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An abstract framework for structured arguments is presented, which instantiates Dung’s (‘On
the Acceptability of Arguments and its Fundamental Role in Nonmonotonic Reasoning, Logic
Programming, and n-Person Games’, Artificial Intelligence, 77, 321–357) abstract
argumentation frameworks. Arguments are defined as inference trees formed by applying
two kinds of inference rules: strict and defeasible rules. This naturally leads to three ways
of attacking an argument: attacking a premise, attacking a conclusion and attacking an
inference. To resolve such attacks, preferences may be used, which leads to three
corresponding kinds of defeat: undermining, rebutting and undercutting defeats. The nature
of the inference rules, the structure of the logical language on which they operate and the
origin of the preferences are, apart from some basic assumptions, left unspecified. The
resulting framework integrates work of Pollock, Vreeswijk and others on the structure of
arguments and the nature of defeat and extends it in several respects. Various rationality
postulates are proved to be satisfied by the framework, and several existing approaches are
proved to be a special case of the framework, including assumption-based argumentation
and DefLog.
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1. Introduction

In 1995, Phan Minh Dung introduced an abstract formalism for argumentation-based inference

(Dung 1995), which assumes as input nothing else but a set (of arguments) ordered by a binary

relation (of attack). Although he thus fully abstracted from the structure of arguments and the

nature of the attack relation, he was still able to develop an extremely interesting theory. His

article was a breakthrough in three ways: it provided a general and intuitive semantics for the

consequence notions of argumentation logics (and for non-monotonic logics in general); it

made a precise comparison possible between different systems (by translating them into his

abstract format) and it made a general study of formal properties of systems possible, which

are inherited by instantiations of his framework. In consequence, Dung’s work has given an

enormous boost to research in computational argumentation. Yet it has also been criticised

for not specifying the structure of arguments and the nature of the attack relation, which

makes it less suitable for modelling specific argumentation problems. I believe that such criti-

cism fails to appreciate the nature of Dung’s formalism. It is best seen not as a formalism for

directly representing argumentation-based inference problems but as a tool for analysing

particular argumentation systems and for developing a meta-theory of such systems. As such

it has been very successful: differences between particular systems can be characterised in

terms of some simple notions, and formal results established for the framework are inherited

by its instantiations. This was already illustrated by Dung (1995) with reconstructions of
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Pollock’s (1987) system, various logic-programming semantics and Reiter’s (1980) default logic

in his formalism.

Nevertheless, it is true that when actual argumentation-based inference has to be modelled,

Dung’s framework is by itself usually too abstract and instead an instantiated version of his

approach should be used. However, here too abstraction is still possible and worthwhile. The

aim of this paper is to instantiate Dung’s abstract approach with a general account of the struc-

ture of arguments and the nature of the defeat relation.1 The framework defines arguments as

inference trees formed by applying two kinds of inference rules, strict and defeasible rules.

This naturally leads to three ways of attacking an argument: attacking a premise, a conclusion

and an inference. To resolve such attacks, preferences may be used, which leads to three corres-

ponding kinds of defeat: undermining, rebutting and undercutting defeats. To characterise them,

some minimal assumptions on the logical object language must be made, namely that certain

well-formed formulas are a contrary or contradictory of certain other well-formed formulas.

Apart from this, the framework is still abstract: it applies to any set of inference rules,

as long as it is divided into strict and defeasible ones, and to any logical language with a contrary

relation defined over it.

The choice for tree-structured arguments based on two types of inference rules arguably is

very natural both in light of logic and argumentation theory and when looking at argumentation

as it occurs in human thinking and dialogue. The notion of arguments as trees of inferences is

very common in standard logic and in argumentation theory and is the basis of many software

tools for argument visualisation. Moreover, in actual argumentation, humans often express their

arguments as claims supported with one or more premises, which can in turn be supported with

further premises, and so on. Finally, as will be further explained in Section 4, the setup with

general defeasible inference rules is very suited for modelling reasoning with argumentation

schemes (Walton, Reed, and Macagno 2008).

The account offered in this paper is not completely new. In fact, a rhetorical aim of the paper

is to counter the idea that the computational study of argumentation started with Dung’s abstract

approach and that only then researchers made it more concrete with accounts of the structure of

arguments and the nature of defeat. As a matter of fact, much work on these two issues was

already done or going on at the time when Dung wrote his paper, and some of this work is

still state-of-the-art. For instance, both Pollock (1987, 1994) and Vreeswijk (1993, 1997) did

important work on the structure of arguments, while Pollock (1974, 1987) introduced an impor-

tant distinction between two kinds of defeat, namely rebutting defeat (attack on a conclusion)

and undercutting defeat (attack on an inference rule). One aim of the present paper is to profit

from, integrate and build on this and other important work as much as possible. As such, this

paper is a further development of the integration attempt that was undertaken in the European

ASPIC project (Amgoud et al. 2006). In this project, Vreeswijk’s formalisation of the structure

of arguments was combined with Pollock’s definitions of rebutting and undercutting defeat in a

way that also used insights from other work. The result was a characterisation of a set of tree-

structured arguments ordered with a binary defeat relation, so that an instantiation of Dung’s

abstract approach was achieved and any of Dung’s semantics could be used to compute the

acceptability status of the structured arguments.

The ASPIC framework was developed by Leila Amgoud, Martin Caminada, Claudette

Cayrol, Marie-Christine Lagasquie-Schieux, myself and Gerard Vreeswijk and was first

reported in a European project deliverable (Amgoud et al. 2006). The added expressiveness

compared with Dung’s abstract formalism gave rise to further work by Caminada and

Amgoud (2007) on rationality postulates for systems instantiating the ASPIC framework.

The aim of this work was to propose the idea of rationality postulates and to criticise some
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specific rule-based argumentation systems for failing to satisfy them. For this aim, only a

simplified version of the ASPIC framework was needed, without preferences and without the

notion of a knowledge base. Moreover, the examples discussed by Caminada and Amgoud

(2007) were all with domain-specific inference rules instead of with general inference patterns,

which in effect somewhat obscured the potential of the framework to be a general account of

structured argumentation.

In contrast, the present paper aims to present the ASPIC framework as a general abstract

model of argumentation with structured arguments.2 To achieve this aim, the ASPIC framework

will be extended and generalised in four respects.

(1) A third way of argument attack, namely premise attack or ‘undermining’, will be added,

in a way inspired by Vreeswijk’s (1993, chap. 8) combination of ‘plausible’ and ‘defea-

sible’ argumentation. Apart from the naturalness of having all three kinds of attack in a

general framework for argumentation, this will make it easier to formalise argument

schemes in the framework and it will make it possible to regard existing systems with

premise attack as special cases of the framework.

(2) The three notions of attack will be generalised from the notion of contradiction between

formulas w and :w to an abstract relation of contrariness between formulas which is not

necessarily symmetric. This idea is taken from Bondarenko, Dung, Kowalski, and Toni

(1997) and Verheij (2003a) and will help in showing that their systems are a special case

of the present framework.

(3) Four types of premises will be distinguished, inspired by a similar distinction of Gordon,

Prakken, and Walton (2007).

(4) Attack relations will be partly resolved with preference orderings on arguments,

defeasible rules and the knowledge base (although Amgoud et al. (2006) also have

preferences, the results of Caminada and Amgoud (2007) do not cover them).

It will then be investigated to what extent the results of Caminada and Amgoud (2007) on

rationality postulates generalise to the thus extended ASPIC framework. The final aim of this

paper is to compare the resulting framework with recent related work. It will turn out that

assumption-based argumentation (Bondarenko et al. 1997; Dung, Kowalski, and Toni 2006;

Dung, Mancarella, and Toni 2007), DefLog (Verheij 2003) and Amgoud and Cayrol (2002)’s

version of deductive argumentation are special cases of this paper’s version of the ASPIC

framework.

2. Dung’s abstract argumentation frameworks

First without explanation, the basic concepts and insights of Dung’s abstract argumentation

approach are listed. For a state-of-the-art introduction, see Baroni and Giacomin (2009).

DEFINITION 2.1 (abstract argumentation framework) An abstract argumentation framework

(AF) is a pair kA; Def l. A is a set arguments and Def # A�A is a binary relation of defeat.

We say that an argument A defeats an argument B iff (A,B) [ Def.

DEFINITION 2.2 (conflict-free, defence) Let B # A.

. A set B is conflict-free iff there exist no Ai, Aj in B such that Ai defeats Aj.

. A set B defends an argument Ai iff for each argument Aj [ A, if Aj defeats Ai, then there

exists Ak in B such that Ak defeats Aj.
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DEFINITION 2.3 (acceptability semantics) Let B be a conflict-free set of arguments, and

let F : 2A 7! 2A be a function such that F ðBÞ ¼ fA jB defendsAg.

. B is admissible iff B # F ðBÞ.

. B is a complete extension iff B ¼ F ðBÞ.

. B is a grounded extension iff it is the smallest (w.r.t. set inclusion) complete extension.

. B is a preferred extension iff it is a maximal (w.r.t. set inclusion) complete extension (or,

equivalently, if B is a maximal (w.r.t. set inclusion) admissible set).
. B is a stable extension iff it is a preferred extension that defeats all arguments in AnB.

Note that this implies that each grounded, preferred or stable extension of an AF is also a

complete extension of that AF. Some other known results are that

. the grounded extension is indeed unique but all other semantics allow for multiple

extensions of an AF;
. each AF has a grounded and at least one preferred and complete extension, but there are

AFs without stable extensions;
. the grounded extension of an AF is contained in all other extensions of that AF.

3. Argumentation systems with structured arguments

In this section, the arguments of Dung’s argumentation frameworks are given structure and its

defeat relation is defined in terms of the structure of arguments plus external preference information.

Apart from this, the resulting formalism is still as abstract as possible, allowing for different logical

languages, different sets of inference rules for building arguments and different preference order-

ings. The framework uses Vreeswijk’s (1993, 1997) definition of the structure of arguments and

then adds Pollock’s (1987, 1994) distinction between rebutting and undercutting attack, as well

as a variant of the notion of premise attack proposed by Vreeswijk (1993, chap. 8). These

notions are then generalised to languages with arbitrary relations of contrariness and contradiction

between well-formed formulas. Then the three notions of attack are combined into a notion of defeat

in a way inspired by Vreeswijk (1993, chap. 8) and Prakken and Sartor (1997). It is this combination

that makes it possible to regard the system as an instantiation of Dung’s abstract framework.

The resulting framework unifies two ways to capture the defeasibility of reasoning. Some, e.g.

Amgoud and Cayrol (2002), Besnard and Hunter (2008), Bondarenko et al. (1997), Verheij

(2003a), locate the defeasibility of arguments in the uncertainty of their premises, so that argu-

ments can only be attacked on their premises. Others, e.g. Pollock (1994), Vreeswijk (1997),

instead locate the defeasibility of arguments in the riskiness of their inference rules: in these

logics, inference rules are of two kinds, being either deductive or defeasible, and arguments can

only be attacked on their applications of defeasible inference rules. Typically, in this approach

inconsistency of the knowledge base makes the system collapse. Vreeswijk (1993, chap. 8)

called these two approaches plausible and defeasible reasoning: he described plausible reasoning

as sound (i.e. deductive) reasoning on an uncertain basis and defeasible reasoning as unsound (but

still rational) reasoning on a solid basis. In Chapter 8, Vreeswijk attempted to combine both forms

of reasoning in a single formalism, but since then most formal accounts of argumentation have

modelled either only plausible or only defeasible reasoning.

3.1. Basic definitions

The basic notion of the present framework is that of an argumentation system, which extends

the familiar notion of a proof system with a distinction between strict and defeasible inference

rules3 and a preference ordering on the defeasible inference rules.

96 H. Prakken



DEFINITION 3.1 (argumentation system) An argumentation system is a tuple AS ¼ ðL;� ;R;�Þ
where

. L is a logical language,

. � is a contrariness function from L to 2L,

. R ¼ Rs <Rd is a set of strict (Rs) and defeasible (Rd) inference rules such that

Rs >Rd ¼ ;,
. � is a partial preorder on Rd.

Amgoud et al. (2006) and Caminada and Amgoud (2007) assume that arguments are

expressed in a logical language that is left unspecified except that it is closed under classical

negation. In this paper, this assumption will be generalised in two ways. First, non-symmetric

conflict relations between formulas will be allowed, such as the contrariness relation of

Bondarenko et al. (1997) (which captures, for instance, negation as failure), and its inverse,

the dialectical negation of Verheij (2003a) (which means ‘it is defeated that’). Second, in

addition to classical negation, other symmetric conflict relations will be allowed, so that, for

instance, formulas like ‘bachelor’ and ‘married’ can, if desired, be declared contradictory

without having to reason with an axiom :(bachelor ^ married).

DEFINITION 3.2 (logical language) Let L, a set, be a logical language and � a contrariness

function from L to 2L. If w [ c then if c � w, then w is called a contrary of c, otherwise w

and c are called contradictory. The latter case is denoted by w ¼ �c (i.e. w [ c and c [ w).

In examples with classical negation :, it will be assumed that :w [ w and w [ :w.

Now that the notion of negation has been generalised, the same must be done with the notion

of consistency.

DEFINITION 3.3 (consistent set) Let P # L: P is consistent iff 96 c, w [ P such that c [ w,

otherwise it is inconsistent.

Note that this is a weak form of consistency, determined by whether a set contains contrary or

contradictory formulas. Caminada and Amgoud (2007) call this direct consistency and they call

consistency of the closure of a set under strict inference indirect consistency.

Arguments are built by applying inference rules to subsets of L. Inference rules are either

strict or defeasible. This distinction goes back to Lin and Shoham (1989), Pollock (1987) and

Vreeswijk (1993), as does the idea of abstracting from their nature.

DEFINITION 3.4 (strict and defeasible rules) Let w1, . . ., wn, w be elements of L.

. A strict rule is of the form w1, . . ., wn ! w, informally meaning that if w1; . . . ;wn hold,

then without exception it holds that w.
. A defeasible rule is of the form w1, . . ., wn ) w, informally meaning that if w1; . . . ;wn

hold, then it presumably holds that w.

w1; . . . ;wn are called the antecedents of the rule and w its consequent.

As usual in logic, inference rules will often be specified by schemes in which a rule’s antecedents

and consequent are metavariables ranging over L.

Arguments are constructed from a knowledge base which, inspired by Gordon et al. (2007),

is assumed to contain four kinds of formulas.

DEFINITION 3.5 (knowledge bases) A knowledge base in an argumentation system ðL;� ;R;�Þ
is a pair ðK;�0Þ; where K # L and �0 is a partial preorder on KnKn.
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Here K ¼ Kn <Kp <Ka <Ki where these subsets of K are disjoint and

. Kn is a set of (necessary) axioms. Intuitively, arguments cannot be attacked on their axiom

premises.
. Kp is a set of ordinary premises. Intuitively, arguments can be attacked on their ordinary

premises, and whether this results in defeat must be determined by comparing the attacker

and the attacked premise (in a way specified below).
. Ka is a set of assumptions. Intuitively, arguments can be attacked on their assumptions,

where these attacks always succeed.
. Ki is a set of issues. Intuitively, arguments of which the premises include an issue are never

acceptable: an issue must always be backed with a further argument.

(Gordon et al. (2007) call ordinary premises ‘assumptions’, they regard assumptions as the

contradictories of ‘exceptions’ and they call issues ‘ordinary premises’. Their counterpart to

axioms is ‘accepted’ and ‘rejected’ statements.) As explained by Gordon et al. (2007), the cat-

egory of issue premises is useful if an argumentation system is embedded in a dialogical context,

defining the acceptability status of arguments relative to a stage in a dialogue. For example, in

legal proceedings, legal claims that are not backed by factual evidence usually do not stand: for

instance, an argument ‘we have a contract by Section X of the Civil Code since I made an offer

and you accepted’ will be unacceptable as long as no factual evidence for the offer and accep-

tance is provided. In the present framework, this can be captured by giving the non-supported

premises issue status.

3.2. Arguments

Next the arguments that can be constructed from a knowledge base in an argumentation system

are defined. Arguments can be constructed step-by-step by chaining inference rules into trees.

Arguments thus contain subarguments, which are the structures that support intermediate con-

clusions (plus the argument itself and its premises as limiting cases). In what follows, for a

given argument, the function Prem returns all the formulas of K (called premises) used to

build the argument, Conc returns its conclusion, Sub returns all its subarguments, DefRules

returns all the defeasible rules of the argument and, finally, TopRule returns the last inference

rule used in the argument.

DEFINITION 3.6 (argument) An argument A on the basis of a knowledge base ðK;�0Þ in an

argumentation system ðL;� ;R;�Þ is

(1) w if w [ K with

PremðAÞ ¼ fwg,

ConcðAÞ ¼ w,

SubðAÞ ¼ fwg,

DefRulesðAÞ ¼ ;,

TopRuleðAÞ ¼ undefined.

(2) A1; . . . ;An ! c if A1; . . . ;An are arguments such that there exists a strict rule

ConcðA1Þ; . . . ;ConcðAnÞ ! c in Rs,

PremðAÞ ¼ PremðA1Þ< � � �< PremðAnÞ,

ConcðAÞ ¼ c,

SubðAÞ ¼ SubðA1Þ< � � �< SubðAnÞ< fAg,

DefRulesðAÞ ¼ DefRulesðA1Þ< � � �< DefRulesðAnÞ,

TopRuleðAÞ ¼ ConcðA1Þ; . . . ;ConcðAnÞ ! c.
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(3) A1; . . . ;An ) c if A1; . . . ;An are arguments such that there exists a defeasible rule

ConcðA1Þ; . . . ;ConcðAnÞ ) c in Rd,

PremðAÞ ¼ PremðA1Þ< � � �< PremðAnÞ,

ConcðAÞ ¼ c,

SubðAÞ ¼ SubðA1Þ< � � �< SubðAnÞ< fAg,

DefRulesðAÞ ¼DefRulesðA1Þ< � � �<DefRulesðAnÞ< fConcðA1Þ; . . . ;ConcðAnÞ)cg,

TopRuleðAÞ ¼ConcðA1Þ; . . . ;ConcðAnÞ)c.

Example 3.7 Consider a knowledge base in an argumentation system with

Rs ¼ fp; q ! s; u; v ! wg

Rd ¼ fp ) t; s; r; t ) vg

Kn ¼ fqg

Kp ¼ fp; ug
Ka ¼ frg

An argument for w is displayed in a traditional proof-tree format in Figure 1, where a single line

stands for a strict inference and a double line for a defeasible inference. The type of a premise is

indicated with a superscript. Formally, the argument and its subarguments are written as follows:

A1: p A5: A1 ) t

A2: q A6: A1;A2 ! s

A3: r A7: A5;A3;A6 ) v

A4: u A8: A7;A4 ! w

We have that

PremðA8Þ ¼ fp; q; r; ug
ConcðA8Þ ¼ w

SubðA8Þ ¼ fA1;A2;A3;A4;A5;A6;A7;A8g

DefRulesðA8Þ ¼ fp ) t; s; r; t ) vg

TopRuleðA8Þ ¼ v; u ! w

DEFINITION 3.8 (argument properties) An argument A is

. strict if DefRulesðAÞ ¼ ;;

. defeasible if DefRulesðAÞ = ;;

. firm if PremðAÞ # Kn;

. plausible if PremðAÞ � Kn.

We write S rw if there exists a strict argument for w with all premises taken from S, and S j� w if

there exists a defeasible argument for w with all premises taken from S.

Figure 1. An argument.
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Example 3.9 In Example 3.7 the argument A2 is strict and firm, while A1;A3;A4 and A6

are strict and plausible and A5, A7 and A8 are defeasible and plausible. Furthermore, we have

that K r p, K r q, K r r, K r u, K r s and K j� t, K j� v, Kj� w.

(From hereon, the theory will be left implicit if there is no danger for confusion.)

Now that the notion of an argument has been defined, orderings on arguments can be

considered. Below W is a partial preorder such that A W B means that B is at least as ‘good’

as A. As usual A � B means A W B and B 8 A.

In Section 6, two ways will be discussed to define W as a function from the orderings � on

Rd and �0 on K. However, the present framework allows for any partial preorder on arguments

that satisfies two basic assumptions (taken from Vreeswijk (1993)).

DEFINITION 3.10 (admissible argument orderings) Let A be a set of arguments. Then a partial

preorder W on A is an argument ordering iff

(1) if A is firm and strict and B is defeasible or plausible, then B � A;

(2) if A ¼ A1; . . . ;An ! c, then for all 1 � i � n; A W Ai and for some 1 � i � n, Ai W A.

(Vreeswijk also assumes that an argument cannot be stronger than its weakest subargument

but in Section 6 the so-called ‘last-link’ principle will be discussed, which violates this

assumption.) The first condition says that strict-and-firm arguments are stronger than all other

arguments, while the second condition says that a strict inference cannot make an argument

weaker or stronger.

DEFINITION 3.11 (argumentation theories) An argumentation theory is a triple

AT ¼ ðAS; fKB;WÞ, where AS is an argumentation system, KB a knowledge base in AS and W
an argument ordering on the set of all arguments that can be constructed from KB in AS (below

called the set of arguments on the basis of AT).

3.3. Attack and defeat

Dung’s use of the term ‘attack’ might at first sight lead to the belief that Dung’s framework has

no place for preferences. However, Dung’s attack relation can also be seen as abstracting from

the use of preferences: in this view, an attack relation in his framework may be the result of

applying preferences to a syntactic conflict. This view on Dung’s attack relation was, to my

knowledge, first used by Prakken and Sartor (1997), it was also employed by Amgoud and

Cayrol (2002) and it was the basis of Bench-Capon’s (2003) value-based AFs. It was also the

reason why Prakken and Sartor (1997) and Prakken and Vreeswijk (2002) replaced Dung’s

term ‘attack’ with ‘defeat’, to reflect that it may incorporate evaluative considerations. This

convention will also be adopted in the present paper, while the term ‘attack’ will be reserved

for non-evaluative syntactic notions of conflict. The idea then is that defeat is determined by

attack plus preference (except in some cases, where attack automatically leads to defeat).

The notion of a defeasible inference rule naturally leads to two notions of rebutting and

undercutting attack, introduced by Pollock (1974) and first formalised by Pollock (1987). The

third kind of attack, premise attack (in this paper called undermining), is a natural addition

(and for deductive inferences it is the only kind of attack) but highlights the philosophical

distinction between plausible and defeasible reasoning discussed above. It was independently

introduced by Vreeswijk (1993, chap. 8) and Elvang-Göransson, Fox, and Krause (1993). In

line with Prakken and Sartor (1997), rebutting and undercutting attacks can also be launched on

subarguments. This is essential in making the system an instantiation of Dung’s abstract

framework.
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3.3.1. Attack

First the ways in which arguments can be attacked are defined. Recall that these are just syntactic

categories and do not reflect any preference between arguments. The first way of attack corres-

ponds to the case where one argument uses a defeasible rule of which another argument says that

it does not apply to the case at hand. Its definition assumes that inference rules can be named in

the object language; the precise nature of this naming convention will be left implicit.

DEFINITION 3.12 (undercutting attack) Argument A undercuts argument B (on B0) iff

ConcðAÞ [ B0 for some B0 [ SubðBÞ of the form B00
1; . . . ;B

00
n ) c.

Example 3.13 In Example 3.7, argument A8 can be undercut in two ways: by an argument with

conclusion A5, which undercuts A8 on A5, and by an argument with conclusion A7, which

undercuts A8 on A7.

Undercutting attackers only say that there is some exceptional situation in which a defeasible

inference rule cannot be applied, without drawing the opposite conclusion. Rebutting attacks do

the latter: they provide a contrary or contradictory conclusion for a defeasible (sub-)conclusion

of the attacked argument.

DEFINITION 3.14 (rebutting attack) Argument A rebuts argument B on (B0) iff ConcðAÞ [ w for

some B0 [ SubðBÞ of the form B00
1; . . . ;B

00
n ) w. In such a case A contrary-rebuts B iff Conc(A) is

a contrary of w.

Example 3.15 In Example 3.7, argument A8 can be rebutted on A5 with an argument for t and

on A7 with an argument for v. Moreover, if t ¼ �t then A5 in turn rebuts any argument for t with

a defeasible top rule. However, A8 itself does not rebut that argument, except in the special case

where w [ t. This shows that for three reasons rebutting attack is not symmetric: the rebuttal can

have a strict top rule, rebutting can be contrary-rebutting and rebutting can be launched on a

subargument. However, the present example also shows that in the latter case, if the rebutting

attack has a defeasible top rule and is not of the contrary-rebutting kind, the directly rebutted

subargument in turn rebuts its attacker.

The final way of attack is an attack on a (non-axiom) premise.

DEFINITION 3.16 (undermining attack) Argument A undermines B (on w) iff ConcðAÞ [ w for

some w [ PremðBÞnKn. In such a case, argument A contrary-undermines B iff Conc(A) is a

contrary of w or if w [ Ka.

Example 3.17 In Example 3.7, argument A8 can be undermined with an argument that has

conclusion p, r or u. If that attacker has a defeasible top rule and, say, a conclusion p and

does not contrary-undermine A8, then p as an argument in turn rebuts the attacker.

The following example (based on Example 4 of Caminada and Amgoud (2007)) illustrates

the interplay between strict and defeasible rules in rebutting attack.

Example 3.18

A1: WearsRing A2 : A1 ) Married A3: A2 ! :Bachelor

B1: Partyanimal B2: B1 ) Bachelor B3: B2 ! :Married

A3 rebuts B3 on its subargument B2 while B3 rebuts A3 on its subargument A2. Note that A2 does

not rebut B3, since B3 applies a strict rule; likewise for B2 and A3.
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3.3.2. Defeat

Now that we know how arguments can be attacked, the argument ordering can be used to define

which attacks result in defeat. For undercutting attack, no preferences will be needed to make it

result in defeat, since otherwise a weaker undercutter and its stronger target might be in the same

extension. This would be strange since then the extension contains an argument that applies an

inference rule of which another argument in the same extension says that it should not be

applied.4 The same holds for the other two ways of attack as far as they involve contraries

(i.e. non-symmetric conflict relations between formulas). The reason for this is that otherwise

if a rebutting or undermining attacker is weaker than its target, both may be in the same exten-

sion. For the remaining forms of attack, the argument ordering will be used to determine whether

they result in defeat.

DEFINITION 3.19 (successful rebuttal) Argument A successfully rebuts argument B if A rebuts

B on B0 and either A contrary-rebuts B0 or A ˛ B0.

This definition determines whether a rebutting attack is successful by comparing the conflicting

arguments at the points where they conflict. Thus, in Example 3.18, the conflict between A3 and

B3 is resolved by comparing A3 with B2 and comparing B3 with A2. Now if B2 � A3 (for

example, since the married-rule is given priority over the bachelor-rule) then A3 successfully

rebuts B2 and B3 while B3 does not successfully rebut A2 or A3. If, in contrast, A2 ˛ B3 and B2 ˛
A3 then both A3 and B3 successfully rebut each other (while A3 still successfully rebuts B2 and

not vice versa, and likewise for B3 and A2). Note also that if A3 is deleted from the example, then

if B3 � A2, no argument in the example is defeated. This may at first sight seem counterintuitive

but this is due to the fact that the example violates closure of Rs under transposition (cf.

Section 5).

As noted by Caminada and Amgond (2007), Example 3.18 also illustrates why Definitions

3.14 and 3.19 should not allow that a defeasible argument with a strict top rule can be (success-

fully) rebutted on its final conclusion. The reason is that otherwise if all defeasible rules in the

example are of equal preference, the set fA1;A2;B1;B2g is admissible, which violates the

rationality postulate of indirect consistency (see Section 6).

DEFINITION 3.20 (successful undermining) Argument A successfully undermines B if A

undermines B on w and either A contrary-undermines B or A ˛ w.

This definition exploits that an argument premise is also defined to be a subargument.

In Example 3.7, any argument for r successfully undermines A8 since it contrary-undermines

it since r [ Ka. The same holds for any argument for a contrary of p or u while for arguments for

contradictories of p or u this depends on the argument ordering (which may in turn depend on the

ordering �0 on K; see Definitions 6.14 and 6.17).

It remains to be discussed how the framework should deal with arguments that have issue

premises. As explained above, the idea is that arguments with issue premises are always unaccep-

table. There are various ways to formalise this idea. One would be to let a special designated

argument, or perhaps all strict-and-firm arguments, defeat any argument with an issue premise

(as in Modgil (2009) and Prakken and Sartor (1997)). Here another solution is adopted: an argu-

ment can defeat another only if it has no issue premises. Then in Definition 2.1, only setsBwith no

issue premises will be considered, so that no argument with issue premises is in any extension.

The three defeat relations can now be combined into an overall definition of ‘defeat’.

DEFINITION 3.21 (defeat) Argument A defeats argument B iff no premise of A is an issue and A

undercuts or successfully rebuts or successfully undermines B. Argument A strictly defeats

argument B if A defeats B and B does not defeat A.
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In the literature other combinations of these kinds of attack have been considered. For

example, Prakken and Sartor (1997) (who have no undermining) give precedence to undercut-

ting defeat over rebutting defeat, so that if A successfully undercuts B while B successfully rebuts

A, nevertheless A strictly defeats B. It remains to be investigated how crucial the present

definition is for the results below.

Finally, argumentation theories can be linked to Dung-style argumentation frameworks.

DEFINITION 3.22 (AF) An abstract argumentation framework AF corresponding to an

argumentation theory AT is a pair ,A, Def . such that:

. A is the set of arguments on the basis of AT as defined by Definition 3.6,

. Def is the relation on A given by Definition 3.21.

To leave arguments with issue premises out of any extension, Definition 2.1 should now start

with ‘Let B be a conflict-free set of arguments that have no issue premises . . .’.
It is now also possible to define a consequence notion for well-formed formulas. Several

definitions are possible. One is as follows.

DEFINITION 3.23 (acceptability of conclusions) For any semantics S and for any

argumentation theory AT and formula w [ LAT :

(1) w is skeptically S-acceptable in AT if and only if all S-extensions of AT contain an

argument with conclusion w;

(2) w is credulously S-acceptable in AT if and only if there exists an S-extension of AT that

contains an argument with conclusion w.

An alternative definition of skeptical acceptability is

(1) w is skeptically S-acceptable in AT if and only if there exists an argument with

conclusion w that is contained in all S-extensions of AT.

While the original definition allows that different extensions contain different arguments for a

skeptical conclusion, the alternative definition requires that there is one argument for it that is

in all extensions.

4. Using the framework: domain-specific vs. general inference rules

The framework defined in the previous section can be used in two ways, depending on whether

the inference rules are domain-specific or not. The inference rules of argumentation systems are

not part of the logical language L but are metalevel constructs. The usual practice in standard

logic is that inference rules express general patterns of reasoning, such as modus ponens,

universal instantiation and so on. Yet Caminada and Amgoud (2007) use the inference rules

to represent domain knowledge, in line with a long tradition in non-monotonic logic of using

domain-specific inference rules (e.g. Reiter 1980; Loui 1987; Nute 1994; Garcia and Simari

2004). The difference between both approaches is illustrated with the following example.

Consider the information that all Frisians are Dutch, that the Dutch are usually tall and that

Wiebe is Frisian. With domain-specific inference rules, this can in a propositional language

be represented as follows:

Rs ¼ fFrisian ! Dutchg

Rd ¼ fDutch ) Tallg

Kp ¼ fFrisiang
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The argument that Wiebe is tall then has the form as displayed on the left in Figure 2.

With general inference rules, the two rules must instead be represented in the object language

L. The first one can be represented with the material implication but for the second one a con-

nective for defeasible conditionals must be added to L and a defeasible modus-ponens inference

rule must be added for this connective. For example:

Rs ¼ fw;w . c ! c ðfor all w;c [ LÞ; . . .g
Rd ¼ fw;w V c ) c ðfor all w;c [ LÞ; . . .g
Kp ¼ fFrisian . Dutch;Dutch V Tall;Frisiang

Then the argument that Wiebe is tall has the form as displayed on the right in Figure 2.

Although the present system can be used both ways, both Vreeswijk and Pollock intended

their inference rules to express general patterns of reasoning, which is much more in line

with the role of inference rules in standard logic. Indeed, an important part of John Pollock’s

work was the study of general patterns of (epistemic) defeasible reasoning, which he called

prima facie reasons. He formalised prima facie reasons for reasoning patterns involving percep-

tion, memory, induction, temporal persistence and the statistical syllogism, as well as under-

cutters for these reasons. The ASPIC framework allows for such general use of inference

rules, by expressing the rules through schemes (in the logical sense, with metavariables

ranging over L). When used thus, the framework becomes a general framework for argumenta-

tion with structured arguments. It thus is also suitable for modelling reasoning with argument

schemes, which currently is an important topic in the computational study of argument (cf.

Walton et al. 2008). Argument schemes are stereotypical non-deductive patterns of reasoning,

consisting of a set of premises and a conclusion that is presumed to follow from them. Uses

of argument schemes are evaluated in terms of critical questions specific to the scheme. An

example of an epistemic argument scheme is the scheme from expert opinion (Walton et al.

2008, p. 310):

E is an expert in domain D

E asserts that P is true

P is within D

P is true

This scheme has six critical questions:

(1) How credible is E as an expert source?

(2) Is E an expert in domain D?

(3) What did E assert that implies P?

(4) Is E personally reliable as a source?

(5) Is P consistent with what other experts assert?

(6) Is E’s assertion of P based on evidence?

A natural way to formalise reasoning with argument schemes is to regard them as defeasible

inference rules and to regard critical questions as pointers to counterarguments (this approach

was earlier defended by Bex, Prakken, Reed, and Walton (2003) and Verheij (2003b). More

Figure 2. Domain-specific vs. general inference rules.
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precisely, the three kinds of attack on arguments correspond to three kinds of critical questions of

argument schemes. Some critical questions challenge an argument’s premise and therefore point

to undermining attacks, others point to undercutting attacks, while again other questions point to

rebutting attacks. In the scheme from expert opinion questions (2) and (3) point to underminers

(of, respectively, the first and second premise), questions (4), (1) and (6) point to undercutters

(the exceptions that the expert is biased or incredible for other reasons and that he makes scien-

tifically unfounded statements) while question (5) points to rebutting applications of the expert

opinion scheme. Thus, we also see that Pollock’s prima facie reasons are examples of epistemic

argument schemes and that his undercutters are negative answers to one kind of critical question.

Now one benefit of having undermining attack in addition to rebutting and undercutting

attack can be discussed in more detail: if the inference rules are supposed to be domain-indepen-

dent, then representing facts with non-conditional inference rules (as done by Caminada and

Amgoud (2007)) does not make sense.

5. Transposition and contraposition

Before it can be studied to what extent the present framework satisfies the rationality postulates

of Caminada and Amgoud (2007), first some technicalities concerning strict inference rules must

be discussed. To start with, Caminada and Amgoud define the notions of a transposition of a

strict rule and closure of sets of strict rules under transposition.

DEFINITION 5.1 (transposition) A strict rule s is a transposition of w1, . . ., wn ! c iff s ¼ w1,

wi�1, wi�1, �c, wiþ1, . . ., wn ! �wi for some 1 � i � n.

DEFINITION 5.2 (transposition operator) Let Rs be a set of strict rules. CltpðRsÞ is the smallest

set such that:

. Rs # CltpðRsÞ and

. If s [ CltpðRsÞ and t is a transposition of s, then t [ CltpðRsÞ.

We say that Rs is closed under transposition iff CltpðRsÞ ¼ Rs.

Now the subclass of argumentation systems closed under transposition can be defined.

DEFINITION 5.3 (closure under transposition) An argumentation system ðL;� ;R;�Þ is closed

under transposition if Rs ¼ CltpðRsÞ. An argumentation theory is closed under transposition if

its argumentation system is.

Caminada and Amgoud (2007) also define the closure of a set of formulas under application

of strict rules.

DEFINITION 5.4 (closure of a set of formulas) Let P # L. The closure of P under the set Rs of

strict rules, denoted ClRsðPÞ, is the smallest set such that:

. P # ClRsðPÞ

. if w1; . . . ;wn ! c [ Rs and w1; . . . ;wn [ ClRsðPÞ, then c [ ClRsðPÞ.

If P ¼ ClRsðPÞ, then P is said to be closed.

It is also relevant whether strict inference satisfies contraposition.

DEFINITION 5.5 (closure under contraposition) An argumentation system is closed under

contraposition if for all S # L, all s [ S and all w it holds that if S rw then Snfsg< f�wgr� s.

An argumentation theory is closed under contraposition if its argumentation system is.
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Closure under transposition does not imply closure under contraposition, as shown by the

following counterexample (in all examples below, sets which are empty are not listed).

Example 5.6 Let Rs ¼ Cltpðfp ! q; p ! r; p; r ! sgÞ. Then fpgr s but f�sg r=� p.

In general, it neither holds that closure under contraposition implies closure under transposi-

tion, as shown by the following counterexample.

Example 5.7 Let Rs ¼ fp ! q; :q ! r; r ! :p; :r ! q; p ! :rg. Then Rs is not

closed under transposition, since it does not include :q ! :p. Still we have

fpgr q and f:qg r:p fpgr: r and frgr: p

f:rgr q and f:qgr r f:qgrr and f:rgr q

So Rs satisfies contraposition.

However, contraposition does imply transposition in the following special case.

PROPOSITION 5.8 Consider any argumentation theory with L closed under classical negation

and � defined correspondingly. Then if Rs consists of all valid propositional inferences, then

Rs is closed under contraposition and transposition.

Note that the proposition does not hold if the condition ‘Rs consists of all valid propositional

inferences’ is changed to ‘r corresponds to propositional logic’. A counterexample is any argu-

mentation theory with a sound and complete axiomatisation of propositional logic with modus

ponens as the only inference rule.

6. Rationality postulates

Dung’s semantics can be seen as rationality constraints on evaluating arguments in abstract

argumentation frameworks. The refinement of his abstract approach with structured arguments

naturally leads to the question whether this additional structure gives rise to additional rationality

constraints. Caminada and Amgoud (2007) gave a positive answer to this question by proposing

a number of ‘rationality postulates’ for what they called ‘rule-based argumentation’. Four of

their postulates formulate constraints on any extension of an argumentation framework corre-

sponding to an argumentation theory:5

. Closure under subarguments: for every argument in an extension also all its subarguments

are in the extension.
. Closure under strict rules: the set of conclusions of all arguments in an extension is closed

under strict-rule application.
. Direct consistency: the set of conclusions of all arguments in an extension is consistent.
. Indirect consistency: the closure of the set of conclusions of all arguments in an extension

under strict-rule application is consistent.

Caminada and Amgoud (2007) proved for their version of the ASPIC framework that the first

two postulates are always satisfied while the two consistency postulates are satisfied if the set

of strict rules is consistent and closed under transposition. However, their version of the ASPIC

framework is considerably simpler than the present one. First, it has no knowledge base and

facts must be represented as inference rules with empty antecedents; because of this, arguments

cannot be undermined. Furthermore, it assumes just a basic ordering on arguments, according

to which strict arguments are strictly preferred over defeasible ones and nothing else. Finally,

it has a special case of the present � function from L to 2L, corresponding to classical negation.
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The task now is to investigate to which extent the results of Caminada and Amgoud (2007) can

be generalised to the present case.

The postulates of closure under subarguments and strict-rule application still hold uncondi-

tionally for the present framework. (Here that a given semantics is subsumed by complete

semantics means that any of its extensions also is a complete extension).

PROPOSITION 6.1 Let , A, Def . be an argumentation framework as defined in Definition 3.22

and E any of its extensions under a given semantics subsumed by complete semantics. Then for

all A [ E: if A0 [ SubðAÞ then A0 [ E.

PROPOSITION 6.2 Let , A;Def . be an argumentation framework corresponding to an

argumentation theory and E any of its extensions under a given semantics subsumed by

complete semantics. Then fConcðAÞjA [ Eg ¼ CRsðfConcðAÞjA [ EgÞ.

As for the two consistency postulates, Caminada and Amgoud’s results do not generalise

unconditionally. Consider the following example.

Example 6.3 Let Rd ¼ f) p; ) qg and Rs ¼ fq ! :p; p ! :qg. Then we have

A: ) p

B0: ) q B: B0 ! :p

Now assume that A � B, so B does not defeat A. However, A neither defeats B, since B’s last

inference is strict. At first sight, it would seem that A can be extended with the transposition

of q ! :p (i.e. with p ! :q) to an argument

Aþ: A ! :q

that rebuts B’s subargument B0 for q. Then since by condition (2) of Definition 3.10 a strict con-

tinuation of an argument cannot make it weaker, B0 � Aþ so Aþ defeats B0. Moreover, by the

same conditions any argument defeats A if and only if it defeats Aþ so if A is in an extension

E then by Proposition 6.2 Aþ will be in E and therefore B will not be in E since extensions

are conflict-free.

However, this line of reasoning does not hold without a further assumption on the argument

ordering. Consider a more complex variant of Example 6.3.

Example 6.4 Let Rd ¼ f) p; ) q; ) rg and Rs ¼ fq; r ! :p; q; p ! :r; p; r ! :qg.

Then we have

A: ) p

B0: ) q B00: ) r B: B0; B00 ! :p

The problem is that A cannot be extended with any transposition of q; r ! :p to obtain Aþ

unless it is combined with either B0 or B00 but then A is extended with a defeasible rule, so Aþ

might be weaker than A. This problem holds whenever B has more than one maximal defeasible

or plausible subargument.

However, assuming contraposition or transposition, direct consistency can still be proved if it

can also be assumed that there is a way to extend A with all but one of B’s maximal defeasible

subarguments that is not weaker than the remaining one. In our example, this means that either

A extended with B0 is not weaker than B00 or A extended with B00 is not weaker than B0. Intuitively,

this assumption seems acceptable given that A is stronger than both B0 and B00. It is therefore to be

expected that it will be satisfied by many reasonable argument orderings. Since similar situations

can arise with undermining attack, the notion of a maximal fallible subargument is needed.
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DEFINITION 6.5 (maximal fallible subarguments) For any argument A, an argument A0 [
SubðAÞ is a maximal fallible subargument of A if

(1) A0’s final inference is defeasible or A0 is a non-axiom premise; and

(2) there is no A00 [ SubðAÞ such that A00
= A and A0 [ SubðA00Þ and A00 satisfies

condition (1).

The set of maximal fallible subarguments of an argument A will be denoted by MðAÞ.

COROLLARY 6.6 For any argument A, it holds that ConcðMðAÞÞ r ConcðAÞ.

DEFINITION 6.7 (reasonable argument orderings) Argument ordering W is reasonable if it

satisfies the following condition. Let A and B be arguments with contradictory conclusions

such that B � A. Then there exists a Bi [ MðBÞ and an Aþ with A [ SubðAþÞ such that

ConcðAþÞ ¼ �ConcðBiÞ and Aþ ˛ Bi.

A final problem to deal with is that in Example 6.3, ConcðAÞ could be a contrary of ConcðBÞ;

the problem is that the solution with closure under contraposition and transposition does not apply

to this case. Therefore, the focus must be restricted to argumentation theories that respect the

intended use of assumptions and contraries.

DEFINITION 6.8 An argumentation theory is well formed if:

(1) no consequent of a defeasible rule is a contrary of the consequent of a strict rule;

(2) if w [ Ka and w is a contrary of c, then c � Kn <Kp and c is not the conclusion of a

rule in R.

Condition (2) in effect says that assumptions can only be contraries of other assumptions. An

example of an argumentation theory that is not well formed is

Rs ¼ fp ! qg; Rd ¼ fr ) s; t ) ug; Kp ¼ fp; rg; Ka ¼ fvg

and such that s is a contrary of q and v is a contrary of u. Then condition (1) of Definition 6.8 is

violated since we have arguments A: p ! q and B: r ) s. Moreover, condition (2) is violated

since v [ Ka and t ) u [ Rd.

Now it can be proved that under certain conditions an argumentation theory satisfies the

postulate of direct consistency.

THEOREM 6.9 Let , A; Def . be an argumentation framework corresponding to a well-formed

argumentation theory that is closed under contraposition or transposition and has a reasonable

argument ordering and a consistent ClRsðKnÞ, and let E be any of its extensions under a given

semantics subsumed by complete semantics. Then the set fConcðAÞjA [ Eg is consistent.

Caminada and Amgoud (2007) also prove that their system satisfies the postulate of indirect con-

sistency. This follows from their Proposition 7, which says that if an argumentation theory

satisfies closure and direct consistency, it also satisfies indirect consistency. Since in the

present case, the conditions of the proof of direct consistency had to be strengthened, the

same holds for indirect consistency.

THEOREM 6.10 Let ,A, Def . be an argumentation framework corresponding to a well-formed

argumentation theory that is closed under contraposition or transposition and has a reasonable

argument ordering and a consistent ClRsðKnÞ, and let E be any of its extensions under a given

semantics subsumed by complete semantics. Then the set ClRsðfConcðAÞjA [ EgÞ is consistent.
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COROLLARY 6.11 If the conditions of Theorem 6.10 are satisfied, then for any extension E under a

given semantics subsumed by complete semantics the set fwjw is a premise of an argument in Eg

is consistent.

Concluding this section, two intuitively plausible argument orderings will be shown to be

reasonable, namely, the weakest-link and last-link orderings from Amgoud et al. (2006). The

versions below are slightly revised to make the principles arguably more intuitive. Both order-

ings define a strict partial order �s on sets in terms of a partial preorder �e on their elements, as

follows: S1 �s S2 iff there exists an e1 [ S1 such that for all e2 [ S2 it holds that e1 ,e e2.

The last-link principle prefers an argument A over another argument B if the last defeasible

rules used in B are less preferred than the last defeasible rules in A or, in case both arguments are

strict, if the premises of B are less preferred than the premises of A. The concept of ‘last defea-

sible rules’ is defined as follows and is essentially the same as Prakken and Sartor’s (1997)

notion of a ‘relevant set’.

DEFINITION 6.12 (last defeasible rules) Let A be an argument.

. LastDefRulesðAÞ ¼ ; iff DefRulesðAÞ ¼ ;.

. If A ¼ A1, . . ., An ) f, then LastDefRulesðAÞ ¼ fConcðA1Þ, . . . , ConcðAnÞ ) fg, other-

wise LastDefRulesðAÞ ¼ LastDefRulesðA1Þ < . . . < LastDefRulesðAnÞ.

COROLLARY 6.13 LastDefRulesðAÞ ¼ fTopRuleðA0ÞjA0 [ MðAÞg.

An example with more than one last defeasible rule is withK ¼ fp; qg andRd ¼ fp ) r; q ) sg.

Then for argument A for r ^ s, we have LastDefRulesðAÞ ¼ fp ) r; q ) sg.

The above definition is now used to compare pairs of arguments as follows.

DEFINITION 6.14 (last link principle) Let A and B be two arguments. Then A � B iff either

(1) condition (1) of Definition 3.10 holds or

(2) LastDefRulesðAÞ �s LastDefRulesðBÞ or

(3) LastDefRulesðAÞ and LastDefRulesðBÞ are empty and PremðAÞ �s PremðBÞ.

(Amgoud et al. 2006 do not include the second condition so if both arguments are strict the

ordering on the knowledge base is ignored.) This definition in effect compares sets on their

weakest elements.

PREPOSITION 6.15 The last-link argument ordering is reasonable.

Consider the following example (taken from Prakken 1997) on whether people misbehaving

in a university library may be denied access to the library.

Example 6.16 Let Kp ¼ fSnores; Professorg, Rd ¼

fSnores )r1
Misbehaves;

Misbehaves )r2
AccessDenied;

Professor )r3
:AccessDeniedg.

Assume that Snores ,0 Professor and r1 , r2; r1 , r3; r3 , r2 and consider the following

arguments.

A1: Snores A2: A1 ) Misbehaves A3: A2 ) AccessDenied

B1: Professor B2: B1 ) :AccessDenied

To resolve the conflict between A3 and B2, the rule sets to be compared are LastDefRulesðA3Þ ¼

fr2g and LastDefRulesðB2Þ ¼ fr3g. Since r3 , r2 we have that B2 �s A3 so A3 strictly defeats B2.

Argument and Computation 109



The weakest-link principle considers not the last but all uncertain elements in an argument. It

prefers an argument A over an argument B if A is preferred to B on both their premises and their

defeasible rules.

DEFINITION 6.17 (weakest link principle) Let A and B be two arguments. Then A � B iff either

condition (1) of Definition 3.10 holds or

(1) PremðAÞ �s PremðBÞ and

(2) If DefRulesðBÞ = ;, then DefRulesðAÞ �s DefRulesðBÞ.

(Amgoud et al. (2006) do not have condition (2), so that with two strict arguments neither of

them can be preferred.)

PROPOSITION 6.18 The weakest-link argument ordering is reasonable.

Example 6.19 Consider again Example 6.16. With the weakest-link principle, the outcome

is different. To resolve the conflict between A3 and B2, the rule sets to be compared are

now DefRulesðA3Þ ¼ fr1; r2g and DefRulesðB2Þ ¼ fr3g. Since r1 , r3, we have that

DefRulesðA3Þ �s DefRulesðB2Þ. Moreover, since Snores ,0 Professor, we also have

that PremðA3Þ �s PremðB2Þ. Hence, B2 now strictly defeats A3.

Example 6.20 We finally return to Example 1. Let

r1 ¼ WearsRing ) Married

r2 ¼ PartyAnimal ) Bachelor

Note that since both arguments apply just one defeasible rule and no premise is attacked, the

weakest- and last-link ordering produce the same result. Now if r1 , r2, we have that A3

strictly defeats B3 by successfully rebutting it on B2, while if both r1 æ r2 and r2 æ r1

then A3 and B3 defeat each other since A3 successfully rebuts B3 on B2 while B3 successfully

rebuts A3 on A2.

7. Self-defeat

As discussed by Pollock (1994) and Caminada and Amgoud (2007), self-defeating arguments

can cause problems if argumentation systems are not carefully defined, particularly if they

include standard propositional logic. In the present framework, two types of self-defeating argu-

ments are possible: serial self-defeat occurs when an argument defeats one if its earlier steps,

while parallel self-defeat occurs when the contradictory conclusions of two or more arguments

are taken as the premises for ?. Pollock (1994) gives an example of serial self-defeat of the

following form.

Example 7.1 Let Rd ¼ fp ) qg, Rs ¼ f q ! :A2g and K ¼ fp; qg. Then, we have

A1: p A2: A1 ) q A3: A2 ! :A2

(Read p as ‘witness John says that he is unreliable’ and q as ‘witness John is unreliable’).

Argument A3 is self-defeating since it undercuts itself on A2. This example is arguably

handled properly by preferred and grounded semantics, who both have E ¼ fA1g as the only

extension.

One of Pollock’s (1994) examples of parallel self-defeat has the following form.
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Example 7.2 Let Rd ¼ fp ) q; r ) :q; t ) sg and K ¼ fp; r; tg while Rs contains all

propositionally valid inferences. Then:

A1: p A2: A1 ) q

B1: r B2: B1 ) :q

C1: A2;B2 ! ? C2: C1 ! :s

D1: t D2: D1 ) s

Here a problem arises since s can be any formula, so any defeasible argument unrelated to A2 or

B2, such as D2, can, depending on the rule priorities, be rebutted by C2. Clearly, this is extremely

harmful, since the existence of just a single case of mutual rebutting defeat, which is very

common, could trivialise the system. In fact, of the semantics defined by Durg (1995), this is

only a problem for grounded semantics. Since all preferred/stable extensions contain either

A2 or B2, argument C2 is not in any of these extensions so D2 is. However, if neither of A2

and B2 strictly defeats the other, then neither of them is in the grounded extension so that exten-

sion does not defend D2 against C2 and therefore does not contain D2.

Pollock (1994) also discusses the following variant of this example (with the same argumen-

tation theory):

A1: p A2: A1 ) q A3: A2 ! q _ :s

B1: r B2: B1 ) :q

C1: A2;B2 ! :s

D1: t D2: D1 ) s

Again with grounded semantics, the problem is that s can be any formula, so any defeasible

argument unrelated to A2 or B2 can be rebutted by C1.

According to Caminada (personal communication), the only way to solve this problem is to

make parallel self-defeat impossible. One way to implement this solution is to disallow argu-

ments with a contradictory set of subconclusions. However, this affects the proof of Theorems

6.9 and 6.10. The reason is that for such systems the argument Aþ that according to Lemma A1

can be constructed sometimes has to have contradictory sub-conclusions, as the following

example (with a system closed under transposition) shows.

Example 7.3 Let p [ Kn, q [ Ka and Rs ¼ Cltpðfp ! t; q ! r; q ! s; r; s ! :tgÞ.

A1: p A2: A1 ! t

B1: q B2: B1 ! r B3: B1 ! s B4: B2;B3 ! :t

Now ifA2 is to be extended to an argumentAþ that underminesB4, thenB1 must be included inAþ.

A similar example for systems closed under contraposition is as follows.

Example 7.4 Let Kp ¼ fp; q;:p;:qg and let Rs consist of all valid propositional inferences.

Then

A1: p A1: q A3: A1;A2 ! p ^ q

B1: :p B2: :q B3: B1;B2 ! :ðp ^ qÞ

Note that MðB3Þ ¼ PremðB3Þ. Now any addition of a premise of B3 to PremðA3Þ makes PremðA3Þ

inconsistent.
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Since these problems only arise in particular argumentation systems and with particular

semantics, no general solution will be pursued here; instead, such solutions are left for future

research on instantiations of the framework. Note also that Examples 7.3 and 7.4 only contain

strict rules, so that the problem may also arise in assumption-based frameworks, which will

in the next section be proved to be a special case of the ASPIC framework.

8. The relation with assumption-based argumentation

After having presented his fully abstract approach to argumentation, Dung joined Kowalski,

Toni and others in their development of a more concrete version of his approach (e.g. Bondar-

enko et al. 1997; Dung et al. 2006, 2007). In this approach, arguments essentially are sets of

formulas called ‘assumptions’, from which conclusions can be drawn with strict inference

rules. Arguments can be attacked with arguments that conclude to the ‘contrary’ of one of

their assumptions. In fact, the extensions defined by the various semantics of Bondarenko

et al. (1997) are not sets of arguments but sets of assumptions. However, Dung et al. (2007)

showed that an equivalent fully argument-based formulation can be given.

In this section, it will be shown that assumption-based argumentation is a special case of the

present framework with only strict inference rules, only assumption-type premises and no pre-

ferences. The proof will be given for the argument-based version of Dung et al. (2007) and

carries over to Bondarenko et al. (1997) by the equivalence result of Dung et al. (2007).

First the main definitions of ABA are recalled (in the formulation of Dung et al. (2007)).

DEFINITION 8.1 (Dung et al. 2007, Definition 2.3) A deductive system is a pair ðL;RÞ where

. L is a formal language consisting of countably many sentences, and

. R is a countable set of inference rules of the form a1; . . . ;an ! a.6 a [ L is called the

conclusion of the inference rule, a1; . . . ;an [ L are called the premises of the inference

rule and n � 0.

DEFINITION 8.2 (Dung et al. 2007, Definition 2.5) An assumption-based argumentation

framework (ABF) is a tuple ðL;R;A;� Þ where

. ðL;RÞ is a deductive system,

. A [ L;A = ;. A is the set of candidate assumptions,

. If a [ A, then there is no inference rule of the form a1; . . . ;an ! a [ R,

. � is a total mapping from A into L. a is the contrary of a.

The third condition amounts to a restriction to so-called flat ABFs. This restriction is not

entirely innocent, since in debates it may occur that someone first assumes a premise and,

after it is defeated, constructs an argument for it, in an attempt to rebut the defeater. To make

Dung et al.’s analysis apply to all stages of such a debate, assumptions should be deleted

from A as soon as they are supported with an argument.

Since the notion of an argument is central to the present concerns, the informal explanation

of Dung et al. (2007, p. 646) will be quoted in (almost) full.

Deductions can be understood as proof trees: the root of the tree is labelled by the conclusion of the
deduction and the leaves are labelled by the premises supporting the deduction. For every non-term-
inal node in the tree, there is an inference rule whose conclusion matches the sentence labelling the
node, and the children of the node are labelled by the premises of the inference rule. (. . .) we define
deductions as sequences of frontiers S1; . . . ; Sm of the proof trees. Each frontier is represented by a
multi-set, in which the same sentence can have several occurrences, if it is generated more than once
as a premise of different inference steps. In order to generate proof trees, a selection strategy is
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needed to identify which node to expand next. We formalise this selection strategy by means of a
selection function, as in the formalisation of SLD resolution. A selection function, in this context,
takes as input a sequence of multi-sets Si and returns as output a sentence occurrence in Si. We
restrict the selection function so that if a sentence occurrence is selected in a multi-set in a sequence
then it will not be selected again in any later multi-set in that sequence.

Essentially, a backward deduction thus presents one particular order in which an argument in the

sense of Definition 3.6 can be constructed by reasoning backwards from the conclusion to the

premises.

DEFINITION 8.3 (Dung et al. 2007, Definition 2.4) Given a selection function f, a (backward)

deduction of a conclusion a based on (or supported by) a set of premises P is a sequence of

multi-sets S1; . . . ; Sm, where S1 ¼ fag, Sm ¼ P, and for every 1 � i , m, where s is the

sentence occurrence in Si selected by f :

(1) If s is not in P, then Siþ1 ¼ Si � fsg< S for some inference rule of the form

S ! s [ R.

(2) If s is in P, then Siþ1 ¼ Si.

Each Si is a step in the deduction.

Now an assumption-based argument is defined as follows:

DEFINITION 8.4 (Dung et al. 2007, Definition 2.6) An argument for a conclusion on the basis

of an ABF is a deduction of that conclusion whose premises are all assumptions (in A).

As for notation, the existence of an argument for a conclusion a supported by a set of

assumptions A is denoted by Ara, or by ArABF a if it has to be distinguished from the existence

of a strict argument according to Definition 3.6 with the same premises and conclusion; the latter

will below be denoted by ArAT a.

Finally, Dung et al.’s notion of argument attack is defined as follows.

DEFINITION 8.5 (Dung et al. 2007, Definition 2.7)

. an argument Ara attacks an argument Brb if and only if Ara attacks an assumption in

B;
. an argument Ara attacks an assumption b if and only if a is the contrary b of b.

The argumentation theory corresponding to an assumption-based framework is now defined

as follows.

DEFINITION 8.6 Given an assumption-based framework ABF ¼ ðLABF;RABF;A;�ABF Þ, the

corresponding argumentation theory ATABF ¼ ðAS;KBÞ, where AS ¼ ðLAT ;
�
AT ;RAT ;�Þ and

KB ¼ ðK;�0Þ, is defined as follows:

. LAT ¼ LABF

. w [ cAT iff w ¼ cABF

. RAT ¼ Rs ¼ RABF

. Kn ¼ Kp ¼ Ki ¼ ;

. Ka ¼ A

. � ¼ �0 ¼ W ¼ ;

Note that ATABF is well formed and all ATABF arguments are strict and plausible.

The main task now is to prove that there is an ABF-argument for a from P if and only if there

is an ATABF-argument for a with premises P. In fact, this can only be proved for the special case
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of argumentation theories that do not allow for arguments with an infinite number of

subarguments. Technically, the present framework allows for such arguments even if they are

non-circular. For example, an AT with Rs ¼ fpiþ1 ! piji � 1g allows for an argument for p1

with an infinite number of subarguments (and an empty set of premises). So far no proof has

depended on finiteness of arguments. In an ABF, however, arguments are by definition finite

even if the set of inference rules allows for infinite ones, as in the just-given example.

PROPOSITION 8.7 For all ABF such that AT ¼ ATABF does not allow arguments with an infinite

number of subarguments, there exists an argument A rABF a if and only if there exists an

argument A rAT a.

From this it follows that

PROPOSITION 8.8 For all ABF such that AT ¼ ATABF does not allow arguments with an infinite

number of subarguments, it holds for every argument A rABF a and every argument A r AT a

that A rABF a is defeated by an argument BrABF b if and only if ArAT a is defeated by an

argument BrAT b.

Now the main correspondence result can be proved.

THEOREM 8.9 For all ABF, any semantics S subsumed by complete semantics and any set E:

(1) if E is an S-extension of ABF then EAT is an S-extension of AT, where

EAT ¼ fA rAT ajA rABF a [ Eg;

(2) if E is an S-extension of AT then EABF is an S-extension of ABF, where

EABF ¼ fA rABF ajA rAT a [ Eg.

Theorem 8.9 in fact says that there is a one-to-one correspondence between the extensions of an

ABF and those of its corresponding AT. From this we have the following:

COROLLARY 8.10 For any ABF, any semantics S subsumed by complete semantics, and for any

formula w it holds that w is skeptically (credulously) S-acceptable in ABF if and only if w is

skeptically (credulously) S-acceptable in ATABF .

9. Other related research

As was said above, the present framework is inspired by the work of Pollock (1987, 1994) and

Vreeswijk (1993, 1997). Essentially, it takes from both the idea that defeasible reasoning pro-

ceeds by chaining two kinds of inference rules into inference trees. The present mathematical

formulation of this idea is directly adopted from Vreeswijk (1993, 1997). The present notions

of undercutting and rebutting defeat are taken from Pollock’s work and then generalised to arbi-

trary preference relations on arguments (Pollock only has a notion of probabilistic strength), and

to logical languages with arbitrary contrary mappings. They are then combined with a notion of

undermining defeat.

In fact, the system of Pollock (1994) is not formalised in terms of arguments but in terms

of the so-called ‘inference graphs’, in which nodes are connected either by inference links

(applications of inference rules) or by defeat links. The nodes are ‘lines of argument’, which

are propositions plus an encoding of the argument lines from which they are derived. So if a

proposition is derived in more than one way, it occurs in more than one line of argument.

Such duplications cannot be avoided, since defeat relations depend on the strength of a prop-

osition, which in turn depends on the way in which it is derived. Nodes are evaluated in

terms of the recursive structure of the graph. Jakobovits and Vermeir (1999) proved that
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Pollock’s system can be given an equivalent formulation as an instance of Dung’s abstract

argumentation frameworks with preferred semantics.

With Vreeswijk’s framework, the relation with Dung-style semantics is still an open issue,

since it models conflict not as a relation between two individual arguments but as a property of

sets of arguments: a set of arguments is said to be in conflict if there exists a strict argument from

their conclusions for ?. Vreeswijk then defines a notion of warrant for arguments which

resembles stable semantics.

Gordon et al. (2007) proposed the Carneades framework ‘of argument and burden of proof’.

Carneades’ main structure is that of an argument graph, which, despite its name, is similar to

Pollock’s inference graphs. Statement nodes are linked to each other via argument nodes,

which record the inferences from one or more nodes to another. This notion of an argument

does not have the recursive structure of Definition 3.6 but instead stands for a single inference

step. As explained in Section 3.1, the premises of an argument can be of three types: presump-

tions (similar to the present issues), assumptions (similar to the present ordinary premises) and

exceptions (similar to contradictories of the present assumptions). Carneades has no distinction

between strict and defeasible inference rules and, unlike Pollock, does not express conflicts as a

special type of link between statement nodes. Instead, inferences (i.e. arguments) can be either

pro or con a statement. Because of this, statements occur only once in the graph. Also, attack

relations are thus expressed either as arguments pro and con the same statement or as an argu-

ment pro an exception-type premise of another argument. Carneades thus allows for rebutting

and undermining but not for undercutting; instead, undercutters are simulated by arguments

pro exceptions. Carneades’ inference graphs are assumed to contain no cycles, which excludes

the representation of mutual attack relations through exceptions.

In Carneades, the evaluation of statements in an argument graph is, as with Pollock’s infer-

ence graphs, defined in terms of the recursive structure of the graph. Statements are acceptable if

they satisfy their ‘proof standard’. The general framework abstracts from their nature but Gordon

et al. (2007) give several examples of proof standards. The proof standards are at the heart of

Carneades’ acceptability notion, just like the notions of defence and admissibility are at the

heart of Dung-style semantics. None of the examples given by Gordon et al. (2007) have a

known relation with any existing Dung-style semantics or the present framework, which thus

is an issue for future research. Here it is also relevant that Carneades incorporates dialogical

elements since it matters whether a statement is ‘stated’, ‘questioned’, ‘accepted’ or ‘rejected’.

These statuses of a statement are assumed to be provided by a dialogical context in which

Carneades is embedded.

Verheij (2003a) presents a ‘sentence-based’ (as opposed to ‘argument-based’) logic for

defeasible reasoning, called DefLog. Verheij assumes a logical language with just two connec-

tives, a unary connective � which informally stands for ‘it is defeated that’ and a binary connec-

tive V for expressing defeasible conditionals. He then assumes a single inference scheme for

this language, namely, modus ponens for V. A set of sentences T is said to support a sentence

w if ‘w is in T or follows from T by repeated application of V-modus ponens’ (Verheij 2003a,

p. 327). It seems reasonable to formalise this as the backward deductions of assumption-based

argumentation or the strict arguments of the present framework. Moreover, T is said to attack w

if T supports �w. Verheij then considers partitions ðJ;DÞ of sets of sentences D which he calls

dialectical interpretations and which are such that J (the ‘justified’ sentences) is conflict-free

and attacks every sentence in D (the ‘defeated’ sentences).

As already suggested by Verheij, there is a close formal relation between DefLog and assump-

tion-based argumentation. First, dialectical interpretations are easily proved to be equivalent to

stable labellings, which are known to be equivalent to stable semantics (first proved by Verheij

(1996); see also Jakobovits and Vermeir (1999), and Caminada (2006)). Furthermore, DefLog

Argument and Computation 115



theories can be mapped onto assumption-based frameworks by letting an ABF contrary mapping

be �w ¼ w for any w, by regarding any set of dialectically interpreted sentences as the assump-

tionsA of an ABF and by having w;w V c ! c, for anyw and c in DefLog’s language, as the set

R of inference rules of the ABF. The result is an assumption-based framework in the sense of

Definition 8.2 with stable semantics. The correspondence results of Dung et al. (2007) with

Bondarenko et al. (1997) then also apply to the special case of a DefLog-style ABF so that by

the above Theorem 8.9 DefLog is a special case of the present framework with only strict

arguments and only undermining defeat.

Several argumentation systems model deductive argumentation. Here arguments are proofs

according to some deductive logic with consistent premises taken from a possibly inconsistent

knowledge base expressed in the language of the logic (usually taken to be standard prop-

ositional or first-order logic). In Amgoud and Cayrol (2002), which is based on propositional

logic, the structure of arguments is left undefined, except that the premises imply the conclusion

according to propositional logic. Several notions of defeat are then considered. One of them cor-

responds to the present undermining defeat, where arguments are compared in terms of a partial

preorder on the belief base from which their premises are taken. Argument acceptability is

defined according to grounded semantics.

This variant of Amgoud and Cayrol (2002) can be reconstructed as a special case of the

present framework as follows. First, L is any propositional language closed under classical nega-

tion, where w ¼ c if w ¼ :c or c ¼ :w. Then Rs consists of all valid propositional inferences

while Rd is empty. The knowledge base equals Kp. Finally, as with Deflog, it seems reasonable

to formalise arguments as the strict arguments of the present framework, although the extra con-

straint must be added that such arguments have classically consistent premises. This consistency

constraint makes that not all results of this paper hold without further qualification. It is easy to

verify that Propositions 5.8, 6.1 and 6.2 still hold with this constraint (for Proposition 5.8 note

that in this case Srw by definition implies that the strict argument that exists for w has consistent

premises). However, the proofs of Theorems 6.9 and 6.10 do not apply to this case, for similar

reasons as explained above in Section 7 with Example 7.4. It remains to be investigated whether

these theorems can be proved for this case under alternative conditions.

Besnard and Hunter’s (2008) version of deductive argumentation is similar to that of

Amgoud and Cayrol (2002), except for a generalised notion of undermining: an argument is

undermined by any argument of which the conclusion negates the conjunction if its premises.

It remains to be seen whether this version of undermining can be reduced to the present version.

Two other logics for defeasible reasoning with both (domain-specific) strict and defeasible

inference rules are Defeasible Logic (DL), first proposed by Nute (1994), and Defeasible Logic

Programming (DeLP; e.g. Garcia and Simari 2004). In both systems, the logical language is

restricted in logic-programming style. DL is not explicitly argument-based but defines the

notion of a proof tree, which interleaves support and attack. Governatori, Maher, Antoniou,

and Billington (2004) investigated the relation with Dung-style semantics. One variant of DL

is proved to instantiate grounded semantics. In DeLP, the only way to attack an argument is

on a (sub-)conclusion. DeLP’s notion of argument acceptability has no known relation to any

of the current argumentation semantics.

Prakken and Sartor (1997) presented an argument-based version of extended logic program-

ming, designed as an instance of Dung’s abstract argumentation frameworks with grounded

semantics. Their system comes close to being a special case of the present framework. It has

(domain-specific) strict and defeasible inference rules and allows for rebutting and undercutting

defeat. Furthermore, its notion of an argument comes close to a ‘deduction’ version of Definition

3.6, i.e. it represents a particular order in which an argument can be constructed. A difference is

that in Prakken and Sartor (1997) two parallel subarguments do not need to be completed with an
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inference from their conclusion, so that, for example (in the present notation), p; p ) q; r; r ) s

is an argument with conclusions q and s. In Prakken and Sartor (1997), this was convenient for

modelling reasoning about defeasible priorities in the system. A more substantial difference is

that while the present framework considers rebutting and undercutting attack on equal

footing, Prakken and Sartor (1997) give priority to undercutting attack, so that if A undercuts

B while B rebuts A, A strictly defeats B. It seems that the present results do not crucially rely

on this difference, but this should be further investigated.

A final difference with the present framework is that in Prakken and Sartor (1997) the role of

strict rules in defeat is different. As in the present framework, only defeasible inferences can be

attacked, but an argument A with conclusion w rebuts an argument B with conclusion w0 if there

exists sets of strict rules Sa and Sb and a formula c such that (with present notation) Sa < fwgrc

and Sb < fw0grc. The difference can be best explained with Examples 3.18 and 6.20.

The motivation behind the definition of Prakken and Sartor (1997) was that intuitively the

‘real’ conflict is between the two defaults on whether someone is a bachelor or married. This

is captured by their definition of rebutting attack, since A2 can be extended with A3 to contradict

B2’s conclusion and vice versa. Hence the rule priorities are applied to A2 and B2. By contrast, in

the present framework these arguments do not rebut each other since their top rules are strict.

Instead, we saw that their conflict is decided indirectly, by comparing A3 with B2 and B3 with

A2. The present treatment of such examples can be defended by saying that conflicts are recog-

nised only when they are made explicit in an argument’s conclusion, which seems to better

respect the general nature of argumentation as providing explicit grounds for conclusions. It

remains to be investigated whether this difference affects the present results on the rationality

postulates (note that, although Prakken and Sartor (1997) do not assume that the strict rules

are closed under transposition, this assumption can be easily added).

In one respect, Prakken and Sartor (1997) go beyond the present framework, namely, in

making the preference relation on the set of defeasible inference rules defeasible and derivable

within the framework. In this respect, the system is a forerunner of Modgil’s (2009) extendedAFs.

10. Conclusion

The main rhetorical aim of this paper has been to present the ASPIC framework as a general

abstract framework for rule-based argumentation. In previous publications on the ASPIC frame-

work its unifying potential was underexposed because of a focus on domain-specific inference

rules instead of on general inference patterns. Here it has been argued that ASPIC, although it

can be used as a specific logic at the same level of abstraction as systems such as DeLP, DL and

Prakken and Sartor (1997), can also be used as an abstract framework for reasoning with general

inference rules, including argument schemes. Moreover, it has been shown that by including

undermining attack and generalising negation to arbitrary contrary mappings, the ASPIC frame-

work unifies rule- and assumption-based approaches to argumentation. The latter claim has been

backed by a formal proof that assumption-based argumentation (Bondarenko et al. 1997; Dung

et al. 2007) is a special case of the framework and by semi-formal explanations that the same

holds for Verheij’s (2003) DefLog and (to a large extent) Amgoud and Cayrol’s (2002)

version of deductive argumentation.

In addition, the following technical contributions have been made:

. a generalisation of the ASPIC framework to arbitrary relations of contrariness between

well-formed formulas;
. an extension of the ASPIC framework with preference information for resolving conflicts

between arguments;

Argument and Computation 117



. an extension of the ASPIC framework with four types of premises and with undermining

attack;
. proof that Caminada and Amgoud’s (2007) rationality postulates still hold for the thus gen-

eralised and extended framework, and that they hold not only for systems closed under

transposition but also for systems closed under contraposition.

The framework can be further extended and investigated in several ways. First as indicated

above in Section 3.3.2, several alternative ways to define the relation between the three kinds

of defeat are possible. It could be investigated to what extent such alternatives affect the

present results. The same holds for the use of preferences to resolve undercutting attack (also

discussed in Section 3.3.2), for the constraint that arguments have consistent premises (cf. the

discussion of deductive argumentation in Section 9) and for alternative ways to define argument

conflicts involving strict rules (cf. the discussion of Prakken and Sartor (1997) in Section 9).

Finally, as touched upon at the end of Section 9, an important extension of the present frame-

work is making the preference relations that are used for resolving conflicts defeasible and deri-

vable within the framework. This could be done along the lines of Prakken and Sartor (1997),

after which it should be investigated whether Modgil’s (2009) reconstruction of Prakken and

Sartor (1997) as an instance of his extended argumentation frameworks can be adapted to the

extended ASPIC framework.
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Notes

1. For reasons explained in Section 3, this paper will rename Dung’s attack relations to ‘defeat’ relations
and reserve the term ‘attack’ for something else.

2. In this paper, the term ‘framework’ will be used to denote the general model, to highlight that it can be
instantiated in various ways (such instantiations will in turn be called argumentation systems). This con-
trasts with Dung’s (1995) use of the term ‘argumentation framework’, which denotes a specific set of
arguments with a specific attack relation. In the present paper, such specific inputs to an argumentation
system will be called argumentation theories.

3. Pollock (1987, 1994) calls these ‘conclusive’ and ‘prima facie reasons’.
4. Modgil (2009) argued that in some contexts such extensions make sense. It seems that the formal results

in Section 6 on rationality postulates also hold for undercutting defeat with preferences, but this should
be formally verified.

5. Caminada and Amgoud (2007) proposed similar postulates for the intersection of extensions but since
their results on these postulates directly follow from the ones for individual extensions, they will be
ignored.

6. In Dung et al. (2007), the arrows are from right to left.
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Appendix: Proofs

PROPOSITION 5.8 Consider any argumentation theory with L closed under classical negation

and � defined accordingly. Then if Rs consists of all valid propositional inferences then Rs is

closed under contraposition and transposition.

Proof Note first that if Rs consists of all valid propositional inferences, then r satisfies the

deduction theorem, i.e. it satisfies

fp1; . . . ; pngr q , r ðp1 ^ � � � pnÞ . q

Now consider any rule p1; . . . ; pn ! q. Then fp1; � � � ; pngr q so by the deduction theorem

r ðp1 ^ . . . pnÞ . q. Then also (by propositional reasoning) r ð:q ^ p2 ^ . . . pnÞ . :p1. But

then by the deduction theorem f:q; p2; . . . ; pngr:p1 so since Rs contains all valid prop-

ositional inferences, Rs contains :q; p2; . . . ; pn ! :p1. B

PROPOSITION 6.1 Let ,A, Def. be an argumentation framework as defined in Definition 3.22

and E any of its extensions under a given semantics subsumed by complete semantics. Then for

all A [ E: if A0 [ SubðAÞ, then A0 [ E.

Proof The proof is a trivial adaptation of the proof of Proposition 1 of Caminada and Amgoud

(2007), taking the possibility of undermining defeat into account. B

PROPOSITION 6.2 Let ,A, Def. be an argumentation framework corresponding to an

argumentation theory, and E any of its extensions under a given semantics subsumed by

complete semantics. Then fConcðAÞjA [ Eg = ClRsðfConcðAÞjA [ EgÞ.

Proof Caminada and Amgoud’s proof of their Proposition 8 depends on Proposition 6.1, which

also holds for the present framework, and makes no assumptions on the use of priorities.

Therefore, the proof also holds for the present version. B

THEOREM 6.9 Let, A;Def . be an argumentation framework corresponding to a well-formed

argumentation theory that is closed under contraposition or transposition and has a reasonable

argument ordering and a consistent ClRsðKnÞ, and let E be any of its extensions under a given

semantics subsumed by complete semantics. Then the set fConcðAÞ j A [ Eg is consistent.

Proof Let E be a complete extension. Suppose that fConcðAÞ j A [ Eg is inconsistent. This

means that 9A;B [ E;ConcðAÞ ¼ ConcðBÞ. Since E is a complete extension, E is conflict-

free. This means that A does not defeat B and B does not defeat A. It will be shown that this

leads to a contradiction.

First the following lemmas are proved.
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LEMMA A1 Let A be an argument and B a plausible or defeasible argument in an argumentation

theory that is closed under contraposition or transposition such that ConcðAÞ and ConcðBÞ are

contradictories. Then A can be extended to an argument Aþ that rebuts or undermines B.

Proof Consider first systems closed under contraposition. By Corollary 6.6, it holds

that ConcðMðBÞÞrConcðBÞ so with contraposition (which is assumed to hold) and since

ConcðAÞ and ConcðBÞ contradict each other we have for any Bi [ MðBÞ that

ConcðMðBÞnfBigÞ< ConcðAÞr � ConcðBiÞ. Then clearly MðBÞnfBig and MðAÞ are the

maximal fallible subarguments of an argument Aþ for �ConcðBiÞ. Since by construction of

MðBÞ either Bi is a non-axiom premise or ends with a defeasible inference, Aþ either

undermines or rebuts Bi. But then A also undermines or rebuts B.

For systems closed under transposition, the existence of arguments Aþ and Bi is proved by a

straightforward generalisation of Lemma 6 of Caminada and Amgoud (2007). Then the proof

can be completed as above. B

CORROLLARY A2 If the argumentation theory has a reasonable argument ordering then if

B � A, then Aþ defeats B.

Proof (continuing the proof of Lemma A1) Since W is reasonable, there exist such a Bi and

Aþ such that Aþ ˛ Bi. Then Aþ defeats Bi so Aþ defeats B. B

Now for proving Theorem 6.9, the following cases must be distinguished.

(1) A [ Ki. Then A is not in any extension.

(2) A is an assumption. If A is a contradictory of ConcðBÞ, then B defeats A. If instead A is a

contrary of ConcðBÞ, then since the argumentation theory is well formed B is also an

assumption so A defeats B. Contradiction.

(3) A is firm and strict. If B is also firm and strict, then ClRsðKnÞ is inconsistent, which

contradicts the assumption that it is consistent. If B is plausible or defeasible, then A

defeats B by condition (1) of Definition refpreceq. Contradiction.

(4) A is plausible or defeasible. If B is firm and strict then this is case (3). If B’s top rule is

defeasible and ConcðAÞ is a contrary of ConcðBÞ, then A defeats B, while if ConcðAÞ and

ConcðBÞ contradict each other, either A defeats B or B defeats A. If B’s top rule is strict,

then by the assumption that the argumentation theory is well formed, ConcðAÞ and

ConcðBÞ contradict each other. If B ˛ A then B defeats A while otherwise A can by

Lemma A1 and Corollary A2 be extended to an argument Aþ that defeats B. It is then

left to prove that Aþ [ E. Any defeater C of Aþ will by construction of Aþ do so by

defeating an element of MðAÞ or MðBÞ (since all inferences that are not in MðAÞ or

MðBÞ are strict and there are no new premises). However, this defeated element is in

E by Proposition 6.1, so since E is conflict-free, C � E. But then Aþ [ E, which contra-

dicts the fact that E is conflict-free.

B

THEOREM 6.10 Let,A, Def. be an argumentation framework corresponding to a well-formed

argumentation theory that is closed under contraposition or transposition and has a reasonable

argument ordering and a consistent ClRsðKnÞ, and let E be any of its extensions under a given

semantics subsumed by complete semantics. Then the set ClRsðfConcðAÞ j A [ EgÞ is consistent.

Proof As in Caminada and Amgoud (2007). B
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COROLLARY 6.11 If the conditions of Theorem 6.10 are satisfied, then for any extension E under a

given semantics subsumed by complete semantics the set fwjw is a premise of an argument in Eg

is consistent.

Proof Let A be any argument in E and w any premise of A. By definition of an argument, w is a

subargument of A so by Proposition 6.1 we have that w [ E. Then the corollary follows from

Theorem 6.10 and the fact that subsets of consistent sets are consistent. B

PROPOSITION 6.15 The last-link argument ordering is reasonable.

Proof

LEMMA A3 Consider any ordering Ws on sets ordered by a partial preorder �e such that S1 �s

S2 iff there exists an e1 [ S1 such that for all e2 [ S2 it holds that e1 ,e e2. Then if S1 �s S2 and

e1 is a non-smallest element of S1 (w.r.t. �e), then S2 < fe1g˛s S1.

Proof Straightforward. B

Now by Corollary 6.13 that B � A means that there exists a Bi [ MðBÞ with top rule b such

that for all A0 [ MðAÞ with top rule a it holds that b , a. Choose such a Bi with minimal b (w.r.t.

�e) to form Aþ as in the proof of Corollary A2. Then by Lemma A3

LastDefRulesðAþÞ˛s LastDefRulesðBiÞ. But then Aþ ˛ Bi. B

PROPOSITION 6.18 The weakest-link argument ordering is reasonable.

Proof That B � A now means that PremðBÞ �s PremðAÞ and DefRulesðBÞ �s DefRulesðAÞ.

If DefRulesðBÞ = ;, then there exists a Bi [ DefRulesðBÞ with top rule b such that for all

A0 [ DefRulesðAÞ with top rule a it holds that b , a. Choose such a Bi with minimal b (w.r.t.

�) in the construction of Aþ and Bi in the proof of Corollary A2. Then since all new defeasible

rules of the corresponding Aþ are from elements of MðBÞ, by Lemma A3

DefRulesðAþÞ˛s DefRulesðBÞ. But then Aþ ˛ Bi.

If DefRulesðBÞ ¼ ;, then DefRulesðAÞ ¼ ;. Since PremðBÞ �s PremðAÞ there exists a

premise p in PremðBÞ such that for all premises p0 in PremðAÞ it holds that p0 , p. Then in

the construction of Aþ and Bi in the proof of Corollary A2, choose Bi to be an argument contain-

ing a minimal such p. Then since all new premises of the corresponding Aþ are from PremðBÞ, by

Lemma A3 PremðAþÞ˛s PremðBÞ. But then Aþ ˛ Bi. B

PROPOSITION 8.7 For all ABF such that AT ¼ ATABF does not allow arguments with an infinite

number of subarguments, there exists an argument ArABF a if and only if there exists an

argument ArAT a.

Proof ) For the only-if part, let S1; . . . ; Sn be a backward deduction of a. It will be shown by

induction on the structure of backward deductions that there exists an AT-argument with

conclusion a and premises Sn.

Note first that since all elements of Sn are in A so in Ka, by clause (1) of Definition 3.6 they

are all an AT-argument and their premises are all in Sn.
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Consider next any set Si such that all elements of Siþ1 are the conclusion of an AT-argument

with premises from Sn. Then for any element ai of Si, if ai is also in Siþ1, then trivially ai is the

conclusion of an AT-argument with premises in Sn, otherwise for some set S ¼ fb1; . . . ;bmg #
Siþ1 there exists a rule b1; . . . ;bm ! ai in RABF . But then this rule is also in Rs. Let, further-

more, the AT-arguments for b1; . . . ;bm (which exist by the induction hypothesis) be B1; . . . ;Bm:

then by clause (2) of Definition 3.6, B1; . . . ;Bm ! ai is an AT-argument for ai with all its pre-

mises in Sn.

Next it is proved that for any Si the union of all premises of all AT-arguments for elements in

Si is Sn. Note that for any pair Si; Siþ1, the set Siþ1 is formed by replacing at most one element s

in Si with a set S in Siþ1. As just proved, there exists an AT-argument B1; . . . ;Bm ! ai, where

B1; . . . ;Bm are the AT-arguments for all elements in S. By clause (2) of Definition 3.6, the pre-

mises of this argument are the union of the premises of the arguments B1; . . . ;Bn. But then no

premises have been added or deleted by creating Siþ1 from Si. Note finally, that the union of the

premises of all AT-arguments for any element in Sn (which are these elements themselves) tri-

vially equals Sn. But then this set equals Sn for all Si.

( For the if-part, suppose PrAT a. A backward deduction with multi-sets S1; . . . ; Sn such

that S1 ¼ fag and Sn ¼ P can be created as a maximal sequence such that:

(1) S1 ¼ fag,

(2) For all Siði � 1Þ: create Siþ1 by selecting one element s from Si not selected before and:

(a) if s [ P then Siþ1 ¼ Si; otherwise

(b) Siþ1 ¼ Si � fsg< S for some S ¼ fConcðB1Þ; . . . ;ConcðBnÞg such that there exists an

argument B [ SubðAÞ of the form B1; . . . ;Bn ! s.

It is now proved that for any Si and any s [ Si one of these two conditions is satisfied, i.e.

either s [ P or s is the conclusion of an argument in SubðAÞ. The proof is with induction on the

structure of S1; . . . ; Sn. Consider first S1 ¼ fag. Then if A ¼ a [ Ka, then trivially a [ P,

otherwise A ¼ A1; . . . ;An ! a so trivially A [ subðAÞ. Consider next any Si such that all its

elements satisfy conditions (2)a and (2)b. Then if Siþ1 ¼ Si this trivially also holds for Siþ1,

otherwise if S replaces s in Siþ1 then by the induction hypothesis this is since there exists a sub-

argument B [ SubðAÞ of the form B1; . . . ;Bn ! s such that S ¼ fConcðB1Þ; . . . ;ConcðBnÞg.

Then clearly for any new element ConcðBiÞ [ S, there exists a subargument for it in SubðAÞ,

namely, Bi.

Next, since all steps in the sequence apply an inference rule from Rs, which by Definition 8.6

is also in RABF , the sequence clearly is a backward deduction.

Finally, it is proved that the sequence ends with Sn ¼ P. Let Sub�ðAÞ be the multi-set con-

sisting of, for all A0 [ SubðAÞ, as many occurrences as there are inferences in A that use A0.

Note that by the assumption that SubðAÞ is finite, Sub�ðAÞ is also finite. Then let for any Si
the set UnusedSubðSiÞ be the subset of all arguments in Sub�ðAÞ that were not used to create

Si from S1. (So UnusedSubðS1Þ ¼ Sub�ðAÞ and, e.g. UnusedSubðS2Þ ¼ Sub�ðAÞ � fAg). Then

note that by any application of condition (2)b this multi-set loses one element. Then since

S1; . . . ; Sn is a maximal sequence of elements satisfying conditions (1) and (2), we have that

UnusedSubðSnÞ ¼ ;. Then since P # Sub�ðAÞ, we have that P # Sn. Assume next for contradic-

tion that there is an element s [ Sn which is not in P: then, as proved above, s can be replaced

by a set S such that S ! s is an inference in A, so S1; . . . ; Sn is not maximal. Contradiction, so

Sn ¼ P. B

PROPOSITION 8.8 For all ABF such that AT ¼ ATABF does not allow arguments with an infinite

number of subarguments it holds for every argument ArABF a and every argument ArAT a that
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BrAT b is defeated by an argument BrABF b if and only if ArAT a is defeated by an argument

BrAT b.

Proof ) Assume ArABF a and BrABF b defeats ArABF a. Then according to the contrariness

mapping in ABF we have that b ¼ p for some p [ A. Furthermore, by Proposition 8.7, there

exists an ArAT a and an argument BrAT b. Then by identity of the contrariness mappings we

also have that b ¼ p for some p [ A according to AT. Then since p [ Ka, clearly BrAT b

defeats ArAT a.

( Assume ArAT a and BrAT b defeats ArAT a. Then since all arguments in AT are strict, B

undermines A, and according to the contrariness mapping in AT, we have that b ¼ p for some

p [ A. Furthermore, by Proposition 8.7, there exists an ArABF a and an argument BrABF b.

Then by identity of the contrariness mappings, we also have that b ¼ p for some p [ A accord-

ing to ABF. Then since p [ A, clearly BrABF b defeats ArABF a. B

THEOREM 8.9 For all ABF, any semantics S subsumed by complete semantics and any set E:

(1) if E is an S-extension of ABF then EAT is an S-extension of AT, where

EAT ¼ fArAT ajArABFs [ Eg;

(2) if E is an S-extension of AT then EABF is an S-extension of ABF, where

EABF ¼ fArABF ajArAT a [ Eg.

Proof As before, the proof for complete semantics suffices.

(1) Consider any complete extension E of ABF. It is first proven that any member of EAT is

defended by EAT . Since E is conflict-free, by construction of EAT and Proposition 8.8 also

EAT is conflict-free. Consider next any ArAT a [ EAT defeated by some BrAT b. By

construction of EAT , there exists an ArABF a [ E. Then by Propositions 8.8 and 8.8

there exists a BrABF b defeating ArABF a. But since E is a complete extension,

BrABF b is in turn defeated by some C rABFg [ E. Then by construction of EAT and

Proposition 8.8, also C rATg [ EAT and by Proposition 8.7, C rATg defeats BrAT b.

So ArAT a is defended by EAT .

Next, to prove that any argument defended by EAT is a member of EAT , assume ArAT a is

defended by EAT . Then any of its defeaters BrAT b is in turn defeated by an element

C rATg [ EAT . But then by Proposition 8.7, the same holds for their corresponding

ABF-arguments, which exist by Proposition 8.7. Moreover, by construction of EAT we

have that C rABFg [ E so, since E is a complete extension, also ArABF a [ E. But

then ArAT a [ EAT by construction of EAT and Proposition 8.8

(2) The proof of (2) is entirely similar and therefore omitted.

B

COROLLARY 8.10 For any ABF, any semantics S subsumed by complete semantics, and for any

formula w it holds that w is skeptically (credulously) S-acceptable in ABF if and only if w is

skeptically (credulously) S-acceptable in ATABF .

Proof Straightforward. B

124 H. Prakken


