. Then given E, propositions p1, . . . , pn are abductively
inferred from q using a g : {p1, . . . , pn} → q in Gc ∪ Ga, denoted q�gp1; . . . ; q�gpn, iff:

(1) q ∈ E, or;
(2) q is deductively inferred from propositions r1, . . . , rm ∈ P using a generalisation g′ : {r1, . . . ,

rm} → q in G, g �= g′ (see Definition 7), where g′ /∈ Gc if g ∈ Gc and g′ /∈ Ga if g ∈ Ga, or;
(3) q is abductively inferred from a proposition r ∈ P using a generalisation g′ : {q, r1, . . . , rm} → r

in Gc ∪ Ga, r1, . . . , rm ∈ P.
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In accordance with our assumptions stated in Section 2.2, abduction is defeasible and is modelled
using only causal generalisations and abstractions. Following Console and Dupré [12] and Bex [4], we
assume that abductive inference can be performed with both strict and defeasible abstractions, where
such an inference is always defeasible as it concerns an inference from the more abstract consequent to
a more specific antecedent (see Section 2.2). The condition {p1, . . . , pn}∩E = ∅ ensures that abduction
cannot be performed with a generalisation to infer its antecedents in case at least one of its antecedents
is already observed. Furthermore, abductive inference can only be performed using a generalisation
g ∈ Gc ∪ Ga to infer its antecedents Tails(g) from its consequent Head(g) in case Head(g) has been
affirmed in that either Head(g) is observed (i.e. Head(g) ∈ E), Head(g) is deductively inferred, or
Head(g) is itself abductively inferred.

In correspondence with Pearl’s constraint (see Section 2.4.1), we assume in condition 2 that propo-
sitions p1, . . . , pn ∈ P cannot be abductively inferred from a proposition q ∈ P using a generalisation
g ∈ Gc if its consequent q is deductively inferred using a generalisation g′ �= g, g′ ∈ Gc. In enforcing
this constraint, we do not need to consider whether or not the antecedents of g or g′ include enablers,
as illustrated in Example 12 from Section 2.4.1. More specifically, in Definition 2 it is assumed that
∀g ∈ Gc ∪Ge, Ant(g) �= ∅; therefore, at least one proposition pi is an actual antecedent of g and at least
one proposition rj is an actual antecedent of g′, which are then alternative explanations of q according to
case 2a of Definition 3 which may not be inferred from each other by inferring q as an intermediary step.
Similarly, we assume in condition 2 that g′ /∈ Ga if g ∈ Ga to account for our constraints on performing
deduction and abduction in that order with two abstractions (see Section 2.4.2). In this case, propositions
p1, . . . , pn ∈ Tails(g) are alternative explanations of r1, . . . , rm ∈ Tails(g′) as indicated by g and g′
according to case 3 of Definition 3.

Example 29. In the IG of Fig. 7, given E proposition 155a is abductively inferred from 155 using
g7 ∈ Ga

d, as 155 is deductively inferred (Definition 8, condition 2). In turn, propositions 156 and �3

are iteratively abductively inferred using generalisations g8 ∈ Ga
s and g9 ∈ Gc, respectively. Note that

although g8 is a strict abstraction, the abductive inference from 155a to 156 is defeasible and not strict;
specifically, that Sacco was conscious of having been involved in a robbery and shooting does not allow
us to strictly infer that he was conscious of having been involved in the specific robbery and shooting
that took place in South Braintree.

In the IG of Fig. 10a, q and r1 are abductively inferred from r using generalisation g3 : {q, r1} → r

in Gc by condition 1 of Definition 8, as r ∈ E. Then by condition 3 of Definition 8, p1 and p2 are
abductively inferred from q using g1 and g2, respectively.

The following example further illustrates abductive inference with abstractions.

Fig. 10. Example of an IG illustrating abductive inference with causal generalisations (a); example of an IG illustrating abduc-
tive inference with abstractions (b).
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Example 30. In Fig. 10b, Example 15 from Section 2.4.2 is modelled as an IG. As smoking ∈ E,
cancer is deductively inferred from smoking using g′

3. Propositions lung_cancer and colon_cancer are
then abductively inferred from cancer using strict abstractions g′

1 and g′
2, respectively (Definition 8,

condition 2). Hence, in this example, a cause (smoking) for an event (cancer) is known, after which
this event is inferred and is in turn further specified at a lower level of abstraction (lung_cancer or
colon_cancer). As noted in Section 2.4.2, this type of mixed inference using a causal generalisation and
abstractions does not lead to undesirable results.

The following examples illustrate that Pearl’s constraint for mixed deductive-abductive inference (see
Section 2.4.1), as well as our proposed constraints on performing inference with abstractions (see Sec-
tion 2.4.2), are adhered to.

Example 31. In Fig. 11a, Example 9 is modelled as an IG. As smoke_machine ∈ E, smoke is deductively
inferred from smoke_machine using g1. fire cannot be inferred from smoke, as g2 ∈ Gc and smoke is
deductively inferred using g1 ∈ Gc (Definition 8, condition 2).

In Fig. 11b, Example 13 is modelled as an IG. As gun ∈ E, deadly_weapon is deductively inferred
from gun using g1. knife cannot in turn be inferred from deadly_weapon, as g2 ∈ Ga and deadly_weapon
is deductively inferred using g1 ∈ Ga (Definition 8, condition 2).

The following example describes the inferences that can be made based on the IG of Fig. 4 corre-
sponding to the mind map example of Section 3.2.

Example 32. Consider the IG of Fig. 12. Given E = {tes1, tes2, tes3, autopsy}, head_wound is deduc-
tively inferred from autopsy using g5. Then, hit_angular and fell_on_table are abductively inferred from
head_wound using g6 and g7, respectively (Definition 8, condition 2). head_wound is also deductively
inferred from fell_on_table using g7, as fell_on_table is deductively inferred from tes3 using g8; the in-
ference type of g7 is, therefore, ambiguous (see Section 2.5). hammer and stone are abductively inferred
from hit_angular using g3 and g4, respectively (Definition 8, condition 3). hit_angular is also deduc-
tively inferred from hammer and stone using g3 and g4, respectively, as hammer is deductively inferred

Fig. 11. An IG illustrating Pearl’s constraint for mixed deductive-abductive inference (a); an IG illustrating our inference
constraints for abstractions (b); an IG illustrating mixed abductive-deductive inference (c).

Fig. 12. The IG of Fig. 4, where evidence set E (shaded) and resulting inference steps (�) are also indicated.
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from tes1 using g1 and stone is deductively inferred from tes2 using g2. Then, head_wound is deductively
inferred from hit_angular using g6.

4.2.3. Mixed abductive-deductive inference
As apparent from Definitions 7 and 8, mixed abductive-deductive inference can be performed within

our IG-formalism.

Example 33. In Fig. 11c, Example 7 from Section 2.4 is modelled as an IG. From smoke, fire is abduc-
tively inferred using g1, as smoke ∈ E. Then heat is deductively inferred (or predicted) from fire using
g2 (Definition 7, condition 3).

5. An argumentation formalism based on information graphs

Based on our IG-formalism from Section 4, we now define an argumentation formalism that allows
for both deductive and abductive argumentation. Note that the IG-formalism is not an argumentation
formalism, and that no semantics for IGs were defined in Section 4. Instead, we defined how inference
can be performed with IGs and we defined different notions of conflicts. In the current section, we de-
fine an argumentation formalism based on IGs which allows us to assign a semantics to argumentation
frameworks constructed on the basis of IGs. More specifically, our approach generates an abstract argu-
mentation framework as in Dung [13], that is, a set of arguments with a binary attack relation, which thus
allows arguments based on IGs to be formally evaluated according to Dung’s semantics. We can then
study properties of generated AFs; in particular, we prove that Caminada and Amgoud’s [9] postulates
are satisfied by instantiations of our formalism, which warrants the sound definition of instantiations
of our argumentation system and implies that anomalous results such as issues regarding inconsistency
and non-closure as identified by [9] are avoided. Our argumentation formalism extends a preliminary
version proposed in [38] that was based on a more restricted version of our IG-formalism [39] in which
only causal and evidential generalisations without enablers were considered. Moreover, satisfaction of
rationality postulates was not proven in that paper.

In Section 5.1, we define arguments on the basis of a provided IG and an evidence set E, which
capture sequences of deductive and abductive inference applications as defined in Definitions 7 and 8
starting with elements from E. We then formally prove that arguments constructed on the basis of IGs
conform to our inference constraints (Section 2.4). In Section 5.2, we define several types of attacks
between arguments based on IGs, which are based on the different types of conflicts defined for our
IG-formalism. In Section 5.3 we instantiate Dung’s abstract approach with arguments and attacks based
on IGs and provide the definitions of Dung’s argumentation semantics. In Section 5.4, we then prove
that rationality postulates [9] are satisfied by instantiations of our formalism.

5.1. Arguments

In this section, we define how arguments on the basis of an IG and an evidence set E are constructed.
Here, we take inspiration from the definition of an argument as defined for the ASPIC+ framework [20].
By remaining close to the ASPIC+ framework, this allows us to straightforwardly show that rational-
ity postulates are satisfied for our argumentation formalism based on IGs (see Section 5.4). In what
follows, for a given argument, the operator PREM returns all propositions in E used to construct the
argument, CONC returns its conclusion, SUB returns all its sub-arguments (including itself), IMMSUB
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returns its immediate sub-arguments, GEN returns all the generalisations used in constructing the ar-
gument, TOPGEN returns the last generalisation used in constructing the argument, DEFINF and STINF

return all the defeasible and strict inferences used in constructing the argument, respectively, and TOPINF

returns the last inference used in constructing the argument. Definition 9 is explained and illustrated in
Examples 34 and 35.

Definition 9 (Argument). Let GI = (P, A) be an IG, and let E ⊆ P be an evidence set. An argument
A on the basis of GI and E is any structure obtainable by applying one or more of the following steps
finitely many times, where steps 2 (i.e. step 2a or 2b) and 3 or vice versa are not subsequently applied
using the same generalisation arc g ∈ G:

1. p if p ∈ E, where: PREM(A) = {p}; CONC(A) = p; SUB(A) = {A}; IMMSUB(A) = ∅;
GEN(A) = ∅; TOPGEN(A) = undefined; DEFINF(A) = ∅; STINF(A) = ∅; TOPINF(A) =
undefined.

2a. A1, . . . , An�gp if A1, . . . , An are arguments such that p is defeasibly deductively inferred
from CONC(A1), . . . , CONC(An) using a generalisation g : {CONC(A1), . . . , CONC(An)} → p

according to Definition 7, where it holds that g ∈ Gc ∪ Ge ∪ Ga
d ∪ Go

d and if g is of the
form g : c → e in Gc and its evidential counterpart g′ : e → c is included in Ge, then
g′ /∈ GEN(A1) ∪ · · · ∪ GEN(An). For A, it holds that:
PREM(A) = PREM(A1) ∪ · · · ∪ PREM(An); CONC(A) = p;
SUB(A) = SUB(A1) ∪ · · · ∪ SUB(An) ∪ {A}; IMMSUB(A) = {A1, . . . , An};
GEN(A) = GEN(A1) ∪ · · · ∪ GEN(An) ∪ {g}; TOPGEN(A) = g;
DEFINF(A) = DEFINF(A1) ∪ · · · DEFINF(An) ∪ {CONC(A1), . . . , CONC(An)�gp};
STINF(A) = STINF(A1) ∪ · · · STINF(An);
TOPINF(A) = CONC(A1), . . . , CONC(An)�gp.

2b. A1, . . . , An⇀gp if A1, . . . , An are arguments such that p is strictly deductively inferred
from CONC(A1), . . . , CONC(An) using a generalisation g ∈ Ga

s ∪ Go
s , g : {CONC(A1), . . . ,

CONC(An)} → p according to Definition 7, where PREM(A), CONC(A), SUB(A), IMMSUB(A),
GEN(A) and TOPGEN(A) are defined as in step 2a, and where:
DEFINF(A) = DEFINF(A1) ∪ · · · DEFINF(An);
STINF(A) = STINF(A1) ∪ · · · STINF(An) ∪ {CONC(A1), . . . , CONC(An)⇀gp};
TOPINF(A) = CONC(A1), . . . , CONC(An)⇀gp.

3. A′�gp if A′ is an argument such that p is abductively inferred from CONC(A′) using a gener-
alisation g ∈ Gc ∪ Ga, g : {p, p1, . . . , pn} → CONC(A′) for some propositions p1, . . . , pn ∈ P
according to Definition 8, where:
PREM(A) = PREM(A′); CONC(A) = p; SUB(A) = SUB(A′) ∪ {A}; IMMSUB(A) = {A′};
GEN(A) = GEN(A′) ∪ {g}; TOPGEN(A) = g; DEFINF(A) = DEFINF(A′) ∪ {CONC(A′)�gp};
STINF(A) = STINF(A′); TOPINF(A) = CONC(A′)�gp.

Note that we overload symbols � and ⇀ to denote an argument while it also denotes a defeasible or
strict inference. The set of all arguments on the basis of GI and E is denoted by A.

An argument A ∈ A is called strict if DEFINF(A) = ∅; otherwise, A is called defeasible. An argument
A ∈ A is called a premise argument if only step 1 of Definition 9 is applied, deductive if only steps 1, 2a
and 2b are applied, abductive if only steps 1 and 3 are applied, and mixed otherwise. The restriction that
steps 2 (i.e. step 2a or 2b) and 3 or vice versa are not subsequently applied using the same generalisation
arc g ∈ G ensures that cycles in which two propositions are iteratively deductively and abductively
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Fig. 13. The IG of Fig. 7, where arguments and direct attacks (���) on the basis of the IG and E are also indicated.

inferred from each other using the same g are avoided in argument construction. Similarly, in case
causal generalisation g : c → e has an evidential counterpart g′ : e → c (see Sections 2.3 and 4.1), then
the restriction in step 2a that g′ /∈ GEN(A1) ∪ · · · ∪ GEN(An) ensures that cycles in which c and e are
iteratively deductively inferred from each other using g′ and g are avoided. Note that cycles in which c

and e are iteratively deductively inferred from each other using g and g′ in that order are already avoided
due to the enforcement of Pearl’s constraint in condition 2 of Definition 7.

Example 34. Consider Fig. 13, in which arguments constructed on the basis of the IG of Fig. 7 are
indicated. According to step 1 of Definition 9, A1 : 150 and A2 : 151 are premise arguments. Based on
A1 and A2, defeasible deductive argument A3 : A1, A2�g1149 is constructed by step 2a of Definition 9,
as 149 is defeasibly deductively inferred from 150 and 151 using g1 ∈ Ge. Arguments A4 : A3�g3152;
A5 : A4�g4153; A6 : A5�g5154 and A7 : A6�g6155 similarly are defeasible deductive arguments.
Argument A8 : A7�g7155a is a defeasible mixed argument by step 3 of Definition 9, as 155a is
abductively inferred from 155 using g7. Similarly, arguments A9 : A8�g8156 and A10 : A9�g9�3

are defeasible mixed arguments. To illustrate the operators used in Definition 9, for A8, we have
that PREM(A8) = {150, 151}; CONC(A8) = 155a; SUB(A8) = {A1, A2, A3, A4, A5, A6, A7, A8};
IMMSUB(A8) = {A7}; GEN(A8) = {g1, g3, g4, g5, g6, g7}; TOPGEN(A8) = g7; DEFINF(A8) = {150,

151�g1149; 149�g3152; 152�g4153; 153�g5154; 154�g6155; 155�g7155a}; STINF(A8) = ∅;
TOPINF(A8) = 155�g7155a.

Step 3 of Definition 9 is now illustrated in more detail.

Example 35. On the basis of the IG of Fig. 10a and E = {r}, A′
1 : r is a premise argument. From A′

1,
arguments A′

2 : A′
1�g3r1 and A′

3 : A′
1�g3q are constructed by step 3 of Definition 9, as q and r1 are
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abductively inferred from CONC(A′
1) using causal generalisation g3 : {q, r1} → r . Then again by step 3,

A′
4 : A′

3�g1p1 and A′
5 : A′

3�g2p2 are constructed using g1 and g2, respectively.

5.1.1. Properties of arguments based on IGs
We now prove a number of formal properties of arguments based on IGs. Lemma 1 states that the

conclusions of deductive, abductive, and mixed arguments constructed in our argumentation formalism
based on IGs are not observed.

Lemma 1. Let A be a set of arguments on the basis of IG GI = (P, A) and evidence set E. Let A ∈ A
be a deductive, abductive, or mixed argument. Then CONC(A) /∈ E.

Proof. As A is not a premise argument, step 2a, step 2b or step 3 of Definition 9 is applied last in
constructing A. In case step 2a or 2b of Definition 9 is applied last, then ∃g ∈ G such that Head(g) =
CONC(A) is deductively inferred using TOPGEN(A) = g according to Definition 7. Hence, per the
restrictions of Definition 7, Head(g) = CONC(A) /∈ E. In case step 3 of Definition 9 is applied last,
then ∃g ∈ G such that CONC(A) ∈ Tails(g) is abductively inferred using TOPGEN(A) = g according
to Definition 8. Hence, CONC(A) /∈ E per the restriction of Definition 8 that Tails(g) ∩ E = ∅. �

In performing inference care should be taken that no cause for an effect is inferred in case an alternative
cause for this effect was already previously inferred (see Section 2.4.1). Similarly, care should be taken
that no version of an event at a lower level of abstraction is inferred if an alternative version of this event
at a lower level of abstraction was already previously inferred (see Section 2.4.2). In the context of IGs,
for g ∈ Gc, propositions in Ant(g) express causes for the common effect expressed by Head(g), for
g ∈ Ge, Head(g) expresses the usual cause for propositions in Ant(g), and for g ∈ Ga, propositions in
Tails(g) are at a lower level of abstraction than Head(g). Hence, in defining how inferences can be read
from IGs, restrictions are put in Definitions 7 and 8 such that our inference constraints (see Section 2.4)
are adhered to. We now formally prove that these inference constraints are never violated in constructing
sequences of arguments on the basis of IGs.

First, we formally define the inference constraints of Section 2.4 in the context of arguments con-
structed on the basis of IGs.

Definition 10 (Inference constraint). Let A be a set of arguments on the basis of IG GI = (P, A) and
evidence set E. Let p1, p2 ∈ P be alternative explanations of q ∈ P as indicated by generalisations
g1, g2 ∈ G (Definition 3). If arguments A and B exist in A with CONC(B) = q, A ∈ IMMSUB(B), and
CONC(A) = p1, then there does not exist an argument C ∈ A with B ∈ IMMSUB(C), CONC(C) = p2.

We now formally prove that this inference constraint is indeed adhered to.

Proposition 1 (Adherence to inference constraint). Let A be a set of arguments on the basis of IG
GI = (P, A) and evidence set E. Then A adheres to the inference constraint of Definition 10.

Proof. Assume that p1, p2 ∈ P are alternative explanations of q ∈ P as indicated by generalisations
g1 and g2 in G, and assume that arguments A, B ∈ A exist with CONC(B) = q, A ∈ IMMSUB(B),
CONC(A) = p1. Then we need to prove that no argument C exists in A with B ∈ IMMSUB(C) and
CONC(C) = p2. In constructing argument B, either step 2a, step 2b or step 3 of Definition 9 is applied
last, where generalisation g1 is used to infer CONC(B) = q. Here, g1 cannot be of the form g1 ∈ Ge,
q ∈ Ant(g1), Head(g1) = p1 (Definition 3, case 1) as in this case antecedent q of g1 is inferred
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from consequent p1 of g1, which would be an instance of abductive inference while per the restrictions
of Definition 8 abductive inference can only be performed using generalisations in Gc ∪ Ga. More
specifically, argument B cannot be constructed by applying step 2a, 2b and 3 of Definition 9 last if g1

is of that form. Thus, we only need to consider cases 2 and 3 of Definition 3, where a generalisation
g1 ∈ Gc, Head(g1) = q, p1 ∈ Ant(g1) respectively a generalisation g1 ∈ Ga, Head(g1) = q, p1 ∈
Tails(g1) is used to construct B, namely by applying step 2a or 2b of Definition 9 last to deductively infer
CONC(B) = q. We now show that for the given options for g1, no argument C with B ∈ IMMSUB(C),
CONC(C) = p2 can be constructed using g2.

• First, consider case 2a of Definition 3 in which g2 �= g1, g2 ∈ Gc, Head(g2) = q, p2 ∈ Ant(g2).
Then no argument C with B ∈ IMMSUB(C), CONC(C) = p2 can be constructed using g2, as in this
case abduction would be performed with g2 to infer p2 from q while per the restrictions in condition
2 of Definition 8 abduction cannot be performed with g2 as Head(g2) was previously deductively
inferred using g1 ∈ Gc. In particular, step 3 of Definition 9 cannot be applied in constructing C

using g2. Furthermore, neither step 2a nor step 2b of Definition 9 can be applied in constructing C

using g2, as these steps specify deductive and not abductive inferences.
• Next, consider case 2b of Definition 3 in which g2 ∈ Ge, Head(g2) = p2, q ∈ Ant(g2). Then no

argument C with B ∈ IMMSUB(C), CONC(C) = p2 can be constructed using g2, as in this case
deductive inference would be performed with g2 to infer p2 while per the restrictions in condition
2 of Definition 7 deductive inference cannot be performed with g2 as q ∈ Ant(g2) was previously
deductively inferred using g1 ∈ Gc. In particular, step 2a of Definition 9 cannot be applied in
constructing C using g2. Furthermore, step 2b of cannot be applied in constructing C using g2, as
this step can only be applied using strict generalisations and g2 /∈ Ga

s ∪ Go
s , and step 3 cannot be

applied in constructing C using g2, as this step specifies an abductive and not a deductive inference.
• Finally, consider case 3 of Definition 3 in which g2 �= g1, g2 ∈ Ga, Head(g2) = q, p2 ∈ Tails(g2).

Then no argument C with B ∈ IMMSUB(C), CONC(C) = p2 can be constructed using g2, as in this
case abduction would be performed with g2 to infer p2 from q while per the restrictions in condition
2 of Definition 8 abduction cannot be performed with g2 as Head(g2) was previously deductively
inferred using g1 ∈ Ga. In particular, step 3 of Definition 9 cannot be applied in constructing C

using g2. Furthermore, neither step 2a nor step 2b of Definition 9 can be applied in constructing C

using g2, as these steps specify deductive and not abductive inferences. �

5.2. Attack

In this section, several types of attacks between arguments on the basis of IGs are defined. Among
the types of attacks that are typically distinguished in structured argumentation (for instance in ASPIC+

[20]) are rebuttal, undermining, and undercutting attack. Of these types of attacks, we only consider
rebuttal and undercutting attack and not undermining attacks (i.e. attack on an argument’s premises [20]),
as in IGs we assume that all premises are certain and cannot be attacked (cf. ASPIC+’s axiom premises).
We also distinguish a fourth type of attack, namely alternative attack, a concept based on the notion
of competing alternative explanations (see Section 2.2) that is inspired by [3,5]. In our argumentation
formalism, attacks directly follow from the constructed arguments and the specified exception arcs in an
IG. Hence, attacks between arguments do not need to be separately specified by the user.

First, we define the general notion of attack, after which the different types of attacks are defined.
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Definition 11 (Attack). Let A be a set of arguments on the basis of IG GI and evidence set E. Let
A, B ∈ A. Then A attacks B iff A rebuts B, A undercuts B, or A alternative attacks B, as defined in
Definitions 12, 13 and 14, respectively.

5.2.1. Rebuttal attack
First, rebuttal attack is defined. Informally, a rebuttal is an attack on the conclusion of an argument for

which it holds that the last inference used in constructing the argument is defeasible.

Definition 12 (Rebuttal attack). Let A be a set of arguments on the basis of IG GI = (P, A) and
evidence set E. Let A, B and B ′ be arguments in A with B ′ ∈ SUB(B). Then A rebuts B (on B ′) iff
there exists a negation arc n : CONC(A) � CONC(B ′) in N and B ′ is of the form B ′′

1 , . . . , B ′′
n�gp for

some B ′′
1 , . . . , B ′′

n ∈ A, p ∈ P.

Note that, as it is assumed that B ′ is of the form B ′′
1 , . . . , B ′′

n�gp (i.e. TOPINF(B ′) is defeasible),
it holds that B ′ is a deductive, abductive, or mixed argument; hence, by Lemma 1, CONC(B ′) /∈ E.
Furthermore, while a negation arc expresses a symmetric conflict, our definition of rebuttal attack allows
for both symmetric or asymmetric rebuttal, as illustrated by the following example.

Example 36. Consider the IG of Fig. 13. Let A1, A2, A3 be the arguments introduced in Example 34. Let
B1 : 461 and let B2 : B1�g2¬149. Then B2 rebuts A3 (on A3) and A3 rebuts B2 (on B2), as CONC(A3) =
149, CONC(B2) = ¬149 (and hence n : 149 � ¬149 in N), where TOPINF(A3) = 150, 151�g1149
and TOPINF(B2) = 461�g2¬149 are defeasible inferences. This symmetric rebuttal is indicated in
Fig. 13 by means of a bidirectional dashed arc between these propositions. Similarly, let A8 be as intro-
duced in Example 34, and let B3 : 470; B4 : B3�g12469; B5 : B4�g13¬155a. Then A8 rebuts B5 (on B5)
and B5 rebuts A8 (on A8).

Consider again Example 33, in which heat is predicted from fire. Assume that contrary to this pre-
diction we observe that there is no heat (¬heat ∈ E). Let A′′

1 : smoke; A′′
2 : A′′

1�g1 fire; A′′
3 : A′′

2�g2

heat; B ′′
1 : ¬heat. Then B ′′

1 rebuts A′′
3 (on A′′

3), but A′′
3 does not rebut B ′′

1 as B ′′
1 is not of the form

B ′′′
1 , . . . , B ′′′

n �gp for some B ′′′
1 , . . . , B ′′′

n ∈ A, p ∈ P (i.e. B ′′
1 is a premise argument).

5.2.2. Undercutting attack
Next, undercutting attack is considered. Informally, an undercutter attacks a defeasible inference by

providing exceptional circumstances under which the inference may not be applicable. In our argu-
mentation formalism based on IGs, undercutting attacks between arguments follow from the specified
exception arcs in GI . Specifically, as an exception arc directed from p ∈ P to g ∈ Gc ∪ Ge ∪ Ga

d ∪ Go
d

specifies an exception to defeasible generalisation g, an argument A ∈ A with CONC(A) = p undercuts
an argument B ∈ A with g ∈ GEN(B).

Definition 13 (Undercutting attack). Let A be a set of arguments on the basis of IG GI = (P, A) and
evidence set E. Let A, B, B ′ ∈ A with B ′ ∈ SUB(B). Then A undercuts B (on B ′) iff there exists an
exception arc x ∈ X such that x : CONC(A) � g and TOPGEN(B ′) = g ∈ Gc ∪ Ge ∪ Ga

d ∪ Go
d.

Undercutting attack is illustrated by the following example.

Example 37. Consider the IG of Fig. 13. Let A1, A2, A3, A4, A5 be the arguments introduced in Ex-
ample 34. Let C1 : 466; C2 : C1�g11465. Then C2 undercuts A5 (on A5), as x : 465 � g4 in X and
TOPGEN(A5) = g4 ∈ Ge. This direct attack is indicated in Fig. 13 by means of a dashed arc directed
from 465 to defeasible inference 152�g4153. As undercutting attack is defined on subarguments, C2
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also attacks Ai for i � 6. Similarly, let C3 : 463; C4 : 464; C5 : C3, C4�g10462. Then C5 undercuts A5

(on A5), as x : 462 � g4 in X and TOPGEN(A5) = g4. Argument C5 then also attacks Ai for i � 6.

5.2.3. Alternative attack
Lastly, alternative attack is defined. Arguments are involved in alternative attack iff their abductively

inferred conclusions are competing alternative explanations (see Section 2.2).

Definition 14 (Alternative attack). Let A be a set of arguments on the basis of IG GI = (P, A) and
evidence set E. Let p1, p2 ∈ P be alternative explanations of q ∈ P as indicated by generalisations g

and g′ in G, where either g, g′ ∈ Gc (Definition 3, case 2a) or g, g′ ∈ Ga (Definition 3, case 3). Let
A, B, B ′ ∈ A with B ′ ∈ SUB(B). Then A alternative attacks B (on B ′) iff there exists an argument
C ∈ IMMSUB(A) ∩ IMMSUB(B ′) such that CONC(A) = p1 and CONC(B ′) = p2 are abductively
inferred from CONC(C) = q using generalisations g and g′, respectively.

Note that A only alternative attacks B on B ′ iff TOPINF(B ′) is an abductive inference and hence iff the
last used inference in constructing B ′ is defeasible. Furthermore, unlike direct rebuttal attack, which can
either be symmetric or asymmetric, direct alternative attack is always symmetric in that A alternative
attacks B on B iff B alternative attacks A on A.

Under the conditions set out in Definition 14, arguments Ai : C �g pi for pi ∈ Ant(g) constructed
from C via abductive inference using g are involved in alternative attack with A′

j : C �g′ p′
j for p′

j ∈
Ant(g′) constructed from C via abductive inference using g′. We do not consider arguments Ai : C�gpi

for pi ∈ Enabler(g) to be in competition with arguments A′
j : C�g′p′

j for p′
j ∈ Enabler(g′), as

enablers of causal generalisations do not express alternative causes for the consequent. Arguments Ai (as
well as A′

j ) are not involved in alternative attack among themselves, in accordance with our assumption
that the antecedents of a causal generalisation or abstraction are not in competition. Finally, in case
g ∈ Gc and g′ ∈ Ga, then arguments Ai are not involved in alternative attack with A′

j , as the actual
antecedents of g express causes for the effect expressed by the consequent but the tails of g′ are not
alternative explanations of the consequent; instead, propositions in Tails(g′) are at a lower level of
abstraction than Head(g′).

Example 38. Consider the IG of Fig. 12. Given E, arguments D1 : autopsy; D2 : D1�g5 head_wound;
D3 : D2�g6 hit_angular; D4 : D2�g7 fell_on_table; D5 : D3�g3 hammer; and D6 : D3�g4 stone are
constructed. Here, hit_angular and fell_on_table are abductively inferred from head_wound using g6

and g7, respectively, and hammer and stone are abductively inferred from hit_angular using g3 and
g4, respectively. Then D3 alternative attacks D4 (on D4) and D4 alternative attacks D3 (on D3), as
CONC(D3) = hit_angular and CONC(D4) = fell_on_table are alternative explanations of CONC(D2) =
head_wound as indicated by g6 and g7 in Gc (Definition 3, case 2a). As D3 ∈ SUB(D5) and D3 ∈
SUB(D6), D4 also alternative attacks D5 and D6 (on D3). Finally, D5 alternative attacks D6 (on D6) and
D6 alternative attacks D5 (on D5), as CONC(D5) = hammer and CONC(D6) = stone are alternative
explanations of CONC(D3) = hit_angular as indicated by g3 and g4 in Ga (Definition 3, case 3).

Consider Example 12 from Section 2.4.1. Assume that in addition to generalisations g1 and g2, evi-
dential generalisation g3 : see_fire → fire is provided. Given E = {see_fire}, arguments E1 : see_fire;
E2 : E1�g3 fire; E3 : E2�g1 torch; E4 : E2�g2 match; and E5 : E2�g2 oxygen are constructed. Then
E3 and E4 are involved in alternative attack, as CONC(E3) = torch and CONC(E4) = match are alter-
native explanations of CONC(E2) = fire as indicated by g1 and g2 in Gc (Definition 3, case 2a), where
torch and match are abductively inferred from fire using g1 and g2, respectively. E3 is not involved in
alternative attack with E5, as CONC(E5) = oxygen ∈ Enabler(g2).
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Consider Fig. 10a. Let A′
1, A′

2, A′
3 be as defined in Example 35. Then A′

2 and A′
3 are not involved in

alternative attack, as r1 = CONC(A′
2) and q = CONC(A′

3) are abductively inferred from r = CONC(A′
1)

using the same generalisation g3; specifically, in case 2a of Definition 3 it is assumed that g �= g′, and
hence r1 and q are not alternative explanations of r by that definition.

Finally, note that a causal generalisation g1 : c1 → e may be replaced by an evidential generalisation
g′

1 : e → c1 if c1 is the usual cause of e, in which case abductive inference with g1 can be encoded
as deductive inference with g′

1 (see Section 2.3). Considering the case in which only g1 and not g′
1 is

included in IG GI and additional causal generalisation g2 : c2 → e is provided, then arguments A1 : e,
A2 : A1 �g1 c1, A3 : A1 �g2 c2 are constructed upon observing e, where A2 and A3 are involved in
alternative attack according to Definition 14. However, in case only g′

1 and g2 are included in GI and
not g1, then arguments A1 : e, A′

2 : A1 �g′
1
c1, A3 : A1 �g2 c2 are constructed, where A′

2 and A3 are not
involved in alternative attack as g′

1 ∈ Ge. Hence, if the knowledge engineer considers c1 and c2 to be
competing alternative explanations of e, then the involved generalisations should be modelled as causal
generalisations in order to achieve alternative attack among constructed arguments. Alternatively, A3

can be interpreted as an undercutter of A′
2 as it provides an exception to the performed inference (see

also [5, p. 15]). We reiterate that it is the responsibility of the knowledge engineer in consultation with
the domain expert to decide which knowledge (including conflicts) to represent in an IG and to ensure
this knowledge is modelled correctly (see also Section 4.1).

5.3. Argument evaluation

In this section, we provide Dung’s definitions for argumentation semantics [13] and illustrate these
definitions for our running example.

First, we instantiate Dung’s abstract approach with arguments and attacks based on IGs.

Definition 15 (Argumentation framework). Let GI = (P, A) be an IG, and let E ⊆ P be an evidence
set. An argumentation framework (AF) defined by GI and E is a pair (A, C), where A is the set of all
arguments on the basis of GI and E as defined by Definition 9, and where (A, B) ∈ C iff A, B ∈ A and
A attacks B (see Definition 11).

An AF can be represented as a directed graph in which arguments are represented by circles and
attacks are indicated by solid arcs (→); an example of an AF is depicted in Fig. 14.

Given an AF, we can use any semantics for AFs as defined in [13] for determining the dialectical status
of arguments (cf. [20]). The theory of AFs is built around the notion of an extension, which is a set of
arguments that is internally coherent and defends itself against attack.

Definition 16 (Dung extensions). Let (A, C) be an AF defined by IG GI and evidence set E.

• A set of arguments S ⊆ A is conflict-free if there do not exist A, B ∈ S such that (A, B) ∈ C.
• An argument A ∈ A is acceptable with respect to some set of arguments S ⊆ A iff for all argu-

ments B such that (B, A) ∈ C there exists an argument C ∈ S such that (C, B) ∈ C.
• A conflict-free set of arguments S ⊆ A is an admissible extension iff every argument A ∈ S is

acceptable with respect to S .
• An admissible extension S is a complete extension iff A ∈ S whenever A is acceptable with

respect to S ; S is the grounded extension iff S is the set inclusion minimal complete extension;
S is a preferred extension iff S is a set inclusion maximal complete extension; and S is a stable
extension iff it is preferred and ∀B /∈ S, ∃A ∈ S such that (A, B) ∈ C.
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Fig. 14. AF corresponding to the IG of Fig. 13.

The acceptability of arguments in abstract argumentation frameworks can then be evaluated by estab-
lishing whether a given argument is a member of the various extensions. Arguments are then assigned a
dialectical status that can either be ‘justified’, ‘overruled’, or ‘defensible’, where informally an argument
is justified if it survived the competition, overruled if it did not survive the competition, and defensible
if it is involved in a tie.

Definition 17 (Justified, overruled and defensible arguments, adapted from [31]). Let (A, C) be an
argumentation framework.

• An argument is (i) justified under grounded semantics iff it is a member of the grounded extension,
(ii) overruled under grounded semantics iff it is not justified under grounded semantics and it is at-
tacked by an argument that is justified under grounded semantics, or (iii) defensible under grounded
semantics iff it is neither justified nor overruled under grounded semantics.

• Let T ∈ {complete, preferred, stable}. An argument is (i) justified under T semantics iff it is a
member of all T extensions, (ii) overruled under T semantics iff it is not a member of any T

extension, or (iii) defensible under T semantics iff it is a member of some but not all T extensions.

We now illustrate the evaluation of arguments based on IGs through our running example.

Example 39. Consider the IG of Fig. 13. To prevent this example from becoming too involved, we
consider the following subset of arguments A = {A1, A2, A3, A4, A5, B1, B2, C1, C2, C3, C4, C5} and
binary attack relation C = {(A3, B2), (B2, A3), (B2, A4), (B2, A5), (C2, A5), (C5, A5)} over A (see Ex-
amples 34, 36 and 37). The AF (A, C) is visualised in Fig. 14. The complete extensions of (A, C) are:

S1 = {A1, A2, B1, C1, C2, C3, C4, C5};
S2 = {A1, A2, B1, B2, C1, C2, C3, C4, C5};
S3 = {A1, A2, A3, A4, B1, C1, C2, C3, C4, C5}.

Under complete semantics, A1, A2, B1, C1, C2, C3, C3, C4, C5 are justified as they are members of all
complete extensions, A5 is overruled as it is attacked by a justified argument, and A3, A4 and B2 are
defensible. For the other semantics, the same statuses are assigned; for grounded semantics, this is the
case as S1 is the set inclusion minimal complete extension. Furthermore, note that S2 and S3 are set
inclusion maximal complete extensions for which it holds that ∀B /∈ Si , ∃A ∈ Si such that (A, B) ∈ C
for i = 2, 3; hence, S2 and S3 are preferred and stable extensions.

Dung’s abstract argumentation approach has been extended with new elements, for instance by adding
support relations to abstract argumentation frameworks (e.g. [10]) or by adding preference relations (e.g.
so-called preference-based argumentation frameworks, or PAFs [1]), probabilities (see e.g. [15] for an
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overview), or weights [14] to AFs; a more complete overview is provided in [30]. We opt for the approach
introduced by Dung for the evaluation of arguments as it is a well-studied and widely accepted approach
in the field of computational argumentation. Moreover, the relations between Dung’s fully abstract ap-
proach and formalisms for structured argumentation that are at an intermediate level of abstraction be-
tween concrete instantiating logics and Dung’s approach, such as ASPIC+ [20] and assumption-based
argumentation (ABA) [7], have been previously investigated. In our IG-formalism, we have currently
opted not to account for preferences, as these are typically not indicated in tools domain experts use.
As the components of our argumentation formalism based on IGs are directly defined based on the el-
ements that are accounted for in our IG-formalism, preferences are currently not accounted for in our
argumentation formalism. As shown in work on structured argumentation with preferences (e.g. [20]),
the structure of arguments is crucial in determining how preferences must be applied to attacks and one
should be cautious in extending AFs with additional elements without taking the structure of arguments
into account. There is some work on the relations between support relations in abstract argumentation
frameworks and those at the inference level [29]. Relations between our proposed argumentation for-
malism and extended AFs such as [10] may be investigated in future research.

5.4. Satisfying rationality postulates

Caminada and Amgoud [9] studied rule-based argumentation systems and identified conditions under
which unintuitive and undesirable results are obtained upon performing inference. They then defined
principles, called rationality postulates, that can be used to judge the quality of a given rule-based argu-
mentation system. More specifically, so-called consistency and closure postulates were formulated for
systems allowing for strict and defeasible inferences. Since these postulates are widely accepted as im-
portant desiderata for structured argumentation formalisms, we prove in this section that these postulates
are satisfied by instantiations of our argumentation formalism based on IGs.

5.4.1. Comparison of our argumentation formalism based on IGs to the ASPIC+ framework
In proving satisfaction of [9]’s rationality postulates, we follow Modgil and Prakken [20], who proved

satisfaction of these postulates for the ASPIC+ framework. As noted earlier, in defining our argumenta-
tion formalism based on IGs we were inspired by the definitions of argument and attack as given in [20].
In Definition 9, we defined how arguments on the basis of an IG and an evidence set E are constructed.
In step 2a of Definition 9, it is specified that an argument A with CONC(A) = p can be constructed
from arguments A1, . . . , An if p is defeasibly deductively inferred from CONC(A1), . . . , CONC(An) ac-
cording to Definition 7 using a generalisation g : {CONC(A1), . . . , CONC(An)} → p in Gc ∪ Ge ∪
Ga

d ∪ Go
d. Hence, in terms of the terminology used in the ASPIC+ framework, generalisations in

Gc ∪ Ge ∪ Ga
d ∪ Go

d can be interpreted as domain-specific defeasible inference rules2 in ASPIC+’s
Rd that are applied when constructing arguments. Similarly, in step 2b of Definition 9 it is speci-
fied that an argument A with CONC(A) = p can be constructed from A1, . . . , An if p is strictly de-
ductively inferred from CONC(A1), . . . , CONC(An) according to Definition 7 using a generalisation
g : {CONC(A1), . . . , CONC(An)} → p in Ga

s ∪ Go
s . Hence, generalisations in Ga

s ∪ Go
s can be interpreted

as domain-specific strict inference rules in ASPIC+’s Rs . Finally in step 3 it is specified that an argu-
ment A with CONC(A) = p can be constructed from an argument A′ if p is abductively inferred from
CONC(A′) according to Definition 8 using a g ∈ Gc ∪ Ga, g : {p, p1, . . . , pn} → CONC(A′) for some
propositions p1, . . . , pn ∈ P. Therefore, besides specifying aforementioned domain-specific defeasible

2For details on using ASPIC+ to model domain-specific defeasible and strict inference rules, the reader is referred to [21].
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and strict deduction rules, generalisations g : {q1, . . . , qn} → q in Gc ∪ Ga also specify domain-specific
abduction rules in Rd , namely for every i ∈ {1, . . . , n} a rule can be specified in Rd that states that qi

can be defeasibly inferred from q.
Considering the different types of attacks that are defined in Section 5.2, rebuttal as defined in Sec-

tion 5.2.1 is identical to rebuttal as defined for a special case of ASPIC+, namely one in which conflict
is based on the standard classical notion of negation. Undercutting as defined in Section 5.2.2 is a spe-
cial case of undercutting as defined for ASPIC+, as we only consider undercutters of inferences in case
an exception is provided to a defeasible generalisation used in an inference step. Thus, of the types of
attacks that are considered in our argumentation formalism, only alternative attack is not accounted for
in ASPIC+. Furthermore, in comparison to our argumentation formalism, Modgil and Prakken do not
impose any additional restrictions on argument construction. Hence, to prove that instantiations of our
argumentation formalism based on IGs satisfy rationality postulates, in Section 5.4.3 we focus on show-
ing how alternative attack and the additional restrictions that are imposed on argument construction in
our argumentation formalism can be taken account in the results and proofs provided in [20].

5.4.2. Additional definitions and assumptions
Following Modgil and Prakken [20], we introduce the following definitions. We define what it means

for a set of propositions to be closed under strict generalisations.

Definition 18 (Closure under strict generalisations). Let GI = (P, A) be an IG and let P′ ⊆ P. Then
the closure of P′ under strict generalisations, denoted CL(P′), is the smallest set containing P′ and the
consequent Head(g) of any g ∈ Ga

s ∪ Go
s whose antecedents Tails(g) are in CL(P′).

Next, the terms directly consistent and indirectly consistent set are defined.

Definition 19 (Directly consistent set). Let GI = (P, A) be an IG and let P′ ⊆ P. Then P′ is directly
consistent iff �p, q ∈ P′ such that p = −q.

A set P′ is indirectly consistent if its closure under strict generalisations is directly consistent.

Definition 20 (Indirectly consistent set). Let GI = (P, A) be an IG and let P′ ⊆ P. Then P′ is indirectly
consistent iff CL(P′) is directly consistent.

As noted by Caminada and Amgoud [9], one should search for ways to alter or constrain one’s ar-
gumentation formalism in such a way that rationality postulates are satisfied. Accordingly, following
Modgil and Prakken [20] we assume that IGs and evidence sets satisfy a number of properties. Similar
to ASPIC+, we leave the user free to make choices as to the strict and defeasible generalisations to in-
clude in G ⊆ A and the observations to include in E; however, some care needs to be taken in making
these choices to ensure that the result of argumentation is guaranteed to be well-behaved. Specifically,
to ensure rationality postulates are satisfied, we assume that evidence sets E are indirectly consistent
(referred to as the axiom consistency assumption), and we assume that G is closed under transposition.
Note that per definition every evidence set E ⊆ P is a directly consistent set, as it is assumed in Defini-
tion 6 that for every p ∈ E, ¬p /∈ E. Furthermore, all examples of IGs provided in this paper are axiom
consistent, as they do not include generalisations g ∈ Ga

s ∪ Go
s for which Tails(g) ⊆ E. Closure under

transposition is one of the solutions proposed by Caminada and Amgoud to ‘repair’ an argumentation
system to ensure rationality postulates are satisfied [9, p. 16], as it can help generate rules needed to
obtain an intuitive outcome.
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Fig. 15. Example of an IG for which G is not closed under transposition (a); adjustment to this IG, in which additional gener-
alisations are included such that G is closed under transposition (b).

Definition 21 (Closure under transposition). Let GI = (P, A) be an IG. A strict generalisation
g′ ∈ Ga

s ∪ Go
s is a transposition of g : {p1, . . . , pn} → p in Ga

s ∪ Go
s iff g′ is of the form

{p1, . . . , pi−1, −p, pi+1, . . . , pn} → −pi for some 1 	 i 	 n. We say that G is closed under transpo-
sition iff for all strict generalisations g ∈ Ga

s ∪ Go
s , the transpositions of g are also in Ga

s ∪ Go
s .

An AF (A, C) defined by an IG GI that is axiom consistent and for which G ⊆ A is closed under
transposition is said to be well defined. In the remainder of this section, we assume that any given AF
(A, C) is well defined. Note that most examples of IGs provided in this paper only include defeasible
generalisations and not strict generalisations, and thus that AFs defined by these IGs are well defined.
The following example, adapted from Caminada and Amgoud [9], illustrates closure under transposition
and how ensuring it can help repair an argumentation system.

Example 40. In the IG depicted in Fig. 15a, strict abstractions g2 : bachelor → ¬has_wife and g4 :
married → has_wife are included. G is not closed under transposition, as generalisations has_wife →
¬bachelor and ¬has_wife → ¬married are not included. Arguments A5 and A6 constructed on the basis
of this IG have strict top inferences, as only step 2b of Definition 9 can be applied in constructing A5

from A3 and A6 from A4 using g2 and g4 in Ga
s , respectively. Note that, as TOPINF(A5) and TOPINF(A6)

are strict, A5 and A6 are not involved in rebuttal. In fact, C = ∅ for the AF corresponding to this IG,
and hence under any semantics both A5 and A6 are justified. Thus, contradictory propositions has_wife
and ¬has_wife are both justified at the same time, which is clearly undesirable and among other things
violates the direct consistency postulate (see Theorem 1). In the IG depicted in Fig. 15b, G is closed un-
der transposition as additional generalisations has_wife → ¬bachelor and ¬has_wife → ¬married are
now included. In the corresponding AF, A7 directly rebuts A4 and A8 directly rebuts A3 as TOPINF(A3)

and TOPINF(A4) are defeasible. Then A7 indirectly rebuts A6 (on A4) and A8 indirectly rebuts A5 (on
A3). Therefore, for this AF the more intuitive outcome is obtained that A5 and A6 cannot both be in the
same extension at the same time.

Lastly, the following definitions introduce some terminology used in the below results. Following
Modgil and Prakken [22], we define strict continuations in a slightly different way than in [20], but as
noted by [22] this does not affect the proofs stated in [20].

Definition 22 (Strict continuations). Let (A, C) be an AF defined by IG GI and evidence set E. The
strict continuations of a set of arguments from A is the smallest set satisfying the following conditions:

(1) Any argument A is a strict continuation of {A}.
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(2) If A1, . . . , An are arguments and S1, . . . , Sn are sets of arguments such that for every i ∈
{1, . . . , n}, Ai is a strict continuation of Si and {Bn+1, . . . , Bm} is a (possibly empty) set of
strict arguments, and g : {CONC(A1), . . . , CONC(An), CONC(Bn+1), . . . , CONC(Bm)} → p is a
strict generalisation in Ga

s ∪ Go
s , then argument A1, . . . , An, Bn+1, . . . , Bm⇀gp constructed from

A1, . . . , An, Bn+1, . . . , Bm using g by applying step 2b of Definition 9 is a strict continuation of
S1 ∪ · · · ∪ Sn.

The maximal fallible sub-arguments of an argument B are those with the ‘last’ defeasible inferences
in B. That is, they are the maximal sub-arguments of B on which B can be attacked.

Definition 23 (Maximal fallible sub-arguments). Let (A, C) be an AF defined by IG GI and evidence
set E. The set M(B) of the maximal fallible sub-arguments of B is defined such that for any B ′ ∈
SUB(B), it holds that B ′ ∈ M(B) iff:

(1) TOPINF(B ′) is defeasible, and;
(2) There is no B ′′ ∈ SUB(B) such that B ′′ �= B, B ′ ∈ SUB(B ′′) and B ′′ satisfies condition 1.

5.4.3. Proofs
We prove satisfaction of Caminada and Amgoud’s consistency and closure postulates for complete

semantics, which implies satisfaction of these postulates for grounded, preferred, and stable semantics.
Caminada and Amgoud [9] also propose postulates for the intersection of extensions and their conclu-
sion sets, but since their satisfaction directly follows from satisfaction of the postulates for individual
extensions, these postulates will not be reconsidered.

First, a number of intermediate properties are proven. The intermediate result stated in Lemma 2 is
identical to Lemma 37 of Modgil and Prakken [20], namely that any strict continuation B of a set of
arguments {A1, . . . , An} is acceptable with respect to S if all Ai are acceptable with respect to a set S .
The proof follows similar to Lemma 37 of [20], where alternative attack is now also considered.

Lemma 2. Let (A, C) be an AF defined by IG GI and evidence set E. Let B ∈ A be a strict continuation
of {A1, . . . , An}, and for i = 1, . . . , n, let Ai be acceptable with respect to S ⊆ A. Then B is acceptable
with respect to S .

Proof. Let A be any argument such that (A, B) ∈ C. By Definition 11, A attacks B iff A rebuts B (on
B ′), A undercuts B (on B ′), or A alternative attacks B (on B ′) for some B ′ ∈ SUB(B) (see Definitions 12,
13, and 14). Here, it holds that TOPINF(B ′) is defeasible; more specifically:

(1) By Definition 12, A rebuts B (on B ′) iff B ′ is of the form B ′′
1 , . . . , B ′′

n�gp for some B ′′
1 , . . . , B ′′

n ∈
A, p ∈ P and hence iff TOPINF(B ′) is defeasible, and;

(2) By Definition 13, A undercuts B (on B ′) iff there exists an exception arc x ∈ X such that
x : CONC(A) � g and TOPGEN(B ′) = g ∈ Gc ∪ Ge ∪ Ga

d ∪ Go
d. Hence, in constructing B ′ step 2b

cannot be applied last, as this step can only be applied with strict generalisations g ∈ Ga
s ∪ Go

s .
Therefore, step 2a of step 3 of Definition 9 is applied last in constructing B ′. Thus, the last used
inference in constructing B ′ is a defeasible deductive inference using TOPGEN(B ′) = g (step 2a
of Definition 9) or an abductive inference using TOPGEN(B ′) = g (step 3 of Definition 9), and
hence TOPINF(B ′) is defeasible, and;

(3) By Definition 14, A alternative attacks B (on B ′) iff TOPINF(B ′) is an abductive inference and
hence iff TOPINF(B ′) is defeasible.
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Hence, by definition of strict continuations (Definition 22), it must be that (A, B) ∈ C iff (A, Ai) ∈ C
for some (possibly more than one) Ai ∈ {A1, . . . , An}. Specifically, if A does not undercut, rebut or
alternative attack some Ai , then this contradicts that (A, B) ∈ C. Thus, we have shown that if (A, B) ∈
C, then (A, Ai) ∈ C for some Ai ∈ {A1, . . . , An}. By assumption, Ai is acceptable with respect to S ,
thus ∃C ∈ S such that (C, A) ∈ C. Thus, B is acceptable with respect to S . �

The intermediate result stated in Lemma 3 is similar to Proposition 8 of Modgil and Prakken [20].
Compared to Proposition 8 of [20], in which no assumptions are made regarding A, we now assume that
A is defeasible with a strict top inference or that A is strict, as these are the only cases needed in our
proof of Theorem 1. As Modgil and Prakken do not impose any restrictions on argument construction in
their formalism, a result proven by Caminada and Amgoud [9] (i.e. Lemma 6 of [9]) can be directly used
to complete their proof. Below, we show that the restrictions that are imposed on argument construction
in our argumentation formalism based on IGs do not restrict the construction of strict continuations, and
hence that the proof can similarly be completed.

Lemma 3. Let (A, C) be an AF defined by IG GI and evidence set E. Let A and B be arguments
in A such that B is defeasible, CONC(A) = −CONC(B). Let A be strict or let A be defeasible with
TOPINF(A) strict. Then for all B ′ ∈ M(B), there exists a strict continuation A+ of (M(B) \ {B ′})∪ {A}
such that A+ rebuts B on B ′.

Proof. Let A be strict or let A be defeasible with TOPINF(A) strict. Let B be defeasible with
CONC(A) = −CONC(B). First, note that according to Definition 22 any strict continuation of a given
set of arguments from A is either (1) A if the set of arguments under consideration is {A} (Defini-
tion 22, condition 1), or (2) is constructed by applying step 2b of Definition 9 one or more (but finitely
many) times (Definition 22, condition 2). As restrictions are imposed on argument construction in our
argumentation formalism based on IGs, we first show that in constructing any strict continuation A+ of
(M(B) \ {B ′}) ∪ {A} step 2b of Definition 9 can be applied without restrictions.

Generally, in applying step 2b of Definition 9 an argument C with CONC(C) = p is constructed from
arguments C1, . . . , Cn by strictly deductively inferring p from propositions CONC(C1), . . . , CONC(Cn)

according to Definition 7 using a generalisation g : CONC(C1), . . . , CONC(Cn) → p in Ga
s ∪Go

s . In Def-
inition 7 no constraints are imposed on performing deduction with strict generalisations g ∈ Ga

s ∪ Go
s ;

in particular, the only constraint that is imposed is in condition 2 of this definition, where constraints
are imposed on performing deduction with defeasible generalisations in Ge (i.e. Pearl’s constraint). The
only other case in which step 2b of Definition 9 cannot be applied in constructing an argument C using
a g ∈ Ga

s ∪ Go
s is in case the same g was already used in the previous construction step to construct

an argument C ′ ∈ IMMSUB(C), namely by applying step 3 of Definition 9. Now again consider argu-
ment A. By assumption, A is strict or TOPINF(A) strict, and therefore step 3 of Definition 9, which
specifies a defeasible inference, could not have been applied last in constructing A; therefore, no restric-
tions are imposed on constructing strict continuations A+ of (M(B) \ {B ′}) ∪ {A} in our argumentation
formalism. By assumption, (A, C) is well defined and, therefore, closed under transposition; hence, by
straightforward generalisation of Lemma 6 in [9] one can construct a strict continuation A+ that contin-
ues (M(B) \ {B ′}) ∪ {A} with strict inferences and that concludes −CONC(B ′). Since by construction
of M(B), B ′ has a defeasible top inference and therefore A+ rebuts B ′. But then A+ also rebuts B. �

The intermediate result stated in Lemma 4 is identical to Lemma 38 of [20].
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Lemma 4. Let (A, C) be an AF defined by IG GI and evidence set E. Let A ∈ A be acceptable w.r.t.
admissible extension S ⊆ A. Let S ′ = S ∪ {A}. Then ∀B ∈ S ′, neither (A, B) ∈ C nor (B, A) ∈ C.

Proof. Suppose for contradiction that: (1) ∃B ∈ S ′ such that (A, B) ∈ C. As B ∈ S ′, it follows that B

is acceptable w.r.t. S , as either B = A, which is acceptable w.r.t. S by assumption, or B is an element
of admissible extension S . Hence ∃C ∈ S such that (C, A) ∈ C. Then, as A is acceptable w.r.t. S ,
∃D ∈ S such that (D, C) ∈ C, contradicting S is conflict-free; (2) ∃B ∈ S ′ such that (B, A) ∈ C. As A

is acceptable w.r.t. S , ∃C ∈ S such that (C, B) ∈ C, contradicting S is conflict-free. �

The result stated in Lemma 5 is identical to Lemma 35-2 of Modgil and Prakken [20], namely that an
argument A attacks an argument B iff A attacks some sub-argument B ′ of B. Compared to Lemma 35-2
of [20], alternative attack is now also considered in the proof.

Lemma 5. Let (A, C) be an AF defined by IG GI and evidence set E. Let A, B ∈ A. Then (A, B) ∈ C
iff (A, B ′) ∈ C for some B ′ ∈ SUB(B).

Proof. By Definition 11, (A, B) ∈ C iff A rebuts B (on B ′), A undercuts B (on B ′), or A alternative
attacks B (on B ′) for some B ′ ∈ SUB(B) (see Definitions 12, 13, and 14); hence, also (A, B ′) ∈ C. �

The intermediate result stated in Lemma 6 is identical to Proposition 10 of [20].

Lemma 6. Let (A, C) be an AF defined by IG GI and evidence set E. Let A ∈ A be acceptable with
respect to admissible extension S ⊆ A. Then S ′ = S ∪ {A} is conflict-free.

Proof. We need to show that there do not exist B, C ∈ S ′ such that (B, C) ∈ C. As S is an admissible
extension, S is conflict free: hence, there do not exist B, C ∈ S such that (B, C) ∈ C. Thus, we need
to show that (A, A) /∈ C, and neither (A, B) ∈ C nor (B, A) ∈ C for all B ∈ S . As by assumption A is
acceptable with respect to S , this follows directly from Lemma 4. �

Theorem 1, corresponding to the direct consistency postulate, states that the conclusions of arguments
in an admissible extension (and so by implication in a complete extension) are directly consistent. The
conclusions of arguments in an extension should not be contradictory, as this leads to what Caminada
and Amgoud call ‘absurdities’ [9, p. 15] in that two contradictory statements can then be justified at the
same time.

Theorem 1 (Direct consistency). Let (A, C) be an AF defined by IG GI and evidence set E. Then for
all admissible extensions S of AF it holds that the set {CONC(A) | A ∈ S} is directly consistent.

Proof. Let S be an admissible extension of AF and let A and B be arguments in S . We show that if
CONC(A) = q, CONC(B) = r with q = −r (i.e. {CONC(A) | A ∈ S} is not directly consistent), then
this leads to a contradiction:

(1) If A is a strict argument, and:

1.1 if B is also strict, then this contradicts our axiom consistency assumption on evidence sets E;
1.2 if B is a defeasible argument, and:
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1.2.1 if B has a defeasible top inference, then A rebuts B (on B) by Definition 12, as a negation
arc n : CONC(A) � CONC(B) exists in N (as q = −r). Hence, this contradicts that S
is conflict-free.

1.2.2 if B has a strict top inference, then by Lemma 3 there exists a strict continuation A+
of (M(B) \ {B ′}) ∪ {A} for every B ′ ∈ M(B) such that A+ rebuts B on B ′; hence,
(A+, B) ∈ C. By our Lemma 2, A+ is acceptable with respect to S , and by Lemma 6,
S ∪ {A+} is conflict-free, contradicting that (A+, B) ∈ C.

(2) If A is a defeasible argument and B is a strict argument, then the result follows similar to case 1.2
with the roles of arguments A and B reversed.

(3) If A and B are defeasible arguments, and:

3.1 if TOPINF(A) or TOPINF(B) is defeasible, then the result follows similar to case 1.2.1 (either
with the roles of arguments A and B as they currently are or with their roles reversed).

3.2 if TOPINF(A) and TOPINF(B) are strict, then the result follows similar to case 1.2.2. �

The result stated in Lemma 7 is identical to Lemma 35-3 of [20].

Lemma 7. Let (A, C) be an AF defined by IG GI and evidence set E. Let S ⊆ A and let A ∈ S with
A′ ∈ SUB(A). Then A′ is acceptable with respect to S if A is acceptable with respect to S .

Proof. Assume that A is acceptable with respect to S . We need to prove that for every argument B such
that (B, A′) ∈ C, ∃C ∈ S such that (C, B) ∈ C. Let B ∈ A and assume that (B, A′) ∈ C. By Lemma 5,
(B, A) ∈ C. Then, as A is acceptable with respect to S , ∃C ∈ S such that (C, B) ∈ C. Hence, A′ is
acceptable with respect to S . �

Below, Caminada and Amgoud’s [9] closure and indirect consistency postulates are stated. Infor-
mally, the closure postulates state that the conclusions returned by an argumentation system should be
‘complete’ [9, p. 16]. The sub-argument closure postulate states that for any argument A in a complete
extension S , all sub-arguments of A are also in S .

Theorem 2 (Sub-argument closure). Let (A, C) be an AF defined by IG GI and evidence set E. Then
for all complete extensions S of AF it holds that if an argument A is in S then all sub-arguments
A′ ∈ SUB(A) of A are in S .

Proof. Let S be a complete extension of AF, let A ∈ S and let A′ ∈ SUB(A). Then A′ is acceptable
with respect to S by Lemma 7. Then S ∪ {A′} is conflict-free by Lemma 6. Hence, since S is complete,
it holds that A′ ∈ S . �

Theorem 3, corresponding to the strict closure postulate, states that the conclusions of arguments in a
complete extension are closed under strict inference.

Theorem 3 (Closure under strict inferences). Let (A, C) be an AF defined by IG GI and evidence set E.
Let S be a complete extension of AF. Then {CONC(A) | A ∈ S} = CL({CONC(A) | A ∈ S}).
Proof. It suffices to show that any strict continuation X of {A | A ∈ S} is in S . By Lemma 2, any such
X is acceptable with respect to S . By Lemma 6, S ∪ {X} is conflict-free. Hence, since S is complete, it
follows that X ∈ S . �
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Finally, Theorem 4, corresponding to the indirect consistency postulate, states the mutual consistency
of the strict closure of conclusions of arguments in a complete extension.

Theorem 4 (Indirect consistency). Let (A, C) be an AF defined by IG GI and evidence set E. Let S be
a complete extension of AF. Then {CONC(A) | A ∈ S} is indirectly consistent.

Proof. The result follows from Theorems 1 and 3. �

To conclude this section, we have shown that instantiations of our argumentation formalism based
on IGs satisfy Caminada and Amgoud’s [9] consistency and closure postulates. Satisfaction of these
postulates warrants the sound definition of instantiations of our argumentation system and implies that
anomalous results as identified by [9] are avoided.

6. Related work

In this paper, we have proposed an argumentation formalism based on IGs that allows for both deduc-
tive and abductive argumentation and which instantiates Dung’s [13] abstract approach. Earlier work by
Bex [4,5] is related, although only his integrated theory [5] is purely argumentation-based; the relation to
[5] was discussed in the introduction. The hybrid theory proposed by Bex [4] is a formal account of rea-
soning about evidence in which deduction and abduction are used in constructing evidential arguments
and causal stories, which are completely separate entities with their own definitions related to conflict
and evaluation. In comparison, our argumentation formalism based on IGs allows for the construction of
both deductive and abductive arguments. Moreover, Bex’s hybrid theory does not allow for most types of
mixed inference with causal and evidential generalisations and abstractions, and largely avoids the prob-
lems associated with mixed inference as identified by Pearl [25] and as identified in the current paper.
Bench-Capon and Prakken [3] offer a formalisation of Aristotle’s practical syllogism within a logic for
defeasible argumentation that is essentially a preliminary version of ASPIC+ [20]. This approach allows
for reasoning about alternative goals and values to justify actions, which is akin to performing abduc-
tive inference. In formalising this syllogism, Bench-Capon and Prakken only consider the abductive
nature of reasoning about desires on the basis of beliefs and goals, whereas we offer a general account
of abductive (and deductive) argumentation. Booth and colleagues [8] propose a top-down approach by
developing a model of abduction in abstract argumentation [13] and instantiating their approach with
abductive logic programs [19]. In comparison to our bottom-up approach, their approach does not allow
for mixed abductive-deductive inference with different types of information.

The argumentation formalism presented in this paper is based on a version of the graph-based IG-
formalism that considers causal, evidential, abstraction, and other types of generalisations, as well as
generalisations that include enabling conditions. Most related formalisms for inference with these types
of information are logic-based [4,5,12,17,24,28,33,34] and do not consider the constraints on performing
inference that need to be imposed. Poole’s Theorist framework [28] and Shanahan’s approach [33] only
allow for causal defaults; complications with reasoning using both causal and evidential defaults as
identified by Pearl [25] are thus avoided. The approaches of Ortiz Jr. [24] and Shoham [34] similarly
only allow for inference with causal rules, but in contrast to [28,33] also include enabling conditions.
The formal logical model of abductive reasoning proposed by Josephson and Josephson [17] allows for
explaining observations using causal rules. The approach by Console and Dupré [12] is similar in nature
to [17] but also allows for abduction using abstractions, as discussed in Section 2.2.
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Graph-based formalisms for reasoning with causality information have also been proposed, notably
Pearl’s causal diagrams [26]. Pearl provides a framework for causal inference in which diagrams are
queried to determine if the assumptions available are sufficient for identifying causal effects. Compared
to our IG-formalism and our argumentation formalism based on IGs, this framework does not allow
for capturing asymmetric conflicts such as exceptions in the graph. Moreover, causal diagrams require
probabilistic quantification to be queried, while IGs are qualitative.

7. Conclusion

In this paper, we have proposed an argumentation formalism that allows for both deductive and ab-
ductive argumentation, the latter of which has received relatively little attention in argumentation. Our
argumentation formalism is based on an extended version of our previously proposed IG-formalism [39],
where in addition to causal and evidential generalisations we now also allow for abstractions and other
types of generalisations, thereby increasing the expressivity of our IG-formalism. We have identified
conditions under which performing inference with abstractions can lead to undesirable results, thereby
extending the set of inference constraints imposed by Pearl’s C–E system for reasoning with causal and
evidential information [25]. Moreover, we have identified exceptional circumstances under which the
constraints of Pearl’s C–E system should not be imposed, namely in case enabling conditions are pro-
vided under which a generalisation may be used in performing inference. Based on these constraints and
our conceptional analysis of reasoning about evidence, we have defined how deduction and abduction
may be performed with IGs. We have then formally proven that arguments constructed in our argumen-
tation formalism based on IGs indeed adhere to these constraints. In the paper, we have focused on the
constraints that need to be imposed on performing inference with pairs of generalisations, which cover
Pearl’s original constraints and local constraints on performing inference with abstractions. In future
work, additional inference constraints may be imposed for longer chains of inferences involving more
specific combinations of generalisations, granted that the total set of constraints is consistent. Further-
more, as causality is a contentious topic, our argumentation formalism may be extended in future work
by allowing for meta-argumentation about labels of generalisations, as well as other elements of IGs.

Besides allowing for rebuttal attack and undercutting attack, which are among the types of attacks
that are typically distinguished in structured argumentation [20,27], we have also defined the notion of
alternative attack among arguments based on IGs, a concept based on the notion of competing alternative
explanations that is inspired by [3,5]. Alternative attack captures a crucial aspect of abductive reasoning,
namely that of conflict between abductively inferred conclusions [17]. We have contributed to the liter-
ature on computational argumentation by allowing for the formal evaluation of arguments involved in
this type of conflict. Moreover, we have shown that instantiations of our argumentation formalism satisfy
key rationality postulates [9], which warrants the sound definition of instantiations of our argumentation
system and implies that anomalous results such as issues regarding inconsistency and non-closure as
identified by Caminada and Amgoud [9] are avoided.

Our argumentation formalism generates an abstract AF as in Dung [13] and thus allows arguments to
be formally evaluated according to Dung’s argumentation semantics. By formalising analyses performed
by domain experts using the informal reasoning tools they are familiar with (e.g. mind maps) as IGs as
an intermediary step, this allows for the evaluation of IGs using computational argumentation, as well
as using other formal systems such as BNs [39].
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