
Argument and Computation
Vol. 3, Nos. 2–3, June–September 2012, 143–202

Temporal, numerical and meta-level dynamics in argumentation networks

H. Barringera, D.M. Gabbayb,c,d* and J. Woodse

aDepartment of Computer Science, University of Manchester, Manchester, M13 9PL, UK; bDepartment of
Computer Science, Bar-Ilan University, 52900 Ramat-Gan, Israel; cDepartment of Informatics Science,

King’s College London, Strand, London WC2R 2LS, UK; dComputer Science and Communications,
Faculty of Sciences, 6, rue Coudenhove-Kalergi, L-1359, Luxembourg; eDepartment of Philosophy,

Univeristy British Columbia, Vancouver, Canada

(Received 11 April 2011; final version received 15 June 2012)

This paper studies general numerical networks with support and attack. Our starting point is
argumentation networks with the Caminada labelling of three values 1 = in, 0 = out and 1

2 =
undecided. This is generalised to arbitrary values in [01], which enables us to compare with other
numerical networks such as predator–prey ecological networks, flow networks, logical modal
networks and more. This new point of view allows us to see the place of argumentation networks
in the overall landscape of networks and import and export ideas to and from argumentation
networks. We make a special effort to make clear how general concepts in general networks
relate to the special case of argumentation networks. We pay special attention to the handling
of loops and to the special features of numerical support. We find surprising connections with
the Dempster–Shafer rule and with the cross-ratio in projective geometry. This paper is an
expansion of our 2005 paper and so we also consider higher level features such as numerical
attacks on attacks, and propagation of numerical values.We conclude with a brief view of
temporal numerical argumentation and with a detailed comparison with related papers published
since 2005.

Keywords: argumentation network; numerical networks; higher level attacks; strength of
arguments; analysis of support

1. Introduction and orientation

This paper is an expansion of our 2005 Festschrift paper (Barringer, Gabbay, andWoods 2005).
The argumentation community was not aware, until recently, of Barringer et al. (2005) and some
of the ideas there were rediscovered in a related form by various people at a later date, see for
example papers (Cayrol and Lagasquie-Schiex 2005; Martinez, Garcia, and Simari 2008; Matt and
Toni 2008; Modgil and Bench-Capon 2008; Baroni, Cerutti, Giacomin, and Guida 2009a; Boella,
Kaci, van der Torre 2009; Dunne, Hunter, McBurney, Parsons, and Wooldridge 2009; Haenni
2009; Cayrol, Devred, and Lagasquie-Schiex 2010; Cobo, Martinez, and Ricardo Simari 2010;
Modgil and Bench-Capon 2010; Rotstein, Moguillansky, Javier Garcia, and Ricardo Simari 2010;
Baroni, Cerutti, Giacomin, and Guida 2011; Dunne, Hunter, McBurney, Parsons, and Wooldridge
2011; Leite and Martins 2011; Gabbay and Rodrigues 2012). However, Barringer et al. (2005)
remains the most general approach, containing ideas still new to the community (see also Gabbay
2009a). It is high time to make an expanded journal paper of this material.

In the first section, we provide a landscape orientation and an introduction to give the reader
a perspective, and in the last section, we offer a comparison with the literature.

Our starting point is a network (S, R), where S is a set of arguments and R ⊆ S × S is an attack
relation between arguments.

*Corresponding author. Email: dov.gabbay@kcl.ac.uk

ISSN 1946-2166 print/ISSN 1946-2174 online
© 2012 Taylor & Francis
http://dx.doi.org/10.1080/19462166.2012.704397
http://www.tandfonline.com

144 H. Barringer et al.

A

A

D

E

C

B

B

Figure 1. Sample argumentation networks.

Figure 1 gives examples of two such networks.
The networks in Figure 1 are in fact loops involving even and odd number of arguments. An

arrow x −→ y indicates an attack from node x to node y, i.e. that (x, y) ∈ R. There are three ways
of looking at such networks.

(1) Dung’s (1995) original approach, where properties of subsets E ⊆ S are considered and a
set-theoretical definition of extension is put forward.
The basic notion is that of admissible extension. This is a subset E ⊆ S such that
(a) E is conflict-free, i.e. for no x, y ∈ E can we have (x, y) ∈ R.
(b) E is self-defending, i.e. for all x, y ∈ S, if x ∈ E and (y, x) ∈ R then there exists a z ∈ S

such that (z, y) ∈ R.
In the network on the left of Figure 1, there are two extensions E1 = {A} and E2 = {B} as
well as the empty extension E0 = ∅. The network on the right of the figure has only the
empty extension.

(2) Recently, Caminada (see Caminada (2006) and Caminada and Gabbay (2009) for a sur-
vey) came forward with the brilliant idea of a Caminada labelling function λ : S −→
{in, out, undecided}, satisfying certain conditions that ensure a complete correspondence
with Dung’s extensions (Caminada and Gabbay 2009; Caminada 2011). For example, for
the network on the left of Figure 1, we have the three functions λ1, λ2 and λ0 below.

E1 E2 E0

λ1(A) = in λ2(A) = out λ0(A) = undecided
λ1(B) = out λ2(B) = in λ0(B) = undecided

For the network on the right of Figure 1, we have only the function λ such that λ(A) =
λ(B) = λ(C) = λ(D) = λ(E) = undecided.

(3) The third approach is Gabbay’s (2011a, c) and (2012a, b), equational approach. This
approach views (S, R) as a mathematical graph generating equations for functions in the
unit interval U = [0, 1]. Any solution f to these equations conceptually corresponds to
an extension. Of course, the end result depends on how the equations are generated and
we can get different solutions for different equations. Once the equations are fixed, the
totality of the solutions are viewed as the totality of the equational extensions. Given the
situation described in Figure 2, where A ∈ S is any node and X1, . . . , Xn are all of the nodes
attacking A (i.e. (Xi, A) ∈ R), one equation we can possibly generate is Eqmax:

f(A) = 1 − max
i

{f(Xi)}. (Eqmax)

Argument and Computation 145

A

. . .X1 Xn

Figure 2. Direct attacks on node A.

Another possibility is Eqinv:

f(A) =
n∏

i=1

(1 − f(Xi)). (Eqinv)

Gabbay has shown that in the case of Eqmax the totality of solutions corresponds to the
totality of extensions in Dung’s sense. The correspondence is best explained in terms of the
Caminada labelling. We get the Caminada labelling through the correspondence below.

f(A) = 1 : : λ(A) = in,

f(A) = 0 : : λ(A) = out,

0 < f(A) < 1 : : λ(A) = undecided.

The above discussion relates to abstract argumentation networks, where (S, R) is a pure graph.
The nodes of the graph, in this case, have no internal structure and the relation (x, y) ∈ R is given
without any further structural explanation.

Caminada and other colleagues hold the view that such networks are too abstract and further
structure is needed for practical applications. Caminada recommends a base logic L on some
language and a base theory �. The arguments A ∈ S are derived from proofs in L from �. Thus,
A attacks B happens now for a reason: the contents of A attack (logically in L) the contents of B.

Another enrichment to purely abstract argumentation networks is to add a preference relation
on S to tell us which abstract arguments are preferred to others.

A third alternative is obtained by adding a valuation V : S −→ values, where values is a set
of abstract values, to give us a little more information about the elements of S. Mathematically
one can get a preference relation out of a valuation and a valuation out of a preference relation. So
let us view our position mathematically as being given a triple (V , S, R) where (S, R) is an abstract
argumentation network and V a valuation function as before.

Given (V , S, R), we now have two main options.

(1) to involve V in the definition of extensions
(2) to define the extensions without using V , but involve it in the choice of extensions once

these are generated. For example, if the valuation give us that A has the highest value in
network R of Figure 1, we may adopt the new extension {A}.

Option 1 was widely used by Bench–Capon and colleagues, while option 2 is favoured by
Caminada and his colleagues, as well as by Talmudic Logic (Abraham, Gabbay, and Schild
2011a,b).

In the equational approach, it is reasonable to assume that V is a function V : S ∪ R −→ U
and thus option 1 means that we use V in formulating the equations, whereas option 2 means we
use V to eliminate or modify some solutions f. For example, going back to Figure 2, we now also

146 H. Barringer et al.

have the values V(A), V(X1), . . . , V(Xn) and so we can either modify the equations and write, for
instance, Eqinv as

f(A) = V(A) ·
n∏

i=1

(1 − f(Xi))

or stick to the original equations, but accept only solution functions f such that, for example, for
all A ∈ S, f(A) ≥ V(A).

The approach, we adopt in this paper, is numerical, that is, we look at argumentation networks
(S, R, V) where V : S ∪ R �→ [0, 1]. In 2005, in our paper (Barringer et al. 2005), this was a pretty
innovative approach. In this framework, we also put forward new concepts, like attack on attacks
to any level, see Section 2 below, an idea which applies to any network (not necessarily numerical)
and was later rediscovered by Modgil (2009) and by Baroni et al. (2009a).

A full discussion of the subject matter of higher level attacks, including priority can be found
in Gabbay (2009a).1

The study of this topic, in its present generality, has emerged from our previous research into
argumentation frameworks (Gabbay and Woods 2001a,b, 2002, 2003a,b; Woods 2004), where we
observed that circular loops in argumentation networks, no matter whether they are even or odd,
can be viewed as, and possibly resolved as, local predator–prey networks. Our starting point is,
therefore, a generalisation of the abstract argumentation networks.

Let us now consider some examples.
The numerical view of networks allows us to connect argumentation networks with other major

networks.

Example 1.1 Figures 3–5 are three examples of such networks. We assume that the arguments
denoted by the nodes all have equal and unit strength, and similarly all attacks have unit strength.
The result of a source node attacking a target (all of unit strength) is the refutation of the target.
Evaluating the effects of such a network will determine which arguments survive, i.e. are active,
and which ones are refuted, i.e. are inactive.

(a) The situation in Figure 3 is straightforward. The argument a is not attacked by anything,
so it is evaluated as an active argument. Since a attacks b, b is a refuted argument and is
evaluated as inactive, and so, as c is not attacked by an active argument, c is evaluated as
active. We can write the net, evaluated, result of Figure 3 as {+a, −b, +c}.

a b c

Figure 3. Example of network.

a

b

c

Figure 4. Example of network.

Argument and Computation 147

a

d

c

b

Figure 5. Example of network.

(b) The situation in Figure 4 is a complete loop. No argument can definitely be said to be
active or inactive, and hence all three arguments denoted by a, b and c are evaluated as
unknown. We write this as {?a, ?b, ?c}.

(c) The situation in Figure 5 is more interesting. Here, as a and b attack each other, we have
those arguments evaluated as unknown, i.e. {?a, ?b}. Because of that, we also evaluate
arguments c and d as unknown. If a or b were active, c would be refuted and evaluated
as inactive and thus d would be evaluated as active. On the other hand, if neither a nor b
were active, then c would evaluate as active, which in turn would cause d’s evaluation to
be inactive, (note that this does not give us an extension in the Dung–Caminada sense).
However we can observe that both a and b attack c; so no matter which of a or b are active
(i.e. whether we have {+a, −b} or {−a, +b}), we always have −c, and so the net result
could be taken to be {?a, ?b, −c, +d}C, (again note that this does not give us an extension
in the Dung–Caminada sense). On the other hand, we might adopt the view that a, b cancel
each other, in which case the net result would be {−a, −b, +c, −d} (again note that this
does not give us an extension in the Dung–Caminada sense).

Since circularity, loops and mutual attacks of arguments are very common in real life, it is
obvious that much attention is required to resolving loops in argumentation networks. Abstract
argumentation networks were generalised by Bench-Capon (2003), where a colouring (represent-
ing the type of argument) was added to the network. The colours are linearly ordered by strength.
A weaker coloured node cannot successfully attack a stronger coloured node. So a network with
colours has the form (S, R, V) where, as before, R ⊆ S × S and V is a function giving, say, numbers
to nodes: V : S �→ Numbers, and the numbers represent strength.

Thus, in Figure 4, suppose V(b) = r and V(a) = V(c) = s. Clearly if r < s, then the attack
of b on c cannot take place and the net outcome of the network is {+b, +c, −a}. If r > s, then
the attack of a on b cannot take place and the result is {+b, +a, −c}. If r = s, we get, as before,
{?a, ?b, ?c}.

Note that technically the colouring function V is an instrument for cancelling attacks from
some nodes to others. However, it is an instrument that requires restrictions. Not every proposed
list of attacks to be cancelled can be implemented by a function V . Consider Figure 4. Suppose that
we want to cancel all attacks. To cancel the attacks of a on b and of b on c we must have V(a) <

V(b) < V(c). By transitivity V(a) < V(c), so the attack by c on a cannot be cancelled by V .
The main rationale behind the introduction of V is not necessarily the resolution of loops or

cancellation of attacks, but the modelling of the intuition that arguments can be divided into kinds,
and that some kinds of arguments are more important than others, some kinds of arguments are
irrelevant,2 etc.

148 H. Barringer et al.

Remark 1.2 As we mentioned earlier, this paper, following its earlier 2005 version (Barringer
et al. 2005), goes in the numerical direction. This enables us to connect argumentation networks
with a diverse landscape of other very well known networks and the communities studying them.
We note that following the idea of Caminada labelling, the traditional Dung approach to argumen-
tation networks can also be considered as numerical. For a node x, we give the values V(x) = 1
for x being in, V(x) = 0 for x being out and V(x) = 1

2 for x being undecided. If x1, . . . , xn are all
the attackers of y, then we let V(y) = 1 − max V(x1), . . . , V(xn).

It is shown in Gabbay (2011a, c), that this particular three valued numerical approach is
equivalent to the traditional Dung approach. In the sequel, we shall always point out how the
new ideas and definitions of this paper manifest themselves in traditional Dung argumentation, by
using the above special three valued numerical case.

The numerical view of networks allows us to connect argumentation networks with other major
networks.

Let us list a few major ones.

(A) For Argumentation theory, node b may represent an argument or statement and the sup-
porting or attacking nodes ai would be arguments in favour or against the argument
represented by node b. The associated weights on the nodes and arrows would indicate
the strength of each argument, the strength of each support or attack and the force of their
presentation. The main problem for a given network of this type is to determine how to
evaluate the effects of the various supports and attacks in an untimed context with fixed
weights as well as a timed context in which weights are treated as being time-dependent
(see Caminada and Gabbay 2009; Gabbay and d’Avila Garcez 2009; Gabbay and Szalas
2009).

(B) The well-known Bayesian networks fall within our abstraction. Dependent nodes, i.e. tar-
get nodes, can be viewed as being evaluated through joint conditional probability on their
parent nodes, i.e. source nodes. There are no individual weights on arrows unless there is
independence of the conditional probabilities of the target on its sources.

(F) In Flow networks, where directed edges may be labelled by various parameters, for
example, flow and capacity, typical problems are optimising other dependent parame-
ters associated with the network, e.g. total cost, maximal flow, minimal circulation, etc..
In this context, topological and graph-theoretic properties of the network can play a more
prominent role.

(N) In Neural networks, nodes represent neurons with the capacity to fire on to their targets
with adjustable weights on the edges. The main emphasis is on training the network,
i.e. determining appropriate weights, through a variety of inputs for tasks in a given
application (see D’Avila Garcez, Lamb, and Gabbay 2008).

(E) In an Ecological setting, the network represents an ecology, where the nodes represent
species and the arrows represent dependencies between species. An attack arrow signifies
the source species being detrimental to the target species, e.g. source as predator, and
the support arrow represents the source being beneficial to its targets, e.g. food. The
parameters on nodes can represent relativised population numbers. The parameters on the
edges denote interaction parameters between the species relevant to appropriate governing
dynamical equations, e.g. the Logistic equation (May 1976) or the Lotka–Volterra equation
for predator–prey modelling (Lotka 1925; Volterra 1926). One of the major problems in
this area is to identify solutions, e.g. steady state, oscillatory, chaotic, etc., dependent on
initial conditions. Clearly, in this model, there is already temporal dependence, even when
the parameters do not change over time.

Argument and Computation 149

This paper generalises argumentation networks in several directions.

(1) It allows for nodes in argumentation networks not only to attack other nodes but also for
support of other nodes. Moreover, we allow for varying strengths of attack and support.
We further generalise the model by allowing for strengths of attacks or support themselves
to be subject to attack or support.

(2) It allows for the strengths of attack or support to be time-dependent.
This enables us to model the phenomenon of ‘Let’s lie low and wait for the argument to
blow away’.

(3) This paper also examines loop-resolution in argumentation networks, and explores similar-
ities between such loops and predator–prey models in mathematical biology/ecology. One
important outcome of such similarity is the possibility of getting extensions by choosing
elements in a loop as starting points, assuming they are in, and propagating their attack
recursively. In traditional Dung argumentation, this is how we can get the grounded exten-
sion. We start with the elements that are not attacked at all, these have to be in, and then
we propagate their attacks recursively (see Section 2).

The plan of the paper is as follows:
Section 2 will discuss ‘attack only’ networks. There are three problems to be addressed in such

networks. Note that we study these problems in the numerical context only.

(1) The formal definition and motivation of a variety of attack networks.
(2) The modes of attack, a discussion of various options as to how to evaluate the result of

attacks.
(3) The resolution of attack loops, such as Figures 4 and 5.

Section 3 is devoted to various methods for the resolution of attack loops. In the course
of deciding how to handle loops, we explore formal connections between evaluating local loops
occurring in numerical argumentation networks and determining steady-state solutions to network
models occurring in mathematical biology/ecology.

Section 4 deals with numerical networks that allow for both attack and support arrows. We
quickly ascertain the need to redefine the way in which attack and support are (numerically) carried
out, and our considerations lead us to a surprising connection with the Dempster–Shafer rule and
with the cross-ratio and projective metrics in geometry.

Section 5 deals with the time-dependent attack and support of arguments. Here a connection
with artificial intelligence time–action models is established, as well as a connection with dynami-
cal systems and general temporal logics. If our arguments get numerical values, then in a temporal
setting, these values become time-dependent and therefore their rate of change is relevant to the
strength of attack.

Section 6 discusses the results and indicates future directions of this work.

2. Attack-only networks with strength

In the 2005 version of this paper, (Barringer et al. 2005), this section was innovative in introducing
the systematic study of numerical attacks. As we said before, the argumentation community over-
looked the paper (Barringer et al. 2005) for some time and several authors introduced numerical
features independently. We shall offer a comparison and discussion of these papers in the conclu-
sion section. However, there are still features in this section which are new and apply equally to
numerical and traditional Dung networks. We shall highlight and expand the discussion of these
features. They have to do with the dynamic way in which we calculate extensions.

150 H. Barringer et al.

1 : a 1 : b 1 : c

Figure 6. Figure 3 regarded as a numerical network.

To explain this in principle, let our starting point be Figure 3. Viewed as a traditional Dung
argumentation network, we can calculate the grounded extension as follows:

Inductive algorithm

Step 1. a is in because it is not attacked.
Step 2. Let all x that are in execute their attack and take out their targets. In our case we get

that b is out.
Step 3. Mark as in all nodes that are now not attacked. In this case c is in.
Step 4. Repeat step 2 for the new nodes that are in.

We continue until there is no change. In our case, we get a = in, b = out, c = in. In the
numerical form, we get a = 1, b = 0, c = 1.

If we regard this network as numerical in our sense, we need to give the nodes initial strength.
Let us choose as an example V(a) = 1, V(b) = 1, V(c) = 1. We get Figure 6.

To remain in the Dung argumentation world, we ignore the numbers suggested by V .
The innovative idea of this section is to use them.
Numerical inductive algorithm

Step 1. a and b and c are in because V(a) = V(b) = V(c) = 1.
Step 2. Let all x that are in execute their attack and take out their targets. We get b is out and

c is out.

So the final extension we get is a = in, b = out, c = out or numerically we get V ′ with
V ′(a) = 1, V ′(b) = V ′(c) = 0.

This is what we do in Example 2.3 for the case of a much more complex network.
We now continue this section with an example motivating and explaining the idea of the

strength of a node and the strength of attack on a node.

Example 2.1 Consider the election for Governor of California and the then candidate, actor
Arnold Schwarzenegger. Let

a = The candidate is alleged to have a certain attitude towards women, and to have behaved
towards them accordingly.
b = The candidate will run California very well.

These arguments may have different strengths based on evidence for case a and training and
experience for case b. There is also another argument concerning the question of to what extent
can argument a attack argument b. Is a relevant at all to b and to what degree? We represent this
situation by the network in Figure 7.

The value ε = ε(ab), where (ab) is the attacking arc from a to b, represents the strength of
the argument that a is relevant to b. It, therefore, can also be attacked, since one can argue against
any connection between a and b.3

x : a y : b
e

Figure 7. Attacks with different strengths.

Argument and Computation 151

x : a

z : c w : d

y : b
e

h b

a

Figure 8. A more elaborate example of numerical network.

The perceptive reader might wonder how the two categories of weights (one on the nodes, one
to the links) can be meaningfully instantiated for argumentation purposes.

The idea of associating some sort of strength with an argument (a weight on the nodes), has
been proposed by some other approaches to argumentation, see for example Dunne et al. (2009,
2011).

However, we may still ask, what do the weights on the links represent? If it is intended as some
sort of contextual impact, then following Martin Caminada views, this factor is in fact grounded
in interrelations between the content of arguments, which in reality are structured and sometimes
quite involved assertions, abstracted into atomic terms for argumentation frameworks purposes,
see for example our paper Gabbay and d’Avila Garcez (2009).

Can the weights attached to the links adequately capture this?
Our answer is no, numbers cannot adequately capture contextual relevance of attacks, (but see

Hajek et al. 1992). However, this paper is about numerical networks and under this approach, this
is the best that can be done.

Consider the situation described in Figure 8 where argument a has strength x. It attacks
argument b, which initially has strength y.

ε is the transmission factor, weakening b in a way that takes account of x : a.
b is also attacked by d with factor β.
However, factor ε is attacked by argument c, which is itself attacked by d, with transmission

factor α.
This model has two innovations.

(1) The strength of nodes and the transmission factor.
(2) The idea that the transmission factor can itself be attacked. This is the so-called higher

level attack,4 see Gabbay (2009a) for discussion and further references. A restricted form
of this idea was later independently discovered by Modgil (2009) and put to good use.

What kind of network does Figure 8 represent? First, note that the strength of nodes is actually a
colouring of them. One might expect us to introduce a transmission factor between colours, then
in Figure 7 ε could depend only on x and y. We choose to make ε depend on the nodes, taking
into consideration that the transmission factor depends on the nature of the argument and not just
on their strengths.

The option of attacking transmission factors enables us to delete attacks, one by one, by
attacking (lowering) their transmission factor.

Example 2.2 (Modes of attack) Consider a simple numerical model. Assume all values are
between 0 and 1. If a is an argument of strength x which is attacking an argument b of strength y,
and the transmission rate is ε, then we get εx as the value transmitted.5 The question now is how
does this value εx reduce the value y of b to a new value y′? We have two options. The first is that

152 H. Barringer et al.

x1 :a1 xn : an

y : b

e1 en

Figure 9. General pattern of attack in numerical network.

the attack reduces the value y of b in proportion, i.e. by εx. Thus, the new value of b is y(1 − εx).
The second option is that the new value of y is y′ = εxy. This second option makes sense if we
view the attack of a on b as a pre-emptive protective measure, reducing a possible attack of b on
a. If a is strong (x = 1) and ε = 1 then 1 − xε = 0 whereupon a destroys b. This is the previous
option, being a genuine attack. However , εxy = y when ε = 1 and x = 1; so b is not affected.
But if x is small, then y′ = εxy is small. So if b attacks a with transmission rate η, the value of
this attack would be 1 − ηy′ and the attack would not be effective. Hence the second option can
be used as a pre-emptive attack.

We now address the problem of combining attacks. In Figure 8, b is also attacked by d and
this attack alone will reduce the value of b to y(1 − βw). How do we combine them?

Here too there are two options:

(1) Perform the operation of reduction consecutively (and commutatively), so that the new
value of b after the joint attack is y(1 − βw)(1 − εx).

(2) Add the two reductions, in which case, the new value for b is the value max{0, y − yεx −
yβw} = max{0, y(1 − εx − βw)}.

The advantages of option 1 are that it is simple and that the combination is independent of
how the attack is calculated. Another major advantage is that it is compatible with ordinary Dung
argumentation when the numerical values are restricted to {0, 1

2 , 1}. See Remark 1.2. For example,
this can give as the new value of b the combination εx(1 − βw).

Example 2.2 above has put forward just one mode of attack. There are many other possible
modes. Additional possibilities will be examined in Section 4, in conjunction of models with both
attack and support. For non-numerical logical modes of attack, see Gabbay and d’Avila Garcez
(2009) and Caminada and Gabbay (2009).

In general, we have the situation shown in Figure 9. In this case, we require the following
function: If b has value y and if x1 : a1, . . . , xn : an attack y : b with strengths ε1, . . . , εn resp.,
then we need a function f such that the new value of node b is y′ = f(y, xi, εi). This situation is
reminiscent of Bayesian networks, where f is the conditional probability of b on a1, . . . , an.6

We adopt option 1 as our mode of attack mainly because of its compatibility with ordinary
Dung networks as discussed in Remark 1.2. So the new value y′ = V(b) in Figure 9 is

y′ = y(1 − ε1x1) · · · (1 − εnxn)

= y
∏

i

(1 − εixi).

The magnitude �−y which y decreases is

�−y = y − y′ = y
(

1 −
∏

(1 − εixi)
)

.

Argument and Computation 153

Example 2.3 We calculate the transmission of values in Figure 8.
This is to be done in steps by calculating a valuation function V on the nodes of Figure 8.

At step n, n ≥ 1, we define a partial valuation function Vn on the nodes, with some nodes being
declared as having a final updated value. Our initial starting function is V0, with V0(a) = x, V0(b) =
y, V0(c) = z, V0(d) = w, V0(ab) = ε, V0(db) = β, V0(dc) = α and V0(c(ab)) = η. V0 records the
values given by the network graphs in Figure 8.

Step 1 : The final updated value V1 of node d is w, as it is not attacked by anything. Write
V1(d) = w. Similarly V1(a) = x. We write V1 because this is the final value obtained in Step 1.

Step 2 : The new value V2 of nodes c and b are V2(c) = z(1 − αw), V2(b) = y(1 − βw).
Of course since nodes a and d have already obtained their final value, we can write: V2(a) =
V1(a), V2(d) = V1(d). Node a cannot transmit, at this time (step 2), because we know from the
figure that ε is being attacked, and so we need to wait for its value to change. Only when V(ab)

gets its final value will a be able to transmit. Thus node (ab) cannot get a final value at this step.
Step 3 : The new value V3 of the transmission connection (ab) is

V3(ab) = ε(1 − ηV2(c))

= ε(1 − ηz(1 − αw)).

Of course, V3(a) = V2(a), V3(d) = V2(d), V3(c) = V2(c), and V3(b) = V2(b).
Step 4 : Now node a can transmit to node b. This gives

V4(b) = V2(b)(1 − V3(ab) · x)

= y(1 − βw)(1 − εx(1 − ηz(1 − αw))).

Of course, V4(a) = V3(a), V4(d) = V3(d), V4(c) = V3(c) and V4(ab) = V3(ab).
Note that node b has had its value changed in bits and pieces. First, it was changed in Step 1 and

then in Step 4. This is all right for the current way of changing values, because it is commutative
and cumulative. However, the general definition will not allow for this!

This kind of model contains the traditional one as a special case, where all values are taken to
be 1 and where there are no attacks on transmissions. Let us see what Figure 8 becomes in this
case. Consider Figure 10 and note that it reduces to Figure 11.

We can now give a definition of value propagation for acyclic networks. The general treatment
of cycles, or loops, in networks will be addressed in Section 3.

To give a definition, we need to agree on the representation of the network. Let us do it for the
case of Figure 8. We need a set of atomic nodes A. In the case of Figure 8, A = {a, b, c, d}.

To represent the attack of atomic x on y, i.e. the arrow from x to y, we write the expression
x � y (called attacks).7 In Figure 8, we have attacks a � b, d � c and d � b.

These arrows represent the attacks from a to b, d to c and d to b, respectively. One of these
attacks, namely a � b, is itself attacked by c. This is represented by the expression c � (a � b).

1 : a 1

1

1

1

1 : c

1 : b

1 : d

Figure 10. Figure 8 with strength 1.

154 H. Barringer et al.

d

ba

c

Figure 11. Simpler form of Figure 10.

Note that we cannot write an expression of the form (x � y) � z. This would mean that the
fact that there is an attack from x to y is in itself an attack on z.8 We are not saying that such
reasoning does not exist. We deal with it in the context of fibring networks, see Gabbay (2009c),
Gabbay, D.M (1996), Gabbay, D.M. (2009b). In other words, a whole network can be embedded
as a node and attacks another node.

Figure 8 can be represented by a set of nodes and attack arrows.

T = {a, b, c, d, a � b, d � b, d � c, c � (a � b)}.

Note that this set T has the property that if x � y ∈ T , then x ∈ T and y ∈ T . What we still need
are the numbers (valuations) in the figure. This we can be represented by a function V : T → R,
where R is the set of real numbers.

We are now ready for a formal definition.

Definition 2.4 9 Let A be a set of atomic nodes.

(1) Define the notion of an attack arrow based on A as follows:
• a � b is an attack arrow if a, b ∈ A.
• a � x is an attack arrow if a ∈ A and x is an attack arrow.

(2) Let T be a set of attack arrows and atomic nodes. We say that T is an attack network if the
following holds
• x � y ∈ T implies x ∈ T and y ∈ T .
We say that T is finitely branching (in the outgoing direction) if for every t ∈ T {a|(a �
t) ∈ T} is finite.

(3) A valuation function on T is a function V : T → R.
(4) An attack network with a valuation is a triple N = (A, T , V), where A is a set of atomic

nodes, T is an attack network based on A and V is a valuation on T .
(5) Let f be a functional giving for each string of real numbers of the form

(y, x1, . . . , xn, ε1, . . . , εn) a new real number y′ = f(y, x̄i, ε̄i) (where z̄i abbreviates z1, . . . , zn,
for z = x or z = ε). Note that n is arbitrary. We assume f to be continuous and symmetrical
in the pairs of variables (xi, εi), i = 1, . . . , n and generally nice.10,11

For example, let f(y, x̄i, ε̄i) = y
∏n

i=1(1 − εixi). See Section 4.2 for more options.
(6) An argumentation attack model is a pair (N , f), where N and f are as above.

Example 2.5 Let us look at some examples. Consider Figure 12 in which a attacks b but also
attacks its own attack. This is a case of a self defeating attack of a on b.

Argument and Computation 155

x : a y : b

b

a

Figure 12. A form of self attack.

x : a y : b
a

g

Figure 13. A form of self defence.

a b

c

Figure 14. Cycling self attack.

We have T = {a, b, a � b, a � (a � b)} and

V(a) = x, V(b) = y,

V(a � b) = α and

V(a � (a � b)) = β.

We can compare Figure 12 with Figure 13. In Figure 13, we can interpret γ as a feedback loop,
attacking and reducing α. The weaker the argument b is, the less we want to spend the effort to
attack it.

Definition 2.6 (Syntactic acyclicity12) Let T be an attack network. Define RT ⊆ A2 as follows:

aRT b iff a � b ∈ T or for some x ∈ A, a � (x � b) ∈ T .

Let R∗
T be the transitive closure of T . We say T is syntactically acyclic iff there is no x ∈ A

such that xR∗
T x.

If N = (A, T , V), we say N is syntactically acyclic if T is such.

Example 2.7 Figure 14 is cyclic while Figure 15 is acyclic and finitely branching.

Example 2.8 Figure 16 is cyclic syntactically, but is acyclic after evaluation using V .
Note that although the network is syntactically cyclic, since V(β) = 0, it is as if b � a does

not exist in T . We shall deal with this kind of semantic acyclicity later.

Definition 2.9 (Value propagation) Let (N , f) be a model, where N is syntactically acyclic and
finitely branching. We shall propagate the values V through the model using f. We do this in waves.

156 H. Barringer et al.

a b

c

Figure 15. Acycling self attack.

x : a y : b

V (b)=0

a
b

Figure 16. Syntactically cycling figure, but not semantically cycling.

Wave m will define values Vm(x) for some x ∈ T and x is then referred to as an updated element
with the updated value Vm(x).

Wave 0
An element a ∈ T is said to be syntactically free of attack if for every e ∈ A, we have (e � a)
∈ T .
Let it be said that the updated elements of Wave 0 are free of attack elements and let the updated
value V0 be V0(a) = V(a), for an updated a of wave 0.

Wave n + 1
Assume we have defined the updated elements of waves k ≤ n and their updated value Vk . Let b
be any element and let a1, . . . , am be all, if any, elements of T such that (ai � b) ∈ T . Assume for
each i, that ai, as well as ai � b, were updated at some earlier wave ki ≤ n and li ≤ n, respectively.

Define

Vn+1(b) = f(V(b), V̄ki(ai), V̄li(ai � b)).

When the network is finite, the algorithm updates all the nodes and terminates with some
Vn = V ′ in quadratic time.13

Example 2.10 (Figure 8 revisited) Let us examine the network of Figure 8 again. We are listing
the updated elements. Let us compare with Example 2.2.

Wave 0

w : d, x : a, β : d � b,

α : d � c, η : c � (a � b).

Wave 1

z(1 − αw) : c.

Note that the only updated element in this wave is c. b is not updated because not all of its
attackers (namely a) have been updated. In our earlier computation, we did attack b at this stage, but
we cannot do that under our current definition.We will not get a different result because our function
f launches the attacks from separate nodes independently, cumulatively and commutatively.

Wave 2

ε(1 − ηz(1 − αw)) : a � b.

Here a � b is being updated.
Wave 3

Argument and Computation 157

a b

c

Figure 17. Semantically cycling figure but not syntactically cycling.

Now we can update b. We get

y(1 − βw)(1 − εx(1 − ηz(1 − αw))) : b.

Definition 2.11 Let (N , f) be a finite model. Propagate V using f in waves as defined above.
Let the new valuation V ′(a), a ∈ T , be the updated value of a. We call V ′ the result of the waves
of attack in the network. Note that the propagation is executed only once.

Remark 2.12 (Networks with values in {0, 1}) For such networks more can be said. Consider the
situation in Figure 17

Although the network is not syntactically acyclic, it is what we can call semantically acyclic.
Let us propagate the annotations in recursive steps which we shall call waves.

Wave 0
The element c is updated to having value +1, since it is not attacked by anything.

Wave 1
The nodes a and b are attacked by c and therefore updated to value 0. We have a clear updated
semantic solution V ′ in this case.

This works only when the functions f can give value to arguments which are not evaluated
themselves. Let us do this formally.

We have V0(c) = 1 and just let V0(a) = x, V0(b) = y where x and y are any values.
Wave 0

V0(c) = 1 because c is not attacked.
Wave 1

V1(c) = V0(c),

V1(a) = f(x, y, 1) = 0,

V1(b) = f(y, x, 1) = 0.

We accept V1(a), V1(b) as final updated values because for the value V0(c) = 1, the function
λxλyf(x, y, 1) is identically 0, no matter what x, y are.

Definition 2.13 (Semantic acyclicity Version 1) Let (N , f) be a model where N is finitely
branching but not necessarily syntactically acyclic. We say that (N , f) is semantically acyclic
Version 1 if we can propagate V in the waves as follows:

Wave 0 An element b is said to be semantically (Version 1) ‘free’ of attacks if either (a) or
(b) hold.

(a) b is syntactically free of attack, i.e. for every e ∈ A we have e � b
∈ T . In this case we
set V0(b) = V(b) as the updated final value of b.

158 H. Barringer et al.

(b) Let a1, . . . , am be all elements of A such that ai � b ∈ T . Assume that y =
f(V(b), V(ai), V(ai � b)) depends on V(b) only. Then let V0(b) = y be the updated
value of b.

Wave n + 1
Assume that we have defined the updated elements of waves k for all k ≤ n. Let b be any
element such that for some a1, . . . , am, ai � b ∈ T for i = 1, . . . , m. Consider the value y =
f(V(b), x1, . . . , xm, w1, . . . , wm).

Assume that for any i, j such that the value xi of ai or wj of aj � b, respectively, has not been
updated at some earlier stages ki or lj ≤ n, we have that y does not depend on xi, wj, respectively.

Then we say that b is updated to the value Vn+1(b) at stage n + 1 and the value is y, where:

y = f(V(b), Vki(ai), Vlj (aj � b)),

where Vki(ai), Vlj (aj � b) are the updated values of ai and respectively aj � b if such values exist
and otherwise we do not care. We can assign this value to y because we assumed that y does not
depend on the nodes that were not updated.

If the algorithm terminates giving updated values to all nodes of T , we say the network is
semantically acyclic Version 1.

Example 2.14 Let us check some of our previous figures for semantic acyclicity. Figure 4 is
cyclic because, for example,

f(V(b), V(a)) = V(b)(1 − V(a))

depends on V(a) unless V(b) = 0. Similarly, Figure 5.

Example 2.15 Consider the situation of Figure 12. Assume that in this figure all initial values
are 1, i.e. x = y = α = γ = 1. So V ≡ 1.

Let us try to update by waves and see what happens.
Wave 0

The final updated value for a in this wave is V0(a) = 1.
Wave 1

We cannot get a value for b, even semantically Version 1, because the value of b is

V1(b) = V(b)(1 − V0(a)V0(a � b)).

This value depends on the value of V0(a � b) and this value is not finally updated.
So we cannot continue. However, there is something we can do. The initial value V(a � b)

is 1. So we can propagate the attack from a to b and get a new value V1(b) = 0. With this value, b
cannot attack a � b and so the initial value 1 of a � b remains unchanged. So we do get a stable
situation and not an oscillating situation.

This example suggests another definition of semantic acyclicity, a new Version 2.

Definition 2.16 (Semantic acyclicity Version 2) Let (N , f) be a model where N is finitely
branching but not necessarily syntactically acyclic. We say that (N , f) is semantically acyclic
Version 2 if we can propagate V in waves as follows:

Wave 0
Let b be an element which is semantically free of attack according to Version 1 as in wave 0 of
Definition 2.13. Let b be updated to V0(b) = V(b).

Argument and Computation 159

For any other element c which is not free let V0(c) be undefined.
Wave n + 1

Assume Vn has been defined, giving values to some elements of T . Further assume that some of
these values are declared final and the rest of these given values are declared temporary. For some
elements of T Vn may not give a value at all.

Let b be any element such that for some a1, . . . , am, ai � b ∈ T , i = 1, . . . , m.
Consider w = Vm(b), xi = Vn(ai) and yi = Vn(ai � b), i = 1, . . . , m.
Some of these values are final, some are temporary and some are undefined because Vn does

not give a value. We assume that b is such that for some ai or some ai � b, Vn does give some
value. If Vn does not give any value to any of ai and to any of ai � b, we do not touch b at this
wave. This condition we call the slow propagation condition and it is intended to avoid un-intuitive
situations like the one in Example 2.17.

So we can assume that for some of w, xi or yi, i = 1, . . . , m, j = 1, . . . , m, Vn does give a value
final or temporary. To be in a situation where all variables w, xi, y have defined values, let the value
for w, xi and yj be V(b), V(ai) or V(aj � b) in case Vn is not defined and does not give them
values.

Thus we can now calculate

z = f(w, x1, . . . , xm, y1, . . . , ym).

We distinguish three cases.
Case 1

Vn does not give a value for b : In this case, declare Vn+1(b) = z and declare this value as temporary.
Case 2

Vn(b) = w and z = w : In this case, reassert Vn+1(b) = Vn(b) as final or temporary, giving b the
same status as that which we have for Vn.

Case 3
Vn(b) = w and z
= w. In this case, we stop and say that (N , f) is not semantically acyclic Version
2.

We say that (N , f) is semantically acyclic Version 2 if for some n, Vn is total and Vn = Vn+1.

Example 2.17 Consider again the situation in Figure 5. Let us check for semantic acyclicity
Version 2 without the slow propagation condition. Assume V gives values 1 and all transmission
values are 1.

Wave 0
V0 cannot be defined on any node.

Wave 1
We use the values of V , since V0 gives no values and since b is attacked by a we get that its V1

temporary value is 0. Similarly, V(a) = 0, V1(c) = V1(d) = 0. All temporary values.
Wave 2

The values remain 0 and so the network stabilises at V2 ≡ 0.
The above calculation was without slow propagation.
If we invoke the slow propagation condition, Wave 1 cannot be executed. So we get no values.

Example 2.18 Consider the situation of Figure 14. Let us test for semantic acyclicity Version 2.
Assume all transmission values and all node values are 1, i.e. λxV(x) ≡ 1.

Wave 0
We have V0(a) = V(a) = 2. We cannot have any more values.

Wave 1

160 H. Barringer et al.

We have V1(b) = 0 because V0(a) = 1 and we use the transmission value V(a � b) = 1. We
cannot get a temporary value for c because we do not have any value for b at this wave.

Remark 2.19 Let us assess what we have so far. Consider a network (N , f) and consider maximal
cycles with respect to the relation RT of Definition 2.6. If C is such a cycle, then if there is an
element out of the cycle with an arrow into it, then there is a chance for the waves of the evaluation
of Definition 2.16 to semantically resolve the cycle. The problem arises when the cycle C has no
attack arrows leading into any of its members. Definition 2.16 will not be able to do anything, as
we see in Example 2.17, which deals with the situation in Figure 5. We, therefore, need a new idea
or methodology for resolving complete cycles and giving some values to its nodes. This new idea
and these new values come from the treatment of loops in ecological systems and we address this
in Section 3.

Remark 2.20 (Equational labelling) Consider the special case of a network with no higher level
attacks. This is just a set S with a binary relation on it. We allow for nodes to have strength as real
values between 0 and 1 inclusive, and allow for full transmission. In terms of the basic situation
described in Figure 9, we have ε1, . . . , εn are all 1 and the value of y is given by the formula

y = e(x1) · · · e(xn), (1)

where the function e is defined as e(x) = 1 − x.
Note that y = 1 only if all the xi are 0.
We can ask for a function V giving values to nodes and satisfying the equation above for any

instance of Figure 9 in the network such that a1, . . . , an are ALL the nodes attacking b. We can
use linear programming methods to find such a V .

This approach was introduced in Gabbay (2009c) and fully developed in Gabbay (2011a, c),
and generalises the Caminada labelling approach (Caminada 2011). It has two advantages

(1) We can let V take values in any commutative and associative multiplicative algebra. So,
for example, the {0, 1, ?} valued Caminada labelling can be viewed as equational labelling
in the three valued commutative associative algebra satisfying the axioms

x1 = 1x = x

x? =?x =?

0x = x0 = 0.

We let e(1) = 0, e(0) = 1 and e(?) =? (see Caminada and Gabbay 2009; Gabbay 2009c).

(2) We can write general non-local equations or constraints which V should satisfy and seek a
solution. This allows for more general networks. Equation (1) is local, it involves a point
and its immediate neighbours, it is not the most general type of equation.

Note that Figure 4 has the a = b = c =? solution in the three-valued algebra and the a = b =
c = 1

2 in the real numbers.

3. Handling loops – ecologies of arguments

This section is about handling loops, both in numerical argumentation networks and, in general,
numerical networks, especially ecological networks.

Argument and Computation 161

a

dc b e

Figure 18. A frustrating initial loop.

3.1. Loops in argumentation networks

In the case of argumentation, the situation is quite simple. We make a distinction between even
and odd loops. The even loops can give rise to non-trivial extensions, while the odd loops can only
give rise to the trivial extension all undecided.

The situation can be frustrating when we have an odd loop at the top of a network (i.e. none of
the members of the loops is being attacked from outside the loop). Figure 18 is a typical situation.

The only extension we can have here is all undecided, because the top odd loop {a, b, c} is a
bottleneck.

Recently, authors looked for ways of breaking such bottlenecks by putting forward new seman-
tics (Baroni and Giacomin 2003; Baroni, Giacomin, and Guida 2005; Bodanza and Tohmé 2009;
Gaggl and Woltran 2010; Abraham et al. 2011a,b). The CF2 semantics, for example, will resolve
the loop of Figure 18 by taking maximal conflict-free subsets of the loop instead of admissible
subsets. This would give us the following CF2 extensions:

{b, e}
{a, d}
{c, d}.

When we take a numerical point of view, we get equations to solve, and the solutions to
the equations are the extensions. The equations in this case are (adopting option 1 discussed in
Section 2 after Example 2.2) as follows:

(1) V(a) = 1 − V(c)
(2) V(b) = 1 − V(a)

(3) V(c) = 1 − V(b)

(4) V(d) = 1 − V(b)

(5) V(3) = 1 − V(d).

The only solution is

V(a) = V(b) = V(c) = V(d) = V(e) = 1
2 ,

which corresponds to all undecided. So the problem is not solved, but is less frustrating, as we
have more scope of writing modified equations, getting new solutions.

The traditional Dung approach gives a limited number of parameter concepts to play with. We
have conflict-free, skeptical, credulous, attack, defence, etc., and can modify these to get ourselves
out of odd loops. In the numerical approach, we have the entire landscape of (what is known in

162 H. Barringer et al.

a1

a2

a3

an

Figure 19. General loops.

......

. . .

. . .

a 1
1 a 1

2 a 1
n a 2

1

a 2
2 a 2

n a 3
1

Figure 20. Unfolding a general loop.

fuzzy logic as) De Morgan norms to use. See Gabbay (2011c) for a wider discussion. The De
Morgan norms keep compatibility with the traditional Dung approach to argumentation networks.

This numerical point of view certainly connects with other types of networks, such as ecological
networks. The equations are different there, not compatible with argumentation, but the scope for
resolving loops is much richer, as we discuss in this section.

We add one more comment about unfolding loops. Consider the loop in Figure 19. In this
figure n may be odd or even. When we unfold it, we get Figure 20.

There is no distinction in Figure 20 between odd or even, except that by writing copies ai
k of

the letter ak , we indicate that we want either all ai
k for all i to be in or all ai

k for all i to be out.
With this restriction, if n is even, there is a solution and if n is odd, there is no solution.
Now that we have a general orientation between loops in traditional Dung argumentation and

loops in general numerical networks, we can start the detailed discussion of this Section. We have
encountered loops in Example 1.1(b) and (c). In Figure 5 of (b), we need to resolve the loop {?a, ?b}
in order to propagate values to c. So technically all we need is some loop-resolving compromise
assignment of values to a and to b, and then the algorithm of Definition 2.9 can be invoked. How
do we obtain such a value?

The values we give to the loop depend on our interpretation of it. Hints for possible inter-
pretations can be obtained from other possible interpretations of the entire network regarded as
a mathematical entity. We shall, therefore, open this section by putting forward several points of
view as to the meaning of labelled networks and their internal loops, which will then lead to ways
of dealing with their loops.

To begin our discussion, consider the following Figure 21 which is the typical general numerical
case of an even loop.

Let f1(y, x, ε), f2(x, y, η) be the two transmission functions. We observe the following:

(1) Figure 21 describes a syntactical loop.

Argument and Computation 163

x : a y : b
e (ab)

h(ab)

Figure 21. General even numerical loop.

(2) Depending on the values x, y, ε, η and depending on the functions f1 and f2, Figure 21
might not be a loop semantically. For example, if x : a is much stronger than y : b or if
ε = 0 then this might not be a loop.

The general method is to find a solution for the pair of equations

y = f1(y, x, ε)

x = f2(x, y, η)

or, more generally, for the case of a maximally strongly connected component of the network
involving n nodes x1, . . . , xn, we solve the vector equation

X = F(X,).

We can then use a solution (if it exists) as the values of the nodes in the context of the original
network. Thus, for the loop of Figure 4 mentioned above, values for the nodes a and b can be
determined using this method. We get the value for Figure 4 as 1

2 for all nodes.
The reader should note that Brouwer fixed the point theorem (see Wikipedia for reference)

that guarantees at least one solution to the above equation. There may be many solutions. It
is up to us to decide whether we want to generate all solutions or seek a solution with certain
properties/constraints (some constraints may not allow for a solution). If we have certain solutions
in mind, then special numerical analysis techniques may have to be employed. See Gabbay’s
(2011a, c) papers. These options in seeking solutions is reminiscent of the discussion in Logic
Programming (the so-called great logic programming schism).

Note that in Appendix 2, we turn to possible interpretations of loops in other kinds of networks.
We examine these different interpretations in order to assess the relevance of their solutions to
the situations arising in argumentation. We will also examine whether the argumentation network
point of view may be applied to other networks.

3.2. Unfolding loops

There are various ways of treating loops.

(a) We can unfold them as done in, say, modal logic.
(b) We can let node a attack b, calculate the new value and then let b attack a, calculate the

new value and then let a attack b and so on. This we call the parasite way of unfolding a
loop.

(c) We can let a and b attack each other simultaneously, calculate the new values and then let
them attack again and again. This is the predator–prey way of unfolding a loop.

(d) We can assume a steady state and solve the equations suggested by the geometry of the
loop.

Let us now turn to Figure 21 and see what are our options for dealing with this loop.
Our first attempt at a solution is to regard (ab) and (ba) as the same channel and read the loop

as feedback loops (see Appendix 2). So a pushes εx towards b and b pushes ηy towards a. The

164 H. Barringer et al.

x : a y : b
ex − hy

Figure 22. Option 1 for resolving the loop of Figure 21.

l : a l : b
l

l

Figure 23. Option 2 for resolving the loop of Figure 21.

e1 e2 e3 e4ll
ll

l
l

l

Figure 24. Unfolding Figure 23.

net result is (εx − ηy) in the direction of the positive value. So assuming εx ≥ ηy, we get that
Figure 21 is essentially reduced to Figure 22.

The solution is not satisfactory. It cannot deal with cases like Figure 4 unless we further commit
the model to be a proper network flow model with various capacities, as studied in operational
research. So let us try another approach. Assume in Figure 21 that we have x = η = ε = y.

Call the common value λ. We now get Figure 23.
Let V0(a) = V0(b) = λ, the initial value, and let us transmit from a to b and back from b to a

in cycles and see what presents itself. This is the modal logic approach.
We treat Figure 23 as equivalent to Figure 24.
In Figure 24, nodes e1, e3 . . . represent node a of Figure 23 and needs e2, e4, . . . represent node

b. So we start from V1(e1) = λ and transmit to the right getting Vn(en), n = 2, 3,
Step 1: Transmit λ2 to e2 to get V2(e2) = λ(1 − λ2) = λ − λ3.
Step 2: Transmit from e2 to e3 the value λV2(e2) and get V3(e3) = λ(1 − λV2(e2)) =

λ − λ3 + λ5.
We can continue by induction.

Lemma 3.1 Suppose we have a node e with V(en) = Vλ,n = λ − λ3 + λ5 − · · · + (−1)nλ2n+1

and suppose we are transmitting to a node λ : en+1 with value λ then we get V(en+1) = Vλ,n+1.

Proof

V(en+1) = λ(1 − λV(en))

= λ − λ3 + λ5 · · · − λ2(−1)nλ2n+1

= λ − λ3 + λ5 · · · + (−1)n+1λ2(n+1)+1.

�

We now observe that when n goes to infinity, we get Vλ,∞ = λ/(1 + λ2).14

This means that Figure 23 stabilises into Figure 25. Note that the transmission rates in Figure 25
are all 0. This is because the values Vλ,∞ obtained have already taken into account all recursive
transmissions.

Note that Figure 24 represents one way of going through the cycle of Figure 23, i.e. the fuzzy
modal logic approach. Another approach is what we called the parasite model, where we apply

Argument and Computation 165

0

0

1+l2 : al
1+l2 : bl

Figure 25. Stable state of Figure 23.

l

l
l

l : a l : c

l : b

Figure 26. Odd numerical loop.

the transmission on Figure 23 directly, starting from node a to b with V1(a) = λ, (corresponding
to V1(e2)) we would get V2(b) = λ(1 − λ2), same as V2(e2) and then transmit back to node a and
get V3(a) = V1(a)(1 − λV2(b)) (corresponding to V3(e2)). So far, the values agree, but now there
is a difference. Working directly on Figure 23, we transmit 1 − λV3(a) to node b whose last value
is V2(b) = λ(1 − λ2) and get V4(b) = λ(1 − λ2)(1 − λV3(a)). While in Figure 24, the value of
node e4 (which corresponds to b) is λ and so we get in Figure 24, V4(e4) = λ(1 − λV3(e3)). So the
question is, as we go through the cycle a → b → a → b . . ., do we use the new value or follow
Figure 24 and keep the value at λ, the initial value!

Another possibility for dealing with Figure 23 is to adopt the predator–prey model and transmit
simultaneously from node a to node b and from node b to node a, and then repeat the cycle. If
V0(a) = V0(b) = V0 = λ is the initial value, then symmetry is maintained through the cycles and
for step n + 1, we get

Vn+1(a) = Vn+1(b) = Vn+1 = Vn(1 − λVn).

So we end up with a recursive equation

• V0 = λ, 0 ≤ λ ≤ 1
• Vn+1 = Vn(1 − λVn)

which for 0 ≤ λ ≤ 1 gives V∞ = 0, meaning that a and b cancel each other.15

The above considerations can be applied to other loops. The net result of Figure 4 will be
similar to that of Figure 23.

Consider Figure 26. Let us see what different options for resolving loops yield for the figure.
Option (a), the unfolding option would yield, by using Lemma 3.1 that Figure 26 stabilises as

Figure 27
Option (b) yields the sequence of Figure 24 (which is not surprising because of symmetry)

and therefore will give rise to Figure 27 again.
Option (c) again because of symmetry yields for each node the sequence of Figure 24. So again

we get Figure 27 as the solution of the loop.
Option (d) is perhaps the simplest and most clear of all the options. We assume a steady-state

solution for nodes Va, Vb, Vc. We get the equations

(1) Va = Va(1 − λVc)

166 H. Barringer et al.

0

00

1+l2
: al

1+l2
: cl

1+l2
: bl

Figure 27. Solution to odd loop.

1
2: a

0

0

0

1
2: c

1
2: b

Figure 28. Another solution to odd loop.

a b

Figure 29. An even loop.

(2) Vb = Vb(1 − λVa)

(3) Vc = Vc(1 − λVb)

Because of symmetry, we can assume

Va = Vb = Vc = V .

Thus we get V = V(1 − λV). The only solution is V = 0.
We can make one more move now. To resolve Figure 4, we consider Figures 26 and 27 and let

λ approach 1. Thus, we get the value 1
2 . Hence the net results of Figure 4 is Figure 28.

A similar net result obtains for Figure 29.
Note that now we can resolve the loop in Figure 5. We get V(a) = V(b) = 1

2 and therefore
V(c) = 3

4 and hence V(d) = 1
4 .

We can also deal with an argument attacking itself. It will get 1
2 . We pause to remark that for

the reader interested in argumentation networks only, the best method for resolving loops is option
(d), namely assume a steady-state solution and solve the resulting equation (see Gabbay’s 2011a,
2011c). For other types of networks (see Appendix 2) other options may be more natural.

There is still work to be done on resolving loops. We have some relevant papers which handle
loops, especially using the equational approach. This is a complex topic. In the context of our
paper here, we need to show the following:

(1) How the results we get for the loop depend on the choice of numbers we assign to the
nodes and for the transmission rates (we gave λ to all!).

Argument and Computation 167

a b

c

Figure 30. Sample loop.

l : a l : b

l : c

l

l

l

Figure 31. Sample loop.

b

d

a

c

Figure 32. Sample loop.

(2) What happens when loops can be resolved but we use our method anyway, as in Figure 30.
In Figure 30, the net result is

{+c, −b, +a}.
What do we get if we assign λ everywhere and get Figure 31?
Here is the calculation:We start with V0(a) = V0(b) = V0(c) = λ. Transmit from c to b and
get V1(b) = λ − λ3. Transmit from b to a and get V1(a) = λ(1 − λV1(b)) = λ − λ3 + λ5.
Obviously, if we follow the loop, we get as before V∞(a) = V∞(b) = λ/(1 + λ2) and the
net result is {1 : c, 1

2 : a, 1
2 : b}. This is not satisfactory.

It makes more sense to try to give c value 1 transmitting at rate 1, since c is not in a loop.
This will give b value 0 and a value λ. When λ approaches 1 we get the right answer.
Perhaps we might follow the procedure of giving λ only to nodes in a loop?

(3) Consider, however, the following loop in Figure 32.
d is attacked twice and is attacking once, while a is attacking twice and is attacked once.
Should we give them λ in the same way?

Example 3.2 (Resolving Figure 32) Let us try the fixed point approach on Figure 32. We begin
with V0(a) = V0(b) = V0(c) = V0(d) = y and with transmission λ.

168 H. Barringer et al.

(a) We start propagating from node a. We get

V1(b) = V1(c) = y(1 − λy).

V1(d) = y(1 − λy(1 − λy)2)

and therefore

V1(a) = y(1 − λV1(d)).

We need a fixed point solution to V1(a) = V0(a). Hence

y(1 − λV1(d)) = y.

Excluding y = 0, we get

1 − λV1(d) = 1.

Hence

V1(d) = 0.

This means

y(1 − λy(1 − λy)2) = 0.

Hence

λy(1 − λy)2 = 1.

Let x = λy. We get x(1 − x)2 = 1. This has a solution, x0 of approximate value

x0 ≈ 1.755.

If we want 0 ≤ λ ≤ 1 then there is no way 0 ≤ y ≤ 1. Hence the only fixed point solution
is y = 0.

(b) Let us start at node d of Figure 32

V0(d) = y

V1(a) = y(1 − λy)

V1(b) = V1(c) = y(1 − λV1(a))

V1(d) = y(1 − λV1(b))2

and try to solve the fixed point equation:

y = y(1 − λV1(b))2.

Hence if we insist on y
= 0,

1 = (1 − λV1(b))2.

Hence

1 − λV2(b) = ±1.

So either
(i) V1(b) = 0

or
(ii) V1(b) = 2λ.

Argument and Computation 169

b1

a1

c1

d1 a2

b2

c2

d2 a3 . . .

ll
l l l

l
l

l
l

llll
ll

Figure 33. Unfolding Figure 32.

D : a G : ¬a

Figure 34. A loop where the annotations are logical theories.

For V1(b) = 0 we get, if y
= 0, that V1(a) = 1/λ.
Hence λy(1 − λy) = 1. It is clear that this equation has no real solution.
Let us now try the case in which V1(b) = 2λ.
Hence

y(1 − λy(1 − λy)) = 2λ

y − λy2(1 − λy) = 2λ

y − λy2 + λ2y3 − 2λ = 0.

Does this have solutions? Remember 0 ≤ λ ≤ 1, 0 ≤ y ≤ 1.

If we choose λ = 0.133 and y = 0.275, the value of the polynomial is 0.0006.
Since we are dealing with continuous functions, we can find proper solutions.
Let us now try another way of tackling Figure 32, which can be rewritten as Figure 33 below,

where ai represent a, bi represent b, ci represent c and di represent d.

The neural net approach gives us an additional dimension. We can run the cycles in the loop but
also transmit to the rest of the network, and possibly stop after so many cycles (say n = 100), and
examine the values in all nodes of other network. If the time involved in the cycles has meaning
in terms of the network itself changing in time (as modelled in Section 4 below), then we have
added a new and interesting dimension to loops in these networks.

In other words, we are saying that attacks take time to be executed, a loop of the form ‘a attacks
b and b attacks a’ also takes time to unfold, and meanwhile the network can change.

To give an example of such a loop, think of contradicting witnesses and circumstantial evidence,
one supporting a and one supporting b = ¬a. So the loop is as in Figure 34, where �,
 are
themselves argument structures which are time-dependent. This loop certainly takes time to unfold!
There may be some facts in � or � that take time to verify or refute!

We conclude this section with a remark which may be of interest to a reader who wants
to expand his horizon beyond the area of argumentation networks. We believe that the general
treatment of loops should be done in the context of neural networks (see d’Avila Garcez, Gabbay,
and Lamb 2004), not because of a conceptual connection, but because these nets can technically
reach equilibrium and resolve loops of the kind that arise there.

Note that every graph can be presented as an acyclic graph of nodes which are themselves
maximally connected cycles. So when we are dealing with cycles, we can make use of that. In
fact Baroni et al. (2005) took advantage of this idea.

170 H. Barringer et al.

4. Attack and support networks

This section deals with attack and support. Since our approach is numerical, all we have is several
numbers attacking or supporting another number. From the point of view of traditional argu-
mentation networks, this simplification may appear to be going too far. We lose the richness
of discussions and modelling, we have in a substantial number of papers on support which we
have recently seen published in the argumentation community. However, outside argumentation,
numerical attack and support make sense. In ecological networks, in flow networks, in electrical
networks, etc.

So this section is concerned with numerical attack and support. The main problem is what
numerical function to use in the case of nodes xi : ai support the node y : b. What function y′ =
g(y, xi) should give us the new supported value y′? We have this problem in argumentation too,
but in our case, it is all numerical.

Because we are dealing with numbers, we add the requirement that if y : b is both supported
and attacked by the same number, then the support and attack should cancel each other. This
requirement is reasonable. Many valuations we know, including paper submissions to conferences
and various impact factors used by universities in promotion considerations, involve numerical
scores. It would be naive to assume that cancellation principles are not used, especially since many
of the people involved may not be familiar with the subject matter.

So the beginning of this section, Section 4.1 tries to find the right functions for attack and
support. We do find a good way of doing it and we discover to our surprise that the solution connects
with the Dempster–Shafer rule (arising in a completely different community of researchers) and
even more surprising is the connection with the cross-ratio of projective geometry. (The cross-ratio
is used in geometry to define metrics on spaces.) This is investigated in Section 4.2.

By the end of Section 4.2, we will have drifted away from argumentation quite a bit. So the
argumentation reader might ask why this should be of interest to him? We would say please expand
your horizons, after years of research in logic, our considered opinion is that this is important.

This section discusses the addition of support arrows to argumentation networks. We will
see that in order to have equal attack and support cancel each other, we need to reconsider the
way we calculate the values of attacks (and supports). We offer a new definition and establish a
connection between the new definition, the Dempster–Shafer rule, and surprisingly, the cross-ratio
and projective metric distance from geometry.

4.1. Discussion of support

Consider a connection from a to b in Figure 35.
The double arrow indicates support. The simplest way to do it is to attack (1 − y) which is the

distance of b from 1.16 Thus the new value of b is

1 − (1 − y)(1 − λx) = 1 − [1 − λx − y + λxy]
= λx + y − λxy = y + (1 − y)λx.

If we have several supports, then (1 − y) shrinks to

(1 − y)(1 − λ1x1)(1 − λ2x2) · · · (1 − λkxk)

y : bx : a
l

Figure 35. Numerical support.

Argument and Computation 171

y : b

x : a z : c

l m

Figure 36. Both support and attack.

and the new value y′ becomes 1 − (1 − y)
∏

i(1 − λixi). The difference y′ − y becomes

�+y = 1 − (1 − y)
∏

i

(1 − λixi) − y

= (1 − y)

(
1 −

∏
i

(1 − λixi)

)

and we have

y′ = y + �+y.

How do we deal with both attack and support? Consider Figure 36, in this figure x : a attacks
y : b and z : c supports it. So the new value for b is

y − λxy + μz(1 − y).

It is not clear what to do with several simultaneous attacks and supports. The model must be
commutative in the order of application.

Our solution is simple. b is at a distance y from 0 and distance 1 − y from 1. Let the attackers
attack y to get it nearer to 0 and let the supporters attack (1 − y) to get b nearer to 1. Thus, if xi : ai

attack y : b with transmission λi and zi : ci support y : b with transmission μi we get y′ as the new
value at b, where

y′ = y − �−y + �+y

= y − y

(
1 −

∏
i

(1 − λixi)

)

+ (1 − y)

(
1 −

∏
i

(1 − μizi)

)

= y
∏

i

(1 − λixi) + (1 − y)

(
1 −

∏
i

(1 − μizi)

)
.

Note that there is something numerically wrong with our proposal. In Figure 35, if we let z = x
and μ = λ, i.e. the attack and support have the same values, then, we would have expected that
they cancel each other. However, this is not the case. The new value is y′ = y − 2λxy + λx.

This should not surprise us. The closer y is to 1, the less is the numerical value of an attack on
1 − y, and the more numerical value we get for an attack on y. So, for example, assume y = 0.9 in
value. Then a support of 50% of y will be half the distance of y from 1, i.e. will yield �+ = 0.005
in numerical value, while in comparison, a 50% attack on y will half the distance of y from 0 and
will yield �− = 0.45. The net result of simultaneous attack and support will yield the new value
0.9 − 0.45 + 0.05 = 0.50.

172 H. Barringer et al.

Can we remedy the situation? Perhaps,we should attack by changing the ratio r(y) of y to 1 − y,
(i.e. r(y) = y/(1 − y), and then calculate the new y′ which will give the new ratio. So suppose the
transmitted value (of attack or support) is 0 ≤ θ ≤ 1.

If θ is an attack we want to reduce r(y) and so we let r′(y) = θr(y). If θ is a support, we want
to increase y, so the new ratio is r′(y) = r(y)/θ .

We now solve the equation

y′

1 − y′ = r′(y)

and therefore we get

y′ = r′(y)
1 + r′(y)

.

We must now decide on what value θ to use. Let us use the same value we used before, as agreed in
Example 2.2. In Figure 35, we have x : a attacking y : b with transmission rate λ and we, therefore,
have θ = (1 − λx).

Let us calculate the values of attack and support with θ .
Case of attack

r′(y) = y(1 − λx)

1 − y

y′ = y(1 − λx)

(1 − y)(1 + y(1 − λx)/(1 − y))

= y(1 − λx)

(1 − y + y − λxy)

= y(1 − λx)

(1 − λxy)

Case of support

r′(y) = y

(1 − y)(1 − λx)
.

y′ = y

(1 − y)(1 − λx)(1 + y/(1 − y)(1 − λx))

y′ = y

(1 − y)(1 − λx) + y

= y

(1 − λx + yλx)

= y

1 − λx + yλx

= y

1 − λx(1 − y)

Let us now assume as before that the attack is 50%, e.g. x = 0.5, λ = 1.
We get θ = 0.5. Assume as before y = 0.9. Hence r′(y) = (0.9/0.1) · 0.6 = 4.5 and y′ =

4.5/(1 + 4.5) = 4.5/5.5 = 9/11.
This should be compared with the previously attained value 0.45 = 9/20.

Argument and Computation 173

For the support, we get

r′(y) = 0.9

0.1.0.5
= 18.

So

y′ = 18

1 + 18
= 18

19
.

This should be compared with the value 0.05 we got previously.
How do we handle simultaneous attacks and supports? We follow the same principle as before.

If θ1, . . . , θn are attacking values and θ ′
1, . . . , θ ′

m are the supporting values then the new r′(y) is

r′(y) = r(y)

∏
i θi∏
i θ

′
i

.

We shall argue below at the beginning of Section 4.2 that the choice of θ = (1 − λx) is wrong.
We can see that something is wrong qualitatively already. Consider Figure 36.We have that a attacks
b and c supports b. So if a attacks b with θ = (1 − λx) and c supports b with θ ′ = (1 − μz), then
we get according to our formula that r′(y) = r(y)θ/θ ′.

Now let us ask: does a attack c? And, does c attack a? What are the qualitative implications of
these equations? Let us calculate. Assume for simplicity that λ = μ = 1. We get no clear answers
to our questions! However, if we were to take (for the case λ = μ = 1) the value θ = (1 − x)/x,
and θ ′ = (1 − z)/z then we get that the sequence, a attacks c and then the already attacked c
supports b, gives the same result as in Figure 36, which is why that a attacks c and b supports c in
parallel. Notice that since θ = 1/r(z), we get the following rules, as summarised in Remark 4.1
below:

Remark 4.1 (Rules for attack and support) For x attacking y let r′(y) = r(y)/r(x)
For z supporting y let r′(y) = r(y) · r(z)
For both, we get r′(y) = r(y) · r(z)/r(x)
These equations imply that x attacks z and also z attacks x. The following three scenarios give the
same results:

x attacks z and the modified z supports y;
z attacks x and the modified x attacks y;
x attacks y and z supports y in parallel.

Remark 4.2 (Loops involving support) Since we introduced support, we need to check what
happens with loops involving support. For example, we need to check what happens with odd and
even loops with support only.

In fact, in this section, we introduced a new algoirthm for numerical attack and support as
summarised above in Remark 4.1.

So we need to check loops for this new type of numerical attack as well.
The first fact we observe, is that, by the definition of attack or support of x : a on y : b, we

use the ratios r(x) = x/(1 − x) and r(y) = y/(1 − y). For attack, we divide by the ratio to get
the new ratio r′(y) = r(y)/r(x) and for support, we multiply by the ratio to get the new ratio
r′′(y) = r(y)r(x).

This means that (x : a) attacking (y : b) is the same as ((1 − x) : a) supporting y : b.
So when we have loops involving both attack and support, we can eliminate the supports by

converting them into attacks.
Let us check Figure 37.

174 H. Barringer et al.

z : cy : bx : a

Figure 37. Converting support into attack in Figures 37 and 38.

z : c

(x : a)

y : b

Figure 38. Converting support into attack in Figures 37 and 38.

y : bx : a

Figure 39. Typical numerical even loop.

From x : a attacking y : b we get a new ratio for b namely r(y)/r(x).
Now the new ratio for b attacks z : c and so the new ratio for c is

r(z)

r(y)/r(x)
= r(z)r(x)

r(y)
.

The new ratio for z : c is the same as the ratio, we obtain if y : b was attacking z : c and x : a was
supporting z : c, as in Figure 38.

We get the new rate for c is r(z) · r(z)/r(y).
This is compatible with the intuition that if a attacks b which attacks c, then a actually supports c.
Let us now examine odd and even loops for the ratio type of attack. Consider Figure 39.
This is a typical even loop. Assume a steady-state solution. This means the following equations

hold:

(1) Since b attacks a we must have

r(x) = r(x)

(y)
.

(2) Since a attacks b we must have

r(y) = r(y)

r(x)
.

From the equations, we get that r(x) = r(y) and hence r(x) = r(y) = 1 and hence x = y = 1
2 .

This corresponds to Dung’s argumentation theory to x = y = undecided.
In Dung argumentation, we also have the solutions x = in and y = out and x = out and y = in.
These solutions correspond to the numerical solutions (x = 0) ∧ (y = 1) and (x = 1) ∧

(y = 0).
For x = 0 we have r(x) = 1 and for x = 1 we get r(x) = ∞.
Assume f 9(x) = 1 ad r(y) = ∞, and check the equations. For the first equation we get

1 = 1

∞ = 0

which is impossible.

Argument and Computation 175

y : b

z : c

x : a

Figure 40. Numerical odd loop.

So we do not have these solutions in our case.
Let us now check the odd loop of Figure 40
In a steady-state solution, we get the following equations:

r(x) = r(x)/r(z)
r(y) = r(y)/r(x)
r(z) = r(z)/r(y)

The only solution is r(x) = r(y) = r(z) = 1, namely x = y = z = 1
2 .

In Dung argumentation terms, this corresponds to a = b = c = undecided.
Now we ask what happens to these loops if some of the connections are supports? We saw that

support of

(x : a) � (y : b)

can be converted to attack

((1 − x) : a) → (y : b).

The ratio r(1 − x) equals the ratio of 1/r(x).
Now if we have a loop, odd or even, and some links are supports, we convert them into attacks

with new ratio = 1/old ratio. Since the only solutions we got was that the ratios of all nodes is 1,
then 1/ratio is also 1 and this means we get all undecided as before.

We thus get that in our case:

• All loops, odd or even, no matter whether the links are attack or support, have only one
solution: all undecided!

Remark 4.3 (Higher level attacks and support) The reader should note that our definition of
numerical attacks and support as given in this section, really define how one number x can attack
or support another number y. The number y′ is calculated as summarised in Remark 4.1.

Therefore, when we consider higher level attacks or support of nodes on arrows or arrows on
other arrows, such as we have in Figure 8, we have no problem calculating them. We just look
at the numbers. So in Figure 8, for example, the node z : c attacks the number ε representing the
transmission rate of (x : a) → (y : b) with the transmission rate η. So the real attacking number
is zη, attacking the number ε. The new number ε′ is therefore

ε′ = r(ε)/r(zη)

1 + r(ε)/r(zη)

= r(ε)

r(ε) + r(zη)
.

176 H. Barringer et al.

Remark 4.4 (Comparison with biological networks) It is worthwhile comparing the recursion
results we obtained with the kind of recursion one gets in mathematical biology. We use the table
(Table 3.1) of Turchin (2003, p. 53).17

(1) Old attack formula

yn+1 = yn(1 − λx).

This can be compared with exponential population growth.
(2) New attack formula

yn+1 = yn(1 − λx)

1 − λxyn
.

This can be compared with the Beverton–Hort formula in the table of Turchin (2003,
p. 53), see footnote 17.
Let us also examine what happens in the case of loops. Consider Figures 23 and 24 again.
We have v1(e1) = λ and the recursion equation, according to Figure 24 is

Vn+1(en+1) = λ(1 − λVn(en))

1 − λ2Vn(en)
.

The recursion fixed point equation for this case is

V = λ(1 − λV)

1 − λ2V

or

V − λ2V 2 = λ − λ2V

λ2V 2 − λ2V − V + λ = 0

V 2 − (1 + λ2)

λ2
V + 1

λ
= 0.

Let λ approach 1, we get

V 2 − 2V + 1 = 0

and so V∞ = 1.
If we do the recursion proper, as in Figure 23, we get

Vn+1 = Vn(1 − λVn)

1 − λV 2
n

.

The fixed point equation becomes

V(1 − λV 2) = V(1 − λV).

If we discard the solution V = 0, we get

1 − λV 2 = 1 − λV

hence

V 2 = V

and hence V = 1.

For more on biological networks, see Appendix 2.

Argument and Computation 177

4.2. Connection with metric projective geometry and the Dempster–Shafer rule

In the previous subsection, we agreed that in the situation of Figure 36, node a attacks node b by
attacking the ratio:

r(y) = y

1 − y
.

We proposed that the attack value θ be θ = 1 − λx. We want to re-examine our decision in this
subsection and see whether we can use a different attack value. First to simplify our qualitative
consideration, assume λ = 1 and μ = 1. Second, let us focus on node c, which is the supporting
node b, with value z. Assume that z is very small, almost 0. One may feel that in many real
applications, a very limited support is worse than nothing. It implies an attack on argument b, the
hidden implication is that if b were any good why is not c’s support of it a bit stronger? This way of
thinking would integrate the support and attack together. So if a node supports another node with
value z, then it simultaneously attacks it with value 1 − z. If z = 1, then the support is complete.
If z ≈ 0 then the support is insulting and really accomplishes an attack to the value of 1 − z.

Let us look at Figure 36 again. There are two ways to look at this figure (with λ = μ = 1).
One way is that we have two nodes, x : a and z : c, the first attacking the node y : b and the second
supporting it.

The other way is that there is a single node z : c supporting the node y : b, but simultaneously
attacking it to the value 1 − z, as discussed above. Figure 36, with x = 1 − z is a representation
of this new point of view through the additional node x = (1 − z) : a.

Of course, it is nicer to represent this new point of view directly, and indeed, later on in the
paper we do represent this new point of view of support/attack mode by a double arrow.

Let us now calculate the new value y′ of the attack and support configuration of Figure 36. We
have:

r′(y) = y(1 − x)

(1 − y)(1 − z)
.

Hence

y = r′(y)
1 + r′(y)

= y(1 − x)

(1 − y)(1 − z) + y(1 − x)

= y(1 − x)

1 − y − z + y(z + 1 − x)
.

In order to compare with a later formula, let us rename the values. Let z2 = 1 − x and let
z1 = z. We get Equation (DS1):

y′ = yz2

1 − y − z1 + y(z1 + z2)
. (DS1)

This equation means that a node y : b is simultaneously supported by z1 : c and attacked by
(1 − z2) : a. Alternatively, we can say that the node is being [Support, Attacked] by the pair
[z1, z2]. If z1 ≤ z2 (i.e. z + x ≤ 1), we can say we have a [Support, Attack] interval [z1, z2], 0 ≤
z1 ≤ z2 ≤ 1.18

We adopt this terminology in preparation for the Dempster–Shafer point of view, yet to come,
see item 3 of Example 4.5.

Let us now examine the case where x = 1 − z, i.e. z = 1 − x. We can view this as a [Support,
Attack] pair [z1, z2] = [z, z].19

178 H. Barringer et al.

We can view Figure 36 again and see that we are getting a situation of support value z from
node c and attack value 1 − z from node a.

We have already calculated the new ratio r′(y) for node b, it is

r′(y) = y(1 − (1 − z))

(1 − y)(1 − z)
= yz

(1 − y)(1 − z)

Let us write this equation as

r′(y) = y/(1 − y)

(1 − z)/z
. (∗)

We now calculate the new value y′, it is

y′ = r′(y)
1 + r′(y)

= yz

(1 − y)(1 − z) + yz
. (∗∗)

We thus get that a node z : c supporting a node y : b yields the new value y′ : b, where

y′ = yz

1 − y − z + 2yz
provided, of course, that y + z − 2yz
= 1. (DS2)

Let us say that (∗) and (DS2) represent a combined [Support, Attack] result of a node to a
value [z, z], attacking a node with value y.

We now connect (DS2) to the Dempster–Shafer rule (see Shafer 1976; Hajek et al. 1992), and
to the cross-ratio and projective metric from geometry (see Faulkner 1949; Adler 1967).

Example 4.5 (Dempster–Shafer rule) The range of values we are dealing with is the set of all
subintervals of the unit interval [0, 1]. The Dempster–Shafer addition on these intervals is defined
by

[a, b] ⊕ [c, d] =
[

a · d + b · c − a · c

1 − k
,

b · d

1 − k

]
,

where k = a · (1 − d) + c · (1 − b), where ‘·’, ‘+’, ‘−’ are the usual arithmetical operations. The
compatibility condition required on a, b, c, d is

ϕ([a, b], [c, d]) ≡ k
= 1.

The operation ⊕ is commutative and associative. Let e = [0, 1].
The following also holds:

• [a, b] ⊕ e = [a, b]
• For [a, b]
= [1, 1] we have [a, b] ⊕ [0, 0] = [0, 0]
• For [a, b]
= [0, 0] we have [a, b] ⊕ [1, 1] = [1, 1]
• [a, b] ⊕ [c, d] = ∅ iff either [a, b] = [0, 0] and [c, d] = [1, 1] or [a, b] = [1, 1] and [c, d] =

[0, 0].
In this algebra, we understand the transmission value [a, b] as saying that the actual transmission
value lies in the interval [a, b].

Let us make three comments as follows:

Argument and Computation 179

(1) Let x denote [x, x]. We get for 0 ≤ a ≤ 1 and 0 ≤ c ≤ 1 the following

a ⊕ c =
[

ac + ac − ac

1 − a(1 − c) − c(1 − a
,

ac

1 − a(1 − c) − c(1 − a)

]

=
[

ac

1 − a − c + 2ac
,

ac

1 − a − c + 2ac

]

= ac

1 − a − c + 2ac

provided (a + c − 2ac)
= 1.
We note immediately that (DS2) is y ⊕ z. This is also the propagation method used by the
MYCIN expert system (see Hajek and Valdes 1994).

(2) Let us check for what values of a, c can we have equality, i.e. when can we have a + c − 1 =
2ac?
Assume a ≤ c.
We claim the only solution to the equation a + c − 2ac = 1 is a = 0, c = 1 for a ≤ c and
a = 1, c = 0 for the case c ≤ a. There is no solution for c = a.
To show this, let c = a + ε, 0 ≤ ε ≤ c − a.
Then assume

a + a + ε = 1 + 2a(a + ε)

2a + ε = 1 + 2a2 + 2εa

ε − 2εa = 1 + 2a2 = 2a

ε(1
2 − a) = a2 − a + 1

2

= (a − 1
2)2 − (1

2)2 + 1
2

= (a − 1
2)2 + (1

2)2.

Hence

(
a − 1

2

)2

+ ε

(
a − 1

2

)
+

(
1

2

)2

= 0

[(
a − 1

2

)
+ ε

2

]2

−
(ε

2

)2 +
(

1

2

)2

= 0

(
a − 1

2
+ ε

2

)2

=
(ε

2

)2 −
(

1

2

)2

=
(

ε

2
− 1

2

) (
ε

2
+ 1

2

)
.

Hence ε = 1 and since 0 ≤ c = a + ε ≤ 1 we must have a = 0 and c = 1.
In particular, we get that for a = c = x, x ⊕ x is always defined and we have

x ⊕ x = x2

1 − 2x + 2x2
.

180 H. Barringer et al.

For example, we have

0 ⊕ 0 = 0

1 ⊕ 1 = 1

1
2 ⊕ 1

2 = 1
2

(3) Let us check what happens when c = d.
We get

[a, b] ⊕ c = bc

1 − a(1 − c) − c(1 − b)

= bc

1 − a + ac − c + bc

= bc

1 − a − c + c(a + b)
.

The reader should compare this equation with the formula (DS1) obtained before.

Example 4.6 (Cross-ratio) Consider the interval [0, 1] and two points y and 1 − z in this interval.
Let A = 0, B = 1, C = y and D = 1 − z. Taking AC, CB, AD, DB as directed intervals, we have it
that AC = y, CB = 1 − y, AD = 1 − z and DB = z.

The projective cross-ratio between these points, denoted traditionally by (A, B; C, D) is
calculated as the ratio of ratios of the directed intervals.

(A, B; C, D) = AC/CB

AD/DB
= y/(1 − y)

(1 − z)/z
= yz

(1 − y)(1 − z)
.

Note that this is formula (*).
Note that this measures distance. In the Cayley–Klein metric, log(A, B; C, D) is used to describe

the distance between points C and D. Figure 41 shows how it is done.
C and D are inside the unit circle. The chord connecting them meets the circle at A and B. See

Adler (1967, Sections 4.10 and 11.7) and Faulkner (1949, Chapter 6).
Returning to Figure 36, we have

r′(y) = (0, 1; y, 1 − z). (*)

We can now define a new kind of support/attack arrow (with value z/1 − z) in a network, as
displayed in Figure 42 by double arrow

B

D
C

A

Figure 41. Cayley–Klein metric.

Argument and Computation 181

provided y + z − 2yz π 1

z : c y : b

Figure 42. New kind of attack/support arrow.

We have for 0 ≤ y, z ≤ 1

r(y) = y

1 − y
. (�1)

r′(y) = (0, 1; y, 1 − z). (�2)

y′ = yz

1 − y − z + 2yz
= y ⊕ z. (�3)

Furthermore, a formula (DS1) for a combined support to value z1

and attack to value z2, as in Figure 36, gives the result y′ = y ⊕ [z1, z2]. (�4)

Equations (�2)–(�4) open new opportunities for us.

(1) Allow for values to be intervals because of the connection with Dempster–Shafer.
(2) Allow for a connection with a more general non-Euclidean metric, using complex numbers.
(3) Attack and support values need not be in [0, 1].

For further investigations, see Metcalfe, Olivetti, and Gabbay (2008).

Example 4.7 (Cross-ratio for intervals) This example will try to extend the notion of cross-ratio
for intervals, i.e. we look for cross-ratio for (0, 1; [y1, y2], 1 − z), 0 ≤ y1 ≤ y2; 0 ≤ z ≤ 1.

We saw that the situation in Figure 43 can be described as follows:

(1)

r(y, z) =(0, 1; y, 1 − z)

= yz

(1 − y)(1 − z)

(2) We also know that the Dempster–Shafer rule for the case of y ⊕ z = [y, y] ⊕ [z, z] gives
the value

y ⊕ z = r

1 + r
= yz

1 − y − z + 2yz

10
y 1−z

A BDC

Figure 43. Cross Ratio.

182 H. Barringer et al.

(3) Our aim is to define cross-ratio (0, 1; [y1, y2], 1 − z). We use (2): Consider

[y1, y2] ⊕ z = y2z

1 − y1 − z + z(y1 + y2)

(4) Define by analogy with (2):

[y1, y2] ⊕ z = r([y1, y2], z)

1 + r([y1, y2], z)
(*1)

we do not know what r∗ = r([y1, y2], z) means. However, using (*1) and solving for r∗ we
get:

r∗ = [y1, y2] ⊕ z

1 − [y1, y2] ⊕ z
.

Fortunately, the expressions on the right-hand side are all numbers: Hence we get

r∗ = y2z

1 − y1 − z + z(y1 + y2)(1 − (y2z/1 − y1 − z + z(y1 + y2)))

= y2z

1 − y1 − z + zy1 + zy2 − y2z

= y2z

1 − y1 − z + zy1

= y2z

(1 − y1)(1 − z)

= y2

y1
· y1z

(1 − y1)(1 − z)
= y2

y1
r(y1, z).

We, therefore, have

r([y1, y2], z) = y2

y1
r(y1, z). (*2)

We can, therefore, define

(0, 1; [y1, y2], 1 − z) =def
y2

y1
(0, 1; y1, 1 − z) (*3)

or more generally:

(A, B; [C1, C2], D) =def
AC2

AC1
(A, B; C1, D). (�)

Let us check whether (�) is invariant under some projective transformations.
Let us consider y2/y1. Think of it as a cross-ratio as in the figure below

0
y1 y1+y2

z
y2

(y2 − 0)/(y1 − 0)

(y2 − (y1 + y2)/2)/(y1 − (y1 + y2)/2)
= y1/y1

(y2 − y1)/(y1 − y2)
= −y2

y1

Thus
y2

y1
= −

(
0,

y1 + y2

2
, y1, y2

)
.

This cross-ratio uses the midpoint between y1 and y2. Midpoints E between points A and B
can be characterised as the Harmonic conjugate of the point at infinity relative to A and B.

Argument and Computation 183

So any transformation of the line leaving the point at infinity fixed will also preserve
midpoints, i.e. if A goes to A′, B to B′ and E to E′ and ∞ to ∞, then if E is the midpoint
of AB then E′ is the midpoint of A′B′.

(5) Since r(y, z) is commutative it stands to reason to define

r∗∗ = r([y1, y2], [z1, z2]) = def
y2

y1
· z2

z1
r(y1, z1).

We now have a candidate definition for a cross-ratio for intervals.

r∗∗ = y2

y1

z2

z1

y1z1

(1 − y1)(1 − z1)
.

Hence

r∗∗ = y2z2

(1 − y1)(1 − z1)
. (*3)

Let ȳ = [y1, y2], z̄ = [z1, z2]. Therefore, we can define a new � using a similar connection
as (*2):

ȳ � z̄ = r∗∗

1 + r∗∗

= y2z2

(1 − y1)(1 − z1) + y2z2
.

Hence we summarise as follows:

ȳ � z̄ = y2z2

1 − y1 − z1 + z1y1 + z2y2
. (*4)

Let us compare � with ⊕
We have

ȳ ⊕ z̄ =
[

y1z2 + y2z1 − y1z1

1 − y1 + y1z2 − z1 + y2z1
,

y2z2

1 − y1 + y1z2 − z1 + y2z1

]

=
[

y1z2 + y2z1 − y1z1

1 − y1 − z1 + y1z2 + y2z1
,

y2z2

1 − y1 − z1 + y1z2 + y2z1

]
.

They are not the same, unless z1 = z2 or y1 = y2.
To see this let us ask when do we get a point interval? We equate the numerators of the
interval endpoint and we get

y1z2 + y2z1 − y1z1 = y2z2

hence

z1(y2 − y1) = z2(y2 − y1)

i.e. either y1 = y2 or z1 = z2 i.e. one has to be a point

Summary
We have extended the cross-ratio to a case of one interval, and it agrees with the Dempster–Shafer
⊕. We can also extend the cross-ratio to the case with two intervals, giving it the value

r∗∗(ȳ, z̄) = y2z2

(1 − y1)(1 − z1)

but it does not agree with the Dempster–Shafer ȳ ⊕ z̄.

184 H. Barringer et al.

a : c b : b
e(a, b)

Figure 44. A new kind of arrow, indicating a general transmission.

We note, however, that since

r∗∗(ȳ, z̄) = y1

y1
,

z1

z1
r(y1, z1),

if we assume y1 = 1 − y2, z1 = 1 − z2, we get

r∗(ȳ, z̄) = r(y2, z2)r(y1, z1).

We need to check what benefit this gives us!

Example 4.8 (Using Dempster–Shafer for attack and support) Consider again the basic situa-
tions depicted in Figures 36 and 42, or perhaps consider the more fundamental situation of Figure 7.
Let us focus on the following Figure 44.

The new kind of arrow can stand in for attack, support or any combination transmitted from node
c to node b. Our aim in this example is to review our options for the kind of values α, β, ε can take
and the options available for the mathematical formulas for their combination and transmission.

Our previous discussion allows for the following Dempster–Shafer option

(1) ε = 1, α = [z1, z2], β = y, 0 ≤ y ≤ 1, 0 ≤ z1 ≤ z2 ≤ 1 and y′ = y ⊕ [z1, z2] and the arrow
is interpreted as the [Support, Attack] connection as in formula (DS1). We saw the
connection with the cross-ratio as well.

(2) To maintain symmetry, we must also allow β to be of the form [y1, y2], 0 ≤ y1 ≤ y2 ≤ 1
and we must write a formula for the [support, attack] on β : b. The obvious answer is to let

β ′ = α ⊕ β = [z1, z2] ⊕ [y1, y2].
(3) Another possibility is to take �, i.e. let β ′′ = α � β (as in (*4) of the previous example)

but then β ′′ is a number not a proper interval.
(4) Next let us ask what values can we give to ε? Again the simplest and most general value

can be ε = [u1, u2], 0 ≤ u1 ≤ u2 ≤ 1. We need to say how to combine it with α to get a
value transmitted? Again in analogy with expert systems in AI, we can let the transmitted
value to be α ⊕ ε. Thus, the new value β ′ would be

β ′ = α ⊕ ε ⊕ β.

5. Numerical temporal dynamics overview

The discussion so far was static. The network is fixed and does not change with time. We discussed
support and attack options and discussed loops but we did not discuss change. When we have
change, we use the term temporal dynamics of networks. Let us begin.

5.1. Introduction

We devote this subsection to briefly outline some intuitive motivation for temporal dynamics. The
reader should be aware that the temporal dynamic aspect of networks is central to the subject and

Argument and Computation 185

will receive extensive study in future papers (see Barringer, Gabbay, and Woods 2012). Since our
paper is on numerical networks, it is worthwhile to give a brief discussion of the special aspects
of numerical change. We can use calculus in this case and involve rate of change in attacks and
support.

We begin our discussion with general considerations of how to introduce time into a sys-
tem. There are two ways that time can be introduced into the system. The (local) object level
approach and the (global) meta-level approach. If the system is denoted by S and its components
by s1, s2, s3, . . . then the object level approach is to make each si time-dependent, i.e. si = si(t).
The global meta-level approach is to take temporal snapshots of the whole system at different
times.

To illustrate the two approaches, consider a system of particles in mechanics. The local object
level approach is to give a trajectory function s(t) for each particle s. The meta approach is to take
snapshots of the whole system at different times. Since the particles may be interacting, the meta
approach is to give general differential equations governing the behaviour of the system while the
object level approach gives the solutions to these equations, being the trajectory for each particle.

In the case of argumentation networks, both approaches are meaningful. The meta-level
approach takes snapshots of the argumentation system at different times. Thus, we need an addi-
tional network of time points and we need to evaluate the argumentation network at the time
network. We can use special connectives to express time behaviour and create new arguments
involving time, out of the atomic arguments of the argument network. This is done in a continuation
paper (Barringer et al. 2012) entitled Modal and Temporal Argumentation Networks.

For example, if a represents a proof for the existence of God, then Ha can represent the fact
that (a new argument based on a) this proof has always been accepted as valid and thus one can
use Ha as a new argument representing a stronger version of a.

The object level approach is to make the strength of a time-dependent. So a may represent
a visual argument (by way of television footage) against involvement in some foreign war. The
strength of this footage goes down as time moves on.

The two approaches may be combined. For example, one can argue that the strength a(t) of
acceptance of the proof of the existence of God has been going down over the years (as measured
by per cents of the population who accept it), i.e. da/dt � 0, and, therefore, we should no longer
take such proofs into consideration!

So this argument has the form:

H

(
da

dt
� 0

)
−→
attack

a.

There is a third temporal aspect to networks and this is the time it takes to traverse (evaluate
the arguments of) the network. This aspect is dominant in biological networks. We now elaborate
more on this aspect:

Given an attack and support network, there are two interpretations for it which are intuitive
and work well:

(1) biological interpretation;
(2) argumentation interpretation.

The biological network models population growth and dynamics varying in time. The network is
fixed and time/population generations manifest themselves in propagating values in the network.
Each complete cycle represents a generation in time.

In the case of argumentation networks, such cycles do not represent time, but the calculation
of the strength of the various participating arguments. A stable solution of the cycling/propagation
of the argumentation network gives the final value of the strength of the arguments.

186 H. Barringer et al.

x(t) :a y(t) :b
l (t)

Figure 45. Attack with a time parameter.

In contrast, a stable solution of the propagation of attack and support values in the biological
network represent as a steady-state population equilibrium.

An oscillatory solution in the biological case means population oscillation of various species,
while in the argumentation case, such oscillatory behaviour is a problem because we want a steady
answer to the values of the various nodes. Further machinery is needed in the argumentation case
to rescue the situation and get a value for each node.

What would be a temporal aspect in the argumentation case?
Consider the simple network of Figure 45.
In this figure t is a time parameter. So the strength and transmission parameters of the net from

a to b depend on time t.
The value of b is y′(t) = y(t)(1 − λ(t)x(t)).
We assume there that the transmission from a to b at any time is instantaneous. Thus, what we

have is a parameterised family of networks, with parameter t.
There are several ways in which such a system can be made more interesting and more

applicable.

(1) The variation of the network in time is continuous and has nice properties.
(2) Transmission takes time as opposed to transmission being instantaneous. By transmission

being instantaneous, we mean that the process of Definition 2.9 takes no time at all.
(3) The variation is in some sense evolutionary, i.e. the value of the net at time t + �t is

somehow dependent on the value at t. This dependence is governed by some evolutionary
equations.

Let us examine one such simple case. Consider Figure 16 again.
Assume that at time t = 0, we have x(0) = 1, λ(0) = 1 and y(0) = 1. In this case y′(0) = 0.
So really argument b is totally defeated. However, if we know that the strength of a(x(t)) and

its transmission rate λ(t)) decrease quickly, while the strength of b, y(t) changes very slowly, then
it is worth our while to wait a bit hoping the crisis (argument attack from a to b) will blow over.

Let us take for example

y(t) = 1

1 + t

x(t) = 1

1 + tet

λ(t) = 1

1 + tet

Hence for a small t = ε

y′(ε) = 1 − 1/(1 + εeε)2

1 + ε
.

Argument and Computation 187

For ε = 1, we get y(1) = 1
2 and in comparison, we have

y′(1) = 1 − 1/(1 + e)2

2

= 1

2
− 1

2(1 + e)2

= 1

2
− 0.036.

So there is a loss of about 7% as a result of the attack.
So if we are anxious to keep argument b, we might choose to wait a little (wait ε) for argument

a and its transmission to weaken considerably.
Consider that we have

a = sex scandal
b = Governor to resign.

The chances are that public opinion will change quickly.
These time changes should be studied in the context of a time–action model. Suppose we have

action e with precondition b and post-condition c. We want to take action e but if b is successfully
attacked, we cannot do so. So we wait a bit. Conversely, suppose that we have d attacks a. Since
d attacks a, b is available as +b and so action e can be taken. But if d is weakening with time, we
may choose to take action e immediately, while d is still ‘saving’ b by attacking a.

So a more sophisticated time–action–argument model will look at the speed of changes and
will give values for actions to be taken.

We need to say more about what actions do in the model. We need to define the notion of a
fact. We agree that syntactical facts e (as opposed to arguments), can be identified in our model
by two properties:

(1) V(e) = 1
(2) e is not attacked by anything.

Of course there may be some arguments that have properties 1 and 2 above, but then for all practical
purposes they are like facts.

There may be examples where it looks like some facts can be attacked by other facts. The fact
that data is available on the computer may be attacked by the fact that a password was irretrievably
lost. However, we can also look at the attack as focussing on the transmission rate of the fact and
not the fact itself. We further accept that a node e is considered a semantical fact if V(e) = 1 and
no attack arrows with positive transmission rate go into e. In a temporal dynamics model, these
properties must hold at all times. If they hold only at some of the time, then e is not a fact but a
commonly accepted truth which may sometime be attacked or doubted.

What do actions do? Actions create or destroy facts (see Gabbay and Woods 1998). So if at
time t an action e is fired, then the result is that some facts get deleted from the network and some
new facts are added. We can also assume that all values V change as a result of the action.

For simplicity, let us assume that an action adds only one fact or deletes only one fact. Since
we can formally delete by attacking, we will only allow adding facts. By adding a fact, we mean
either a new fact or turning an existing argument into a fact. So an action has the form e =
(preconditions, post-conditions), where the precondition is a sequence of arguments ((xi : ai))

and the post-condition is a sequence ((a → yi → bi)). This means that we add the fact a and let
it attack bi with a transmission rate yi, i = 1, . . . , n. In a given network, if a is not a node then we
add it as a node with value 1 and let it attack any node bi which is in the network.

188 H. Barringer et al.

x : a

z : c w : d

1 : b
0

u 0

a

h

Figure 46. Applying an action to Figure 8 can yield this figure.

x : a

z : c w : d

1 : b

u

a

Figure 47. Figure 46 simplified.

If a is already in the network, then ‘disconnect’ all attacks on a by giving them value 0. Give
a the value 1 and let a attack all existing bi in the network. If bi is already attacked by a with
transmission rate ui, then let the new transmission rate be max(ui, yi).

Note that e is stated independently of the network. To be activated, we need the net final value
of ai to be at least xi and then the post-conditions act on the available bi.

Example 5.1 Consider the network of Figure 8. Consider the action e with precondition ((x :
a), (w : d)) and post-condition ((b → u → c), (b → y → g)). This action can be applied to the
network of Figure 8.

The result is Figure 46 below. Note that since there is no node g in the network, b → y → g
is not implemented. This is equivalent to Figure 47.

The next question for us to answer in a temporal network is the following. If action e is activated
at time t, when do we see the result? If the network operates in discrete time, then the result is at
time t + 1. Otherwise, we have to treat the action like an impulse in a physical system, as when
a ball hits another ball and gets it moving, and assume the result of the action e at t manifests
itself immediately at all times s such that t < s. We have to give a reasonable definition of how
the result of the action manifests itself. A good example for the initial consideration is that if a
new argument e is created by an action at time t then it shows up at all times s > t and its strength
at time s > t decays slowly as s increases, say it has the form Vs(e) = k/(1 + s − t), k a constant
≤ 1. Similarly, we can ask for a decay of the transmission rates.

If we bring into the argumentation system the idea that traversing the network also takes time
(as we have in the biological case), we get two time movements: the traversing time and the
network change time.

Such a combination exists in legal arguments. Court cases take time to argue and ‘evaluate’
and thresh out the evidence and in parallel the laws and public perception of justice get changed.
In many cases, they influence one another.

Let us go back to the biological case. Here the network does not change and the time components
are the cycles (generations) through the network. So what can network change mean? This can

Argument and Computation 189

c

a a

c

now soon

b b

Figure 48. Time change example.

c

a

c

now soon

off

on off

on

b a b

Figure 49. Another time change example.

be genetic mutations or genetic engineering which change the parameters in the system. The
predator–prey relationship can change because of mutations in the prey, etc. Major disasters can
affect the ecology. Deterioration of the habitat and environment can affect a slow continuous
change in the parameters.

Some arguments lose their potency with the passage of time. This is well known in the political
context. Politicians sometimes wait for the ‘storm’to blow away, especially in matters of corruption
and public protest. For example, some members of the UK Parliament (MPs) were recently exposed
as claiming unjustifiably large expenses. There was a strong public protest to these findings,
resulting in the resignation of some MPs. Many, however, have kept a low profile, awaiting for the
public to forget. Let a represent the public protest over excessive expense claims, and b denote the
standing of MPs, symbolically, we may have that now a attacks b, see Figure 48, but not for long,
soon a will no longer attack b but a new attack on b, from c, say political in-fighting, may occur.

In such cases, we can represent the arguments and the attacks as time-dependent, a(t), b(t)
where t represents time. In contexts where arguments have strength (i.e. a(t) is a number between 0
and 1), we can even consider the rate of change, da/dt, db/dt and include it in our considerations.
It may be convenient to represent the situation as in Figure 49. Where we do indicate attack arrows
as on and off. Better still is to put labels on the attacks, e.g. l(c, b), l(a, b), which can be on or off,
and consider these labels as time-dependent.

6. Conclusion and discussion

We now conclude this paper. We embarked from traditional argumentation networks in the numer-
ical direction. This allowed us to compare and see the place of traditional argumentation in the
landscape of general networks, (which are mostly numerical). We concentrated our discussion on
the handling of numerical loops and on the concepts of numerical attack and support.We discovered
interesting connections and new ideas. What is left to be done in this section is a comparison with
some related papers published since 2005 and a discussion of further research. This we do now.

190 H. Barringer et al.

6.1. Comparison with related papers 2005–2011

Our current paper is an expansion of our 2005 original paper (Volterra 1926). This paper was not
always noticed by the argumentation community and so some related results have been published
since 2005. We discuss some of these papers here. We are grateful to the referees for compiling
this list of papers for us.

(1) The paper by Haenni (2009), on Probabilistic Argumentation: This paper relates to
our paper in the following way. In our numerical argumentation networks, we have
nodes of the form (x : a) and attacks of the form (x : a) → (y : b) or support of the
form (x : a) � (y : b), x and y are numbers in [0, 1]. We take these numbers as given,
and do not ask where they come from. So suppose a is a fact and it is established
because several witnesses with varying reliabilities testified to a. If we have a system
of belief functions or probabilities on the sources of information that supports a, we
can calculate a final number x to annotate a. The paper by Faulkner (1949) offers such
a system. It is interesting to note that the Dempster–Shafer Rule does appear in this
paper in the context of combining numbers and it also appears in our paper as well as
we have seen in Section 4.2

(2) The paper by Leite and Martins (2011), on Social Abstract Argumentation: At the
beginning of May 2011, J. Leite sent D. Gabbay a copy of this paper, which was sub-
mitted to IJCAI. He said he saw an abstract of Gabbay’s (2011a) paper and thought
it was related. Gabbay sent his papers (Gabbay 2011a, c). The paper by Leite and
Martins (2011) is indeed related to the paper by Gabbay (2011c), which deals thor-
oughly with the equational approach to argumentation. In Gabbay and Rodrigues
(2012), they addressed the ideas given in Leite and Martins (2011). The paper by
Leite and Martins (2011) has in it implicitly as a side-effect a valuable principle relat-
ing to the computation of steady-state solutions to equations arising from numerical
argumentation networks. It is a numerical analysis problem and is too elaborate to be
discussed here. We shall address it in the expanded version of Gabbay and Rodrigues
(2012).

(3)–(4) The paper by Cayrol and Lagasquie-Schiex (2005) on Graduality in Argumentation,
and the paper by Matt and Toni (2008) on A Game-Theoretic Measure of Argument
Strength for Abstract Argumentation: These two papers are concerned with the fol-
lowing problem: ordinary Dung argumentation and the Caminada labelling classify
the arguments into three classes only: in, out and undecided. These authors share the
view that a finer classification is needed. Thus, if we look at Figure 3, we see that a
is not attacked by anything, while c is attacked by b and defended by a. There is a
unique extension, grounded extension, a = in, b = out, c = in.
The view of these authors is that a is much more valued in, while c is in, but not so
much valued as a.
So the more attacked a node x is, the less value it has, even if it is in.
We, therefore, seek to define a numerical valuation function λxV(x) on arguments to
reflect this situation. Cayrol and Lagasquie-Schiex (2005) use the geometry of the
network to define such a function, V(x), by looking at chains of attack and defence
leading to the element x. Matt and Toni (2008) also use the geometry of the network,
looking at the attackers of x and at the arguments which x attacks and by means of the
game theoretical methods gives a numerical value V(x).
Our analysis of these papers is as follows:
(a) First they offer a numerical valuation of points x ∈ S in an argumentation network

(S, R), which reflect their geometric-topological position in the network.

Argument and Computation 191

(b) Second they claim that this numerical value can be used to give some meaningful
value as to how ‘in’ or ‘out’ the element x is.

Giving values to points in (S, R) is purely mathematical and is a well-established
practice. This is how metrisation theorems in topology are proved and this is how
metrics are introduced in projective geometry, by means of the cross-ratio. However,
connecting these values obtained with arguments and saying that one argument is
better than the other based on these numerical values is a different matter. One may
not subscribe to the basic idea that an argument not attacked at all is more ‘in’ than an
argument which is attacked and defended.
There are also technical reasons against this view. If (S1, R1) is a subsystem of (S2, R2),
the relative valuations of any two poitns s, y ∈ S1 may change, depending on whether
we view them as part of S1 or part of S2, giving the feeling that arguments have no
individual merit in themselves, but depend only on the context in which they are used.
Now let us compare the systems of Cayrol and Lagasquie-Schiex (2005) and Matt
and Toni (2008) with our system in this paper. When we write (x : a), giving value
x to argument a, the value x is external, calculated by a method outside the network,
like how reliable a is, or x is a value obtained by probability on some evidence as in
Haenni (2009), etc. Since these values are obtained or given externally, we need to
say how to calculate transmitted values following attacks and support. So if (x : a)

attacks (y : b), we need to say what is the new value y′ of b, following the execution
of the attack or support.
The values obtained by the geometrical methods of Cayrol and Lagasquie-Schiex
(2005) and Matt and Toni (2008), already take into consideration the geometry of the
network. They are, therefore, final values. We cannot apply our machinery to them.
On the other hand, we can apply geometric machinery to networks with numerical
values, considering for geometrical purposes the items in the network as slightly more
complex, namely of the form (x : a). So the values obtained by Cayrol and Lagasquie-
Schiex (2005) and Matt and Toni (2008) have a different standing altogether, than
what we do.
Consider for example, a node a in the network which is being attacked by other nodes.
In our system, we can give it a value x = 1 (i.e. we allow (1 : a)). In the systems of
Cayrol and Lagasquie-Schiex (2005) and Matt and Toni (2008), the value 1 is reserved
(we think) only to points in the network with no geometrical attackers.
Cayrol and Lagasquie-Schiex (2005) and Matt and Toni (2008) can be compared,
however, with the equational approach of Gabbay (2011a,c). The equations are written
based on the geometry of the network and the solution to the equations give numerical
values to nodes. This can be seen as a third method of making distinctions between
nodes which also makes use of the geometry of the network.

(5) The paper by Cayrol, Devred and Lasasquie-Schiex (2010), on acceptability semantics
accounting for strength of attacks in argumentation.
This paper considers a finite number of types of attacks, organised in order of strength.
We can present the network as say (S, R1, . . . , Rn) with Ri ⊆ S2 being pairwise disjoint,
and with Ri being considered stronger than Ri=1, 1 ≤ i < n. Consider, for example,
Figure 50:
In this figure c is attacked by b but is defended by a. We would expect the extension
{a, c}. However, we get this extension only if k ≥ l.
Comparing this paper with our paper, there are two ways to look at it:
(a) Since the number of types of attacks is finite, we can look at the paper as a

contribution in the direction of classical logic argumentation either in the spirit of

192 H. Barringer et al.

Gabbay and Szalas (2009) or in the spirit of Gabbay’s (2011b). The framework is
classical logic, there are several types of attacks R1, . . . , Rn and they are used in
one way or another to define extension. The extra requirement that Ri are disjoint
and that there is a meta-level ordering on {Ri}, is just one possible axiomatic
restriction on the system (though these are exactly the axioms which allow us to
talk about the strength of attack).

(b) The second point of view is to say the system of Cayrol and Lagasquie-Schiex
(2005) is indeed a case of strength of attacks which is a special case of our system.
We can simulate the system of Cayrol and Lagasquie-Schiex (2005) in our system
as a special case. It is not our purpose here to write a mini paper about Cayrol and
Lagasquie-Schiex (2005), but simply to compare and give the reader an orientation.
To this end, consider Remark 4.2 and Figure 37 and compare it with Figure 50.
They are very similar. Now consider Figure 38. This figure was shown equivalent
in our system (as discussed in Remark 4.2) to Figure 37. Therefore, we can look
now at the ‘corresponding’ Figure 51. In this figure b attacks c with strength l
while a supports c with strength k. Clearly in this picture c will survive only if
k ≥ l.
The above is just one possibility of how we could simulate Cayrol and Lagasquie-
Schiex (2005) as part of our system.

(6)–(12) Papers on higher level attacks, also calledAFRAS and Baroni et al. (2009a, 2011), Gab-
bay (2009a), Modgil (2009), Modgil and Bench-Capon (2008, 2010), and Crochemore
and Gabbay (2011): These papers have to do with higher level attacks. An argument
x can either attack another argument u, written x → u, or attack the attack of a sec-
ond argument y attacking a third argument z, written x � (y → z). The idea of nodes
(arguments, possible worlds in modal logic) attacking other arrows (attacks in argu-
mentation, accessibility arrows in modal logic) originates in Gabbay (2004, 2008) in
the context of Reactive Kripke Semantics. Such semantics is strictly stronger than
traditional Kripke semantics and turned out to have a wide range of applications, not
only in the usual application areas of modal logic, but also in many other areas such
as automata theory (Crochemore and Gabbay 2011) and argumentation. In our 2005
paper (Barringer et al. 2005), we imported this notion to general attack networks and in
Gabbay and Woods (2003b), we used this notion in argumentation and legal reasoning.
Baroni et al. (2009a, 2011), Modgil (2009), Modgil and Bench- Capon (2008), Modgil
and Bench-Capon (2010), independently introduced attacks on attacks. Modgil and

l
a

k
cb

Figure 50. Figure for comparison in (5b).

ka

b

c

l

Figure 51. Figure for comparison in (5b).

Argument and Computation 193

Bench-Capon considered the form x � (y → z) and Baroni, Cerutti, Giacomin and
Guida, considered recursive higher level attacks of the form x � (higher level arrow).
No one considered attacks of the form arrow � arrow, the kind we have in Barringer
et al. (2005) and in this paper.
The problem with such higher level attacks is how to define the semantics and exten-
sions. For the latest on this problem, see Gabbay (2009a), Baroni et al. (2011), and
Hanh, Dung, and Thang (2011), as well as a section in Gabbay (2011c) presenting the
equational approach to higher level attacks.

(13)–(14) Support in argumentation networks, BAFs: Our current paper, as well as Barringer
et al. (2005), deals with support in the numerical context. We focussed on the qual-
itative idea that if there is support with numerical value x and attack with numerical
value x, they nullify one another. This makes sense only in the numerical context.
Support in non-numerical context is a very hot area, still in a state of flux. See the
survey in a handbook chapter by Cayrol and Lagasquie-Schiex (2009). We are also
working on it, (Boella, Gabbay, van der Torre, and Villata 2010), but the area is still
evolving.

6.2. Further research

Let us summarise in this concluding section the new ideas emerging in this paper, which show
great potential and require further research.

(1) Neuro-fuzzy argumentation networks
This is a natural generalisation of the numerical strength idea of Sections 1 and 2. It has
not been picked up in the argumentation community and not discussed in this paper. We
are going to pursue it extensively in a planned forthcoming book.

(2) Higher level attacks
These are the reactive arrows emanating from arrows to arrows. The community have
rediscovered this both as a concept and as a tool. In Gabbay (2009a), we show how to reduce
this concept to the object level by adding more arguments. In fact,we have a forthcoming
book, (Gabbay 2012a), dealing with the meta-level approach to argumentation.

(3) Connection with cross-ratio of projective geometry
We believe this is very promising as well as mysterious. We still have to fully understand
and exploit this connection. The key figure here is the situation described in Figure 41. C
is attacking D and the result is calculated using the cross-ratio with A and B. This is pure
geometry on the line AB. So C and D can be vectors of length n, each containing multiple
context incomparable arguments attacking the corresponding componentwise arguments.
What would be the result? If we regard C and D as vectors in n-dimensional space and
pass the line CD through the n-dimensional unit sphere we get the points A and B and we
can find the result. It is the point E on the line AB at a distance e from the point A where
e/(1 − e) = The cross-ratio(A, B; C, D)

This locates the point E which we can take as the result of C attacking D in n-dimensional
space.

(4) Temporal dynamics
See our papers (Barringer and Gabbay 2010; Barringer et al. 2012) for non-numerical
temporal argumentation.

(5) Geometrical numerical argumentation networks

194 H. Barringer et al.

We were impressed with papers by Cayrol and Lagasquie-Schiex (2005) and Matt and
Toni (2008) that were discussed in Section 6.1. We would like to offer our own views in
the matter which include both attack and support arguments.

Acknowledgements

We are grateful to the referees for a very thorough review and penetrating comments. Research
done under Israel Science Foundation project 1321/10: Integrating Logic and Network Reasoning.

Notes
1. Note that the concept of attack on attack is geometrical and applies to any network and so priority really

lies with (Barringer et al. 2005).
2. Attacking the character of a witness presenting an argument may or may not be relevant to the argument.

For example, attacks on the private life of an expert witness are unlikely to be relevant to the credibility
of her expertise and hence her arguments, whereas attacks on the credentials of the expert witness’s
expertise are more likely to be relevant.

3. The model also allows several attacks to emanate from the same argument, as in the figure below.

ba
e1

e2

The idea here is that there are several different kinds of arguments as to why a is an attack upon b.
This makes sense, especially if a is a fact (see below). Such formal networks exist in the literature as
transition systems, and the different arrows from a to b represent different actions, leading from state a
to state b.

4. We mention that the idea of higher level attacks is none other than the idea of reactive arrows in networks
and Kripke models, originating in Gabbay (2004), and applied to argumentation networks in Barringer
et al. (2005).

5. In general, the value transmitted should be a function τ(ε, x) of ε and x, monotonically increasing in ε

and x, with τ(0, 0) = 0, τ(1, 1) = 1. We choose multiplication here by way of example.
6. In Bayesian nets there are no ε1, . . . , εn. xi are the probabilities associated with the nodes ai and f is the

conditional probability of node b relative to all the ai. Thus, the probability y of b can be calculated.
7. When the arc is an attack, we use the curly arrow to represent it, instead of a traditional straight one-headed

arrow →. When the arc is a support (see Section 4) we use the double arrow �.
8. For example, if z is a supporter of a theory of love and peace, then any x attacking y is in itself an

attack on z. Also in those applications where it makes sense to traverse the network along its edges, then
traversing the edge from x to y may trigger an attack on z. The formal machinery of representing such
attacks exists in Gabbay (2009a, c).

9. Compare with Definition 1.1 of Gabbay (2009a), which deals with ordinary argumentation networks
with {0, 1} values.

10. By restricting f to finite sequences, we are forced to impose the condition of finitely branching on T in
Definition 2.9 below. However, f can be more general, for example, we can take

f ′(y, S) = inf{f(y, x̄, ε̄) | (x̄, ε̄) ∈ S},
where S can now be an infinite set. This will allow us more freedom in Definition A.1 below.

11. When we say f is symmetrical, we mean that for any permutation σ of {1, . . . , n}, we have

f(y, x̄i, ε̄i) = f(y, x̄σ(i), ε̄σ (i)).

12. The notion of semantic acyclicity is discussed at the end of the section.
13. Consider a linear network of n nodes with the following connection structure. Label the nodes from 1

to n. Node i attacks all nodes numbered > i. Wave 0 will have to search n nodes. Wave i < n will have
to search n − i nodes. The sum of all waves is n(n − 1)/2.

Argument and Computation 195

14. Note that if we solve the fixed point recursion equation Vλ,∞ = λ(1 − λVλ,∞), we get Vλ,∞ = λ/

(1 + λ2).
15. The fixed point recursion equation for this case is V = V(1 − λV), yielding V = 0. We get the same

equation if we follow option (d) for Figure 23.
16. This is Bernouli’s rule of combination (see Shafer 1976, pp. 75–76).
17. We quote: Some functional forms proposed for single-species discrete-time models of population growth

(λ0 = exp[r0] is the intrinsic discrete or multiplicative rate of population increase, k is the carrying
capacity, b some positive constant, and θ an exponent)

Label Function

Exponential Nt+1 = λ0Nt
Quadratic map Nt+1 = λ0Nt(1 − Nt/k)
Ricker Nt+1 = λ0Ntexp[−bNt]
Gompertz Nt+1 = λ0Nθ

t
Beverton–Holt Nt+1 = λ0Nt/(1 + bNt)
Desensation Nt+1 = λ0N2

t /(1 + bN2
t)

Theta–Ricker Nt+1 = λ0Ntexp[−bNθ
t]

18. Actually the intervals involved are [0, z1], [1 − z2, 1].
19. Beware of some possible confusion in notation. In Figure 36, the attack of a node is with value x = 1 − z

and the support is with value z. If we regard Figure 36 as representing the [Support, Attack] double arrow
of Figure 42, we write it as [z, 1 − x] = [z, z] and not as [z, x]. This is because z2 = (1 − x) appears in
(DS1).

References
Abraham, M., Gabbay, D., and Schild, U. (2011a), Resolution of Conflicts and Normative Loops in the

Talmud, College Publications, London UK.
Abraham, M., Gabbay, D.M., and Schild, U. (2011b), ‘The Handling of Loops in Talmudic Logic, with

Application to Odd and Even Loops inArgumentation’, in Proceedings of Howard 60, eds. D. Rydeheard,
A. Voronkov, and M. Korovina, Report, Department of computer science, University of Manchester,
Manchester UK, pp. 1–25, earlier version published in 2011 as part of the monograph.

Adler, C. (1967), Modern Geometry (2nd ed.), McGraw Hill, New York and London.
Anderson, R.M., Turner, B.D., and Taylor, L.R. (eds.) (1979), Population Dynamics, Blackwell, Oxford UK.
Augusto, J.C., and Simari, G.R. (1999), ‘A Temporal Argumentative System’, in AI Communications archive

(AI-99) IOS Press Amsterdam, The Netherlands, The Netherlands 12, 237–257.
Baroni, P., and Giacomin, M. (2003), ‘Solving Semantic Problems with Odd-Length Cycles in Argumen-

tation’, in Proceedings of the 7th European Conference on Symbolic and Quantitative Approaches
to Reasoning with Uncertainty (ECSQARU 2003), LNAI 2711, Aalborg, Denmark: Springer-Verlag,
pp. 440–451.

Baroni, P., Giacomin, M., and Guida, G. (2005), ‘SCC-Recursiveness: A General Schema for Argumentation
Semantics’, Artificial Intelligence, 168(1–2), 162–210.

Baroni, P., Cerutti, F., Giacomin, M., and Guida, G. (2009a), ‘Encompassing Attacks to Attacks in Abstract
Argumentation Frameworks’, in Proceedings of the 10th European Conference on Symbolic and
Quantitative Approaches to Reasoning with Uncertainty, pp. 83–94.

Baroni, P., Cerutti, F., Giacomin, M., and Guida, G. (2009b), ‘AnArgumentation-BasedApproach to Modeling
Decision Support Contexts with What-If Capabilities’, in 2009 AAAI Fall Symposium Series: The Uses
of Computational Argumentation.

Baroni, P., Cerutti, F., Giacomin, M., and Guida, G. (2011), ‘Afra: Argumentation Framework with Recursive
Attacks’, International Journal of Approximate Reasoning, 52(1), 19–37.

Barringer, H., and Gabbay, D. (2010), ‘Modal and Temporal Argumentation Networks’, in Amir Pnueli
Memorial Volume: Time for Verification, eds. D. Peled and Z. Manna, Lecture Notes in Computer
Science, Vol. 6200, Springer, Berlin Heidelberg, pp. 1–25.

196 H. Barringer et al.

Barringer, H., Gabbay, D., and Woods, J. (2005), ‘Temporal Dynamics of Support and Attack Networks’,
in Mechanising Mathematical Reasoning, eds. D. Hutter and W. Stephan, Lecture Notes in Computer
Science, Vol. 2605, Springer, Berlin Heidelberg, pp. 59–98.

Barringer, H., Gabbay, D., and Woods, J. (2008), ‘Network Modalities’, in Linguistics, Computer Science
and Language Processing, Festschrift for Franz Guenthner on the Occasion of his 60th Birthday, eds.
G. Gross and K.U. Schulz, College Publications, London UK pp. 70–102.

Barringer, H., Gabbay, D., and Woods, J. (2012), ‘Modal and Temporal Argumentation Networks’,
Argumentation and Computation, Special issue, 3(2–3).

Bench-Capon, T. (2003), ‘Persuasion in Practical Argument Using Value Based Argumentation Framework’,
Journal of Logic and Computation, 13, 429–448.

Besnard, P., and Hunter, A. (2001), ‘A Logic-Based Theory of Deductive Arguments’, Articial Intelligence,
128(1–2), 203–235.

Bodanza, G.A., and Tohmé, F.A. (2009), ‘Two Approaches to the Problems of Self-Attacking Arguments
and General Odd-Length Cycles of Attack’, Journal of Applied Logic, 7, 403–420.

Boella, G., Kaci, S., and van der Torre, L. (2009), ‘Dynamics inArgumentation with Single Extensions:Attack
Refinement and the Grounded Extension (Extended Version)’, ArgMAS 2009, 150–159. Argumentation
in Multi-Agent Systems Lecture Notes in Computer Science Volume 6057, 2010, pp. 150–159.

Boella, G., Gabbay, D.M., van der Torre, L., and Villata, S. (2010), ‘Support in Abstract Argumentation’,
in Computational Models of Argument, COMMA 2010, eds. P. Baroni, F. Cerutti, M. Giacomi, and
G. Simari, IOS Press, Amsterdam, pp. 111–122, expanded version to appear in AMAI, 2012, special
issue.

Caminada, M.W.A. (2006), ‘On the Issue of Reinstatement in Argumentation’, JELIA, pp. 111–123.
http://icr.uni.lu/∼martinc/publications/JELIA_reinstatement.pdf

Caminada, M.W.A. (2007), ‘An Algorithm for Computing Semi-Stable Semantics’, ECSQARU 2007,
pp. 222–234. http://icr.uni.lu/∼martinc/publications/algorithm_eCSQARU.pdf

Caminada, M.W.A. (2011), ‘A Labelling Approach for Ideal and Stage Semantics’, Argument and
Computation, 2(1), 1–21.

Caminada, M.W.A., and Amgoud, L. (2007), ‘On the Evaluation of Argumentation Formalisms’, Artificial
Intelligence, 171(5–6), 286–310.

Caminada, M., and Gabbay, D.M. (2009), ‘A Logical Account of Formal Argumentation’, Studia Logica,
93(2–3), 109–145.

Cayrol, C., and Lagasquie-Schiex, M.-C. (2005), ‘Graduality in Argumentation’, Journal of Artificial
Intelligence Research (JAIR), 23, 245–297.

Cayrol, C., and Lagasquie-Schiex, M.-C. (2009), ‘Bipolar Abstract Argumentation Systems’, in Argu-
mentation in Artificial Intelligence, eds. G. Rahwan and R. Simari, Springer, Berlin Heidelberg
pp. 65–84.

Cayrol, C., Devred, C., and Lagasquie-Schiex, M.-C. (2010), ‘Acceptability Semantics Accounting for
Strength ofAttacks inArgumentation’, in Proceedings of the 2010 conference on ECAI 2010: 19th Euro-
pean Conference on Artificial Intelligence IOS Press Amsterdam, The Netherlands, The Netherlands
©2010 pp. 995–996 [long version available at ftp://ftp.irit.fr/IRIT/ADRIA/rap-2010-13.pdf]

Cobo, M.L., Martinez, D.C., and Ricardo Simari, G. (2010), ‘OnAdmissibility in TimedAbstractArgumenta-
tion Frameworks’, in Proceedings of the 2010 conference on ECAI 2010: 19th European Conference on
Artificial Intelligence IOS Press Amsterdam, The Netherlands, The Netherlands ©2010, pp. 1007–1008.

Crochemore, M., and Gabbay, D. (2011), ‘Reactive Automata’, Information and Computation, 209(4), 692–
704, published on line DOI: 10.1016/j.ic.2011.01.002.

d’Avila Garcez, A.S., Gabbay, D.M., and Lamb, L.C. (2004), ‘Argumentation Neural Networks’, in Proceed-
ings of 11th International Conference on Neural Information Processing (ICONIP’04), Calcutta, India,
Lecture Notes in Computer Science, Springer-Verlag.

d’Avila Garcez, A.S., Lamb, L.C., and Gabbay, D. (2008), Connectionist Non-classical Logics: Distributed
Reasoning & Learning in Neural Networks (Monograph). Springer-Verlag. Berlin Heidelberg.

D’Inverno, R. (1992) Introducing Einstein’s Relativiety, Oxford University Press, Oxford UK.
Dung, P.M. (1995), ‘On the Acceptability of Arguments and its Fundamental Role in Non-Monotonic

Reasoning, Logic Programming and N-Person Games’, Artificial Intelligence, 77, 321–357.

http://icr.uni.lu/~martinc/publications/JELIA_reinstatement.pdf
http://icr.uni.lu/~martinc/publications/algorithm_eCSQARU.pdf
ftp://ftp.irit.fr/IRIT/ADRIA/rap-2010-13.pdf

Argument and Computation 197

Dunne, P.E., Hunter, A., McBurney, P., Parsons, S., and Wooldridge, M. (2009), ‘Inconsistency Tolerance in
Weighted Argument Systems’, in Proceedings of the 8th International Joint Conference on Autonomous
Agents and Multiagent Systems, pp. 851–858.

Dunne, P.E., Hunter,A., McBurney, P., Parsons, S., andWooldridge, M. (2011), ‘WeightedArgument Systems:
Basic Definitions, Algorithms and Complexity Results’, Artifical Intelligence 175(2), 457–486.

Faulkner, T. (1949), Projective Geometry, Edinburgh UK, Oliver and Boyd.
Gabbay, D.M. (1996), Fibring Logics, Oxford University Press.
Gabbay, D.M. (2002), ‘Theory of Hypermodal Logics’, Journal of Philosophical Logic, 31, 211–243.
Gabbay, D. (2004), ‘Reactive Kripke Semantics and Arc Accessibility’, in Proceedings of CombLog04

(http://www.cs.manth.ist.utl.pt/comblog04), eds. W. Carnielli, F.M. Dionesio, and P. Mateus, Centre
of Logic and Computation, University of Lisbon, pp. 7–20. ftp://logica.cle.unicamp.br/pub/e-prints/
comblog04/gabbay.pdf.

Gabbay, D. (2008), ‘Reactive Kripke Semantics andArcAccessibility’, in Pillars of Computer Science: Essays
dedicated to Boris(Boaz) Trakhtenbrot on the Occasion of his 85th Birthday, eds. A. Avron, N. Der-
showitz, and A. Rabinovich, Lecture Notes in Computer Science 4800, Springer, Berlin Heidelberg, pp.
292–341.

Gabbay, D. (2009a), ‘Semantics for Higher Level Attacks in Extended Argumentation Frames, Part 1:
Overview’, Studia Logica, 93, 355–379.

Gabbay, D.M. (2009b), ‘Modal Foundations forArgumentation Networks’, Studia Logica, 93(2–3), 199–230.
Gabbay, D.M. (2009c), ‘Fibring Argumentation Frames’, Studia Logica, 93(2–3), 231–295.
Gabbay, D.M. (2011a), ‘Introducing Equational Semantics for Argumentation Networks, in Proc. ECSQARU

2011, ed. W. Liu, LNAI 6717, Springer-Verlag, Berlin Heidelberg, pp. 19–35, doi: 10.1007/978-3-642-
22152-1 2.

Gabbay, D. (2011b), ‘Dung’s Argumentation is Equivalent to Classical Propositional Logic with the Peirce-
Quine Dagger’, Logica Universalis, 5(2), 255–318, doi: 10.1007/s11787-011-0036-3.

Gabbay, D.M. (2011c), ‘An Equational Approach to Argumentation Networks’, Argumentation and
Computation, Special Issue, 3(2–3).

Gabbay, D. (2012a), Meta-Logical Investigations in Argumentation Networks, forthcoming book, Springer.
Berlin Heidelberg, 500 pp.

Gabbay, D. (2012b), ‘The Equational Approach to CF2 Semantics’, Proceedings COMMA 2012, IOS Press,
short version to appear.

Gabbay, D.M., and d’Avila Garcez, A.S. (2009), ‘Logical Modes of Attack in Argumentation Networks’,
Studia Logica, 93(2–3), 199–230.

Gabbay, D.M., and Rodrigues, O. (2012), A numerical approach to the merging of argumentation networks,
To appear, Proceedings of Computational Logic in Multi-Agent Systems, CLIMA 2012, editors M
Fisher and L van der Torre , SPRINGER VERLAG Berlin Heidelberg, 2012.

Gabbay, D.M., and Szalas, A. (2009), ‘Annotation Theories over Finite Graphs’, Studia Logica, 93, 147–180.
Gabbay, D.M., and Woods, J. (1998), ‘Ad Baculum is not a Fallacy’, in Proceedings of the Fourth Interna-

tioal Conference of the International Society for the Study of Arguementation, eds. F.H. van Eemeren,
R. Grootendorst, J.A. Blair, and C.A. Willard, Amsterdam: SicSat, pp. 221–224.

Gabbay, D.M., and Woods, J. (2001a), ‘Non-Cooperation in Dialogue Logic’, Synthese, 127, 161–180.
Gabbay, D.M., and Woods, J. (2001b), ‘More on Non-Cooperation in Dialogue Logic’, Logic Journal of the

IGPL, 9, 305–324.
Gabbay, D.M., and Woods, J. (2002), ‘Formal Approaches to Practical Reasoning’, in Handbook of the Logic

of Argument and Inference: The Turn Towards the Practical, eds. D.M. Gabbay, R.H. Johnson, H.J.
Ohlbach, and J. Woods, Amsterdam: North-Holland, pp. 449–481.

Gabbay, D.M., and Woods, J. (2003a), ‘Normative Models of Rational Agency’, Logic Journal of the IGPL,
11(6), 597–613.

Gabbay, D.M., and Woods, J. (2003b), ‘The Law of Evidence and Labelled Deductive Systems’, Phi-News,
4, 5–46. http//phinews.ruc.dk/phinews4.pdf (Also Chapter 15 in Gabbay D.M., Canivez, P., Rahman,
S., and Thiercelin, A. (Eds.), Approaches to Legal Rationality, Logic, Epistemology, and the Unity of
Science 20, pp. 295–331, 1st ed., Springer, 2010, doi: 10.1007/978-90-481-9588-6_15).

http://www.cs.manth.ist.utl.pt/comblog04
ftp://logica.cle.unicamp.br/pub/e-prints/comblog04/gabbay.pdf
ftp://logica.cle.unicamp.br/pub/e-prints/comblog04/gabbay.pdf

198 H. Barringer et al.

Gaggl, S.A., and Woltran, S. (2010), CF2 Semantics Revisited. In eds. P. Baroni, F. Cerutti, M. Giacomin,
and G.R. Simari, COMMA 2010, vol. 216, IOS Press, Amsterdam pp. 243–254.

Haenni, R. (2009), ‘Probabilistic Argumentation’, Journal of Applied Logic, 7(2), 155–176.
Hajek, P., and Valdes, J. (1994), ‘An Analysis of MYCIN-like Expert Systems’, Mathware and Soft

Computing, 1, 45–68.
Hajek, P., Havranek, T., and Jirousek, R. (1992) Uncertain Information Processing in Expert Systems, CRC

Press. Taylor and Francis, Abingdon UK.
Hanh, D.D, Dung, P.M., and Thang, P.M. (2011), ‘Inductive Defense for Modgil’s Extended Argumentation

Framework’, Journal of Logic and Computation, 21(2), 307–349.
Hunter, A. (2001), ‘Ramification Analysis with Structured News Reports using Temporal Argumentation’,

Proc. of the Adventures in Argumentation Workshop (at 6th ECSQARU). http://www.cs.ucl.ac.uk/staff/a.
hunter/papers/ra2.ps.

Jakobovits, H., and Vermeir, D. (1999), ‘Robust Semantics forArgumentation Frameworks’, Journal of Logic
and Computation, 9, 215–161.

Keynes, J.M. (1973), A Treatise on Probability, Macmillan Press for the Royal Economic Society (1st ed.,
1921; paperback edition, Cambridge University Press, 1988).

Leite, J., and Martins, J. (2011) ‘Social Abstract Argumentation’, in Proceedings of the Twenty-Second
International Joint Conference on Artificial Intelligence 2011, ed. T. Walsh IJCAI’11 Proceedings of
the Twenty-Second international joint conference on Artificial Intelligence – Volume 22, pp. 2287–2292
AAAI Press ©2011.

Levin, S.A. (ed.) (1978), Studies in Mathematical Biology, Part II, Populations and Communities,
Mathematical Association of America. Washington DC, USA.

Lotka, A.J. (1925), Elements of Physical Biology, Baltimore: Williams & Wilkins Co.
Mann, N., & Hunter, A. (2008), Argumentation Using Temporal Knowledge, COMMA 2008, Toulouse,

France: IOS Press, May 28–30, pp. 204–215.
Martinez, D., Garcia, A., and Simari, G. (2008), ‘An Abstract Argumentation Framework with Varied-

Strength Attacks’, in Proceedings of the 11th International Conference on Principles of Knowledge
Representation and Reasoning (KR’08).

Matt, P.-A., and Toni, F. (2008), ‘A Game-Theoretic Measure of Argument Strength for Abstract Argumenta-
tion’, in LOGICS IN ARTIFICIAL INTELLIGENCE Lecture Notes in Computer Science, JELIA 2008.
(vol. 5293), pp. 285–297.

May, R.M.C. (1976), ‘Simple Mathematical Models with Very Complicated Dynamics’, Nature, 261,
459–475.

Metcalfe, G., Olivetti, N., and Gabbay, D. (2008), Proof Theory for Fuzzy Logics (Monograph), Springer.
Berlin Heidelberg.

Modgil, S. (2009), ‘Reasoning about Preferences in Argumentation Frameworks’, Artifical Intelligence,
173(9–10), 901–934.

Modgil, S., and Bench-Capon, T.J.M. (2008), ‘Integrating Object and Metal-Level Value Based Argumenta-
tion’, in Computational Models of Argument, Proceedings of COMMA 2008, pp. 240–251.

Modgil, S., and Bench-Capon, T.J.M. (2010), ‘MetalevelArgumentation’, Journal of Logic and Computation,
doi: 10.1093/logcom/exq054, first published online: 28 September 2010.

Murray, J.D. (2001), Mathematical Biology (Vol. 1), Springer-Verlag. Berlin Heidelberg.
Prakken, H. (2010), ‘An Abstract Framework for Argumentation with Structured Arguments’, Argument and

Computation, 1, 93–124.
Rotstein, N.D., Moguillansky, M.O., Javier Garcia, A., and Ricardo Simari, G. (2010), ‘A Dynamic Argu-

mentation Framework’, in Proceedings of the 2010 conference on Computational Models of Argument:
COMMA 2010. IOS Press Amsterdam, The Netherlands, The Netherlands ©2010, pp. 427–438

Shafer, G. (1976), Mathematical Theory of Evidence, Princeton University Press. Princeton, New Jersey,
USA.

Turchin, P. (2003), Complex Population Dynamics, Princeton University Press. Princeton, New Jersey, USA.
Volterra, V. (1926), ‘Fluctuations in the Abundance of a Species Considered Mathematically’, Nature, 118,

558–560.

http://www.cs.ucl.ac.uk/staff/a.hunter/papers/ra2.ps
http://www.cs.ucl.ac.uk/staff/a.hunter/papers/ra2.ps

Argument and Computation 199

Woods, J. (2004), The Death of Argument: Fallacies in Agent-Based Reasoning, Applied Logic Series,
Dordrecht and Boston: Kluwer.

Appendix 1. Further examples of numerical networks
This appendix shows more familiar examples reviewed as numerical networks.

A.1. Modal networks
We can read the nodes as possible worlds in a Kripke model and read the values as fuzzy truth values. ε is
the fuzzy value of the accessibility of a to b (i.e. a arrow b means a is a possible world for b (i.e. bRa holds),
while x is the fuzzy value of a being a possible world in the first place. So if Ve(ϕ) gives a fuzzy value to
the wff ϕ at world e, then Vb(�ϕ) = f(Vb(ϕ), V̄ai (ϕ), εi), where ai are all the nodes leading with an arrow
into b.

It is worth giving a formal definition. See Barringer, Gabbay, and Woods (2008) for full details.

Definition A.1

(1) Let L be a propositional language with atoms {q1, q2, . . .}, a modality � and possibly other con-
nectives C. To fix our thoughts, say C = {�, ¬}, where � can be thought of as the Łukasiewicz
many-valued implication (with truth values in [0, 1] and 0 = true and truth table [Value(A � B) =
Max(0,Value(B) − Value(A))]) and ¬ is a negation (with truth table [Value(¬A) = 1 − Value(A)]).

(2) A modal network model m is a family of models mq = (A, T , Vq, f), q an atom of L, such that
each mq is a finitely branching attack network model in the sense of Definition 2.4. Thus, in m
A, T and f are fixed and Vq varies with q. We assume that f , Vq give values in [0, 1]. We take
f(y, xi, εi) = Supi(εi � xi) = Supi Max(0, xi − εi).

(3) For each t ∈ T and each wff ϕ, we define the value Vn
ϕ(t), (for n = 0, 1, 2, . . .) as follows:

(a) V0
q (t) = Vq(t), for atomic q, and t ∈ T .

(b) Vn+1
q (t) = f(Vn

q (t), V̄ n
q (ai), V̄ n

q (ai � t)), where a1, . . . , an are all the nodes such that ai � t ∈ T .
(c) Vn

A�B(t) = Max(0, Vn
B(t) − Vn

A(t)).
(d) Vn¬A(t) = 1 − Vn

A(t).
(e) Vn

�A(t) = Vn+1
A (t).

The reader should carefully note that we have huge scope here for defining a multitude of different
modalities by choosing the dependence of Vn

�A(t) on the set {Vm+n
A (t), m = 0, 1, . . .}. What we

here define is a K-type modality. We can also define the hypermodality of Gabbay (2002) by
letting:

Vn
�A(t) =

{
Vn+1

A (t), for n odd
Max(Vn+1

A (t), Vn
A(t)), for n even

(4) We say m is stable iff for any wff A and any t ∈ T there exists an n such that for all m ≥ n we have
Vn

A(t) = Vn
A(t). For stable models, we can let V∞

A (t) = Limi Vn
A(t).

(5) We call a stable model (A, T , V∞
A , f), a fuzzy modal model for L.

Example A.2 (Ordinary modal logic)

(1) Let (S, R, h) be a traditional Kripke model for the language with {→, ¬, �}, with S the set of possible
worlds, R the accessibility relation and h the assignment to the atoms, (i.e. for each atomic q, h(q) ⊆
S). We assume that (S, R) is finitely branching, i.e. for each t the set St = {s|tRs} is finite. Note that
many modal logics are complete for a class of finitely branching models.

(2) Let A = S, T = S ∪ {a � b|bRa}.
(3) Let Vq(a � b) = 1 for all atomic q and let Vq(t) = 1 iff t ∈ h(q), for t ∈ S.
(4) Let f(V(t), V̄(ai), V̄(ai � t)) = 1, where a1, . . . , an are all nodes such that tRai holds, iff V̄(ai) = 1

for all 1 ≤ i ≤ n.
(5) We claim this model is stable. This can be proved by induction on the wff ϕ.
(6) Note that we can get a new variety of modal logics by changing f from point to point, or by making

Vn
�A(t) dependent on {Vn+m

A (t) | m = 0, 1, 2 . . .} in a variety of ways.

200 H. Barringer et al.

m1, u1 m2, u2

Figure A52. Collision of moving particles.

A.1.1. Physics – special relativity
This has to do with composition of masses and velocities in special relativity. Consider the situation in
Figure A52

Particle 1 has rest mass m1 and velocity u1. Particle 2 has rest mass m2 and velocity u2. They are both
moving in the same direction and they collide in an inelastic way, and form particle 3 with rest mass m3 and
velocity u3. We view this as an attack of node (m1, u1) upon node (m2, u2) with relativistic transmission 1
(full transmission) to form a new value (m′

2, u′
2) = (m3, u3). The new value is the following, see D’Inverno

(1992, p. 51, exercise 4.7).

m2
3 = m2

1 + m2
2 + 2m2m2γ1γ2

(
1 − u1u2

c2

)
,

u3 = m1γ1u1 + m2γ2u2

m1γ1 + m2γ2
,

with

γ1 =
(

1 − u2
1

c2

)−1/2

, γ2 =
(

1 − u2
2

c2

)−1/2

,

where, as usual, c is the speed of light.

Appendix 2. Interpretation of loops
There are various interpretations for the situation depicted in Figure 21 besides our argumentation network
interpretation.

The ecology interpretation
The network can be interpreted as an ecology, where nodes represent species. Species a feeds on species
b and species b feeds on species a. The functions f1 and f2 give the success rates. This is a predator–prey
situation.

Let Vn be the population of some species at generation n. We assume population growth is a discrete
process taking place in cycles. Such biological examples are provided by many temperate zone arthro-
pod populations, with one short-lived adult generation each cycle. One possible recurrence equation is the
following

Vn+1 = Vn(1 + r(1 − (Vn/K))), where r and K are constants.
K is the maximum size for the population and r is a factor measuring dependence on the density of

the population. The reader should compare this equation with the equation Vb = f1(Va, x, ε) arising from
Figure 21 (Levin 1978, p. 324).

This equation is called the nonlinear logistic equation which has the standard form

Un+1 = rUn(1 − Un), r > 0.

This equation can exhibit chaotic behaviour depending on the value r (see Murray 2001).
A slightly different pair of equations has to do with parasitic life forms. Here we have, besides the

population Nn, a parasitic population Vn. The recursive equations look like the following:

• Vn+1 = Nn − Nn+1/F
• Nn+1 = FNnf (Nn, Vn).

F is a factor indicating the proportion of those who escape the parasite. The difference between this equation
for Vn+1 and a direct recursion for Vn+1 is that it is more complex. We get

Argument and Computation 201

P : a N : c

Q : b

Figure A53. Predator prey network.

• Vn+1 = Nn(1 − f (Nn, Vn))
• Nn+1 = FNnf (Nn, Vn)

See Levin (1978, p. 338).
Let us look at another example from biology. This is a model by Hassell (1978) of two parasitoids (P and

Q) and one host (N) model. The equations are (see Anderson, Turner, and Taylor 1979, p. 295)

Nt+1 = λNtf1(Pt)f2(Qt)

Pt+1 = Nt[1 − f1(Pt)]
Qt+1 = Ntf1(Pt)[1 − f2(Qt)],

where N , P and Q denote the host and two parasitoid species in generations t and t + 1, λ is the finite host rate
of increase and the functions f1 and f2 are the probabilities of a host not being found by Pt or Qt parasitoids,
respectively. This model applies to two quite distinct types of interaction that are frequently found in real
systems. It applies to cases where P acts first, to be followed by Q acting only on the survivors. Such is
the case where a host population with discrete generations is parasitised at different developmental stages.
In addition, it applies to cases where both P and Q act together on the same host stage, but the larvae of P
always out-compete those of Q, should multi-parasitism occur.

The functions f1 and f2 are as follows:

f1(Pt) =
[

1 + a1Pt

k1

]−k1

f2(Qt) =
[

1 + a2Qt

k2

]−k2

,

where k1 and k2, a1 and a2 are constants.
To compare the biological model with the argumentation model, we put a1 = a2 = 1, λ = 1 and k1 =

k2 = −1.
This gives

f1(Pt) = 1 − Pt

f2(Qt) = 1 − Qt

and therefore

Nt+1 = Nt(1 − Pt)(1 − Qt)

Pt+1 = PtNt

Pt+1 = QtNt(1 − Pt)

giving us the appropriate functions for attack and counterattack for the situation in Figure A53.
In Figure A53, a and b attack c. c counterattacks a and b and a attacks b. The transmission rates are 1.

Since c is attacked by a and b, the new value for c is N(1 − P)(1 − Q). Since a is counterattacked by c, the
new value for a is PN (see Example 2.2 as to why the counterattack value is PN and not (1 − P)N). Since b
is counterattacked by c and attacked by a the new value for b is QN(1 − P).

To give Figure A53 some meaning, think of a, b, c as follows:

202 H. Barringer et al.

y = ee(x, y)

H
x

P
e(x, y)

I

Figure A54. Feedback network.

c = The US President has a strong case for re-election.
a = A deteriorating situation in Iraq (US soldiers killed) (attacks his chances).
b = Lack of success in combatting Al-Qaeda.

Clearly, if the value of c is low, less effort is required in attacking it from a and b. This explains the
counterattack loop.

a attacks b by the argument that the situation in Iraq has diverted Al Qaeda away from attacking US
territory proper.

To sum up, we have shown a connection with biological models. In view of this connection, we would
like to refer to loops as ecologies (of arguments).

Feedback interpretation
We can consider the figures as a control-feedback situation. Say node b is a feedback for node a.

We consider a simple model of an electrical generator. We have three nodes H, P and I . H represents a
hydraulic power source, moving a core in the power plant P producing electricity. The core rotates inside
a magnetic field generated by a current coming from industry I . This produces a current which goes to I
(Industry). I then sends part of the current it receives back to P and thus maintaining the magnetic field.
Figure A54 describes the situation in its steady state.

To keep the story simple, let us assume that there is full transmission from H to P, from P to I and from
I to P. Let x be the transmission of hydraulic energy coming from H and let y be the current coming from I .
Let e(x, y) be the resulting current transmitted to I and let ε be the proportion of it coming back from I to P.
Thus e is monotonic increasing in x and y and we have in a steady state that

• y = εe(x, y)
• e(x, 0) = e(0, y) = 0 (i.e. if no hydraulic power turns the core or no current is coming to maintain the

electromagnetic field, then we have no output e.)
• ε is such that (1 − ε)e is maximal (i.e. we feedback current in such a way that what is left at I is

maximal, given a fixed x).

