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Abstract. We first develop an efficient algorithm to compute Deltas of interest rate derivatives for a number of standard market
models. The computational complexity of the algorithms is shown to be proportional to the number of rates times the number of
factors per step. We then show how to extend the method to efficiently compute Vegas in those market models.
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1. Introduction

Market models have become a standard tool for
pricing exotic interest rate derivatives (IRDs). The
most popular of these is the LIBOR market model
(LMM) also known as BGM, Brace et al. (1997).
In the LMM the underlying variables are market-
observable LIBORs with discrete tenors. By con-
struction, the model can reproduce the forward yield
curve perfectly and is able to justify the use of
Black’s formula for European IRDs. Thus calibration
of the LMM to the market prices of caplets is
automatic. Jamshidian (1997) introduced another class
of market models, namely, the (co-terminal) swap-
rate market model (ctSMM) where the underlying
variables are overlapping swap-rates with discrete
tenors. Consequently, drift computations and deriving
bond ratios in the SMM are computationally more
demanding than the LMM.

The greater simplicity of the LMM has resulted
in its receiving greater attention in both practice
and academia than SMMs. For a recent overview
of research in the LMM, see Brigo and Mercurio
(2006) or Brace (2008). One particular strand of
research is to investigate the computational complexity
of the model: how many operations are required to
evolve the model across one step and how many to
compute Greeks? Joshi (2003a) presented an algorithm

that efficently computes the drifts in the LMM with
complexity proportional to the number of rates (n)
times the number of factors driving the LMM (F )
per step. Since the other computational operations for
each step are straight-forward, this resulted in O(nF )
operations per step. Giles and Glasserman (2006)
developed an adjoint method that computes Deltas and
Vegas (sensitivities with respect to the underlying rates
and volatility parameters, respectively) with order
O(nF ) per step. Capriotti and Giles (2010) extended
the method to the calculation of correlation risk for
portfolio default options.

Less attention has been given to such questions
for SMMs. In fact, there are now many swap-rate
market models since one is not restricted to using
co-terminal rates. Galluccio et al. (2007) used graph
theory to identify three main classes of generic market
models, namely the co-terminal, co-initial and co-
sliding models, and they introduced a novel calibration
technique to allow simultaneous calibration to caplets
and swaption prices. This followed on from Galluccio
and Hunter (2004) where the co-initial SMM (ciSMM)
was investigated and an algorithm to compute the
drifts with order O(n2) per step was derived. Pietersz
and van Regenmortel (2005) studied constant maturity
SMM (cmSMM) and other generic market models.
They developed generic algorithms to evaluate drifts
for various market models. The order to compute drifts
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in the ctSMM is O(nF ), and the order to compute
drifts approximately in the cmSMM is O(nF ). In
addition, their method to derive bond ratios has
order O(n3).

Many exotic IRDs are written on swap-rates rather
than LIBORs. For example, the underlyings of a
Bermudan swaption are the co-terminal swap-rates and
the underlyings of a CMS spread option are two co-
initial swap-rates. Hence the need for different SMMs
is to price and hedge specific IRDs in a customized
and efficient way. Furthermore, Black’s formula for
European swaptions holds exactly in SMMs so that it
is more consistent to price exotic products written on
swap-rates in SMMs.

The fact that the rates overlap in the SMMs means
that the analysis is considerably more complicated
than for the LMM. However, progress has been
made. Joshi and Liesch (2007) introduced efficient
algorithms for implementing generic market models
with order O(nF ) per step for a wide class of market
models. Since the computational order of all the
operations for each step has been shown to beO(nF ),
it should be possible to apply the adjoint method as in
Giles and Glasserman (2006) to estimate Deltas and
Vegas with this order of computations per step. In the
case of the log-normal ctSMM, Joshi and Yang (2011a)
established that this was true for Deltas of European
and Bermudan products.

In this paper, we develop efficient algorithms
that compute both Deltas and Vegas in the three
displaced-diffusion (DD) SMMs: DDctSMM, DD-
cmSMM and DDciSMM. The reason for choosing
the DD versions is that these type of models are
able to generate implied volatility skews, which is a
prevalent observation in the IRD market. The essential
idea of our method is that we decompose the one-
step computation into a number of simpler vector
operations in each simulation path. Each of these can
be differentiated straightforwardly and then used for
multiplication of the adjoint. A slight modification of
the method of computing Deltas in generic market
models will compute market Vegas with order O(nF )
per step. The main advantage of our methodology is
that provided the product has a Lipschitz-continuous
pay-off function, we can compute its Deltas and Vegas
in a fast and efficient manner. We do not study
Gammas in this paper; however, it is clear that the
results in Joshi and Yang (in press b) could be adapted
to this case.

In section 2, we review the efficient implementation
of the displaced-diffusion SMMs. In section 3, we

briefly discuss the efficient adjoint method in Joshi
and Yang (in press a). We then show how to extend
the method to the DDcmSMM and the DDciSMM in
sections 4 and 5. In section 6, we show how to compute
Vegas in different swap-rate market models. Results of
numerical tests, together with analysis of the results,
are presented in section 7. We conclude in section 8.

2. Generic market models

2.1. Notations

The tenor structure is a finite set of dates

0 = T−1 < T0 < T1 < · · · < Tn−1 < Tn,

where {Ti}ni=0 are spaced by a set of real numbers
τi−1 = Ti − Ti−1, for all i. We let Pi(t) denote
the time-t price of the zero-coupon bond maturing at
time Ti. We let SRij(t) denote the time-t swap-rates
associated to times Ti, . . . , Tj , then it follows from
simple no-arbitrage conditions (see Joshi, 2003a,b)
that

SRij(t) =
Pi(t)− Pj(t)

Aij(t)
, (1)

where Aij(t) =
∑j
k=i+1 τk−1Pk(t) is the annuity of

SRij(t). In what follows, if no confusion arises we will
omit the dependence on time for notational purposes.

2.2. Model set-up

The n rates will be driven by F Brownian motions
and will be evolved to each of the tenor dates step
by step. We assume a piecewise constant volatility
structure and therefore assign a pseudo-square root,
A = {aik}, of the covariance matrix, C, for each
step to determine the evolution. We can therefore write
across each step

dSRij = µ
(N)
i dt+

(
SRij + αi

) F∑
k=1

aikdZk (2)

where µ
(N)
i is the drift of SRij under the measure

associated with the bond PN , {αi} is a set of
displaced-diffusion coefficients, and {Zk} is a vector
of independent Brownian motions. We note that this
formulation is general: if we take F = n, then any set
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of correlated Brownian motions can be decomposed
as a linear combination of such independent Brownian
motions.

2.2.1. The cross variation derivative
Definition 2.1. The cross variation derivative for two
Itô processes

dXt = µX
(
Xt, Yt, t

)
dt+ σX

(
Xt, Yt, t

)
dWX

t ,

dYt = µY
(
Xt, Yt, t

)
dt+ σY

(
Xt, Yt, t

)
dWY

t

is defined to be the coefficient of dt in dXtdYt. If
dWX

t dWY
t = ρdt then〈

Xt, Yt
〉

= ρσX
(
Xt, Yt, t

)
σY
(
Xt, Yt, t

)
. (3)

We give a summary of the main properties of the
cross variation derivative: for Itô processes Xt, Yt and
Zt,

1. (Linearity)
〈
Xt, Yt+Zt

〉
=
〈
Xt, Yt

〉
+
〈
Xt, Zt

〉
;

2. (Product rule)
〈
Xt, YtZt

〉
= Zt

〈
Xt, Yt

〉
+

Yt
〈
Xt, Zt

〉
;

3. (Quotient rule)
〈
Xt, Y

−1
t

〉
= −Y 2

t

〈
Xt, Yt

〉
.

For detailed discussion of the cross variation
derivative, we refer the reader to Joshi and Liesch
(2007).

2.2.2. General drift formulae
Proposition 2.1. The general formula for the state-
dependent drifts in the stochastic differential equation
(2) is

µ
(N)
i = −SRij + αi

Aij

F∑
k=1

aik

〈
Zk, Aij

〉
, (4)

where Aij = Aij/PN is the deflated annuity price.

Proof. The drifts of the rates are determined by no-
arbitrage considerations to ensure that the ratio of
every bond price to the numeraire bond PN is a
martingale. Since SRijAij , Aij are tradables, then
SRijAij and Aij are martingales under the measure
associated with bond PN . Therefore the dt term in the
following stochastic differential equation

d
(

SRijAij

)
= AijdSRij + SRijdAij +

〈
SRij , Aij

〉
dt

=
(
µ

(N)
i Aij +

〈
SRij , Aij

〉)
dt

+ AijSRij

F∑
k=1

ai,kdZk + SRijdAij

is equal to zero, then it follows that

µ
(N)
i = − 1

Aij

〈
SRij , Aij

〉

= −SRij + αi

Aij

F∑
k=1

aik

〈
Zk, Aij

〉
. (5)

2.3. Derivatives pricing

An IRD will pay a stream of cashflows until the
product terminates, cancels or is triggered. Each cash-
flow may be a function of the entire yield curve at
the time it occurs and/or previous times. In practical
terms, this means that each cash-flow is a function
of the swap-rates underlying the market model and
this function may also incorporate information from
previous times.

For simplicity, we shall concentrate on the case
where there is a single cash-flow which is a function,
f , of the prevailing rates at the maturity of the IRD.
However, if a product pays a stream of cash-flows,
then these cash-flows will be aggregated along each
path of the simulation. We make the (very mild)
assumption that the cash-flow can be computed as a
function of the yield curve at the time is determined
with order n computations.

2.4. Co-terminal swap-rate market model

The DDctSMM is characterized by the set of swap-
rates

SRin =
P i − 1
Ain

, i = 0, 1, . . . , n− 1, (6)

where P i = Pi/Pn, and Ain = Ain/Pn.

2.4.1. Bond and annuity ratios
Joshi and Liesch (2007) developed the following

algorithm to compute annuity ratios:

Ain = Ai+1,n + τiP i+1 (7)

where the bond ratios are given by

P i = 1 + SRinAin. (8)
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2.4.2. Recursive formula for the cross variation
derivatives

Proposition 2.2. The cross variation derivatives for
the co-terminal swap-rates in (5) are given by〈
Zk, Ain

〉
= τiai+1,k

(
SRi+1,n + αi+1

)
Ai+1,n

+ (1 + τiSRi+1,n)
〈
Zk, Ai+1,n

〉
(9)

under the terminal bond measure.

Proof. From (7) and the linearity property of cross
variation derivatives:〈

Zk, Ain

〉
=
〈
Zk, Ai+1,n

〉
+ τi

〈
Zk, P i+1

〉
.

(10)

From (8) and the product rule of cross variation
derivatives, the second term on the right hand side of
(10) is given by〈
Zk, P i+1

〉
= ai+1,k

(
SRi+1,n + αi+1

)
Ai+1,n

+
〈
Zk, Ai+1,n

〉
SRi+1,n. (11)

Substituting (11) into (10) gives the result.

2.5. Constant maturity swap-rate market model

The DDcmSMM is characterized by the set of swap-
rates

SRi,i+r =
P i − P i+r
Ai,i+r

, i = 0, 1, . . . , n−1, (12)

where r is a fixed integer number, P i = Pi/Pn, and
Ai,i+r = Ai,i+r/Pn. For notational simplicity, we
write SRi,i+r as SRr

i and Ai,i+r as A
r

i . We make the
convention that if i + r ≥ n then we set i + r = n,
thus the last r rates will be the co-terminal swap-rates.
If we set r = 1 then the cmSMM becomes the LMM,
and if we set r = n then the cmSMM becomes the
ctSMM.

2.5.1. Bond and annuity ratios
Joshi and Liesch (2007) developed the following

algorithm to compute annuity ratios:

A
r

i =

{
A
r

i+1 + τiP i+1 for i ≥ n− r,
A
r

i+1 + τiP i+1 − τi+rP i+r+1 for i < n− r,
(13)

where the bond ratios are given by

P i =

{
1 + SRr

iA
r

i for i ≥ n− r,
P i+r + SRr

iA
r

i for i < n− r.
(14)

2.5.2. Recursive formula for the cross variation
derivatives

Proposition 2.3. The cross variation derivatives for
the constant-maturity swap-rates in (5) are given by〈

Zk, A
r

i

〉
= τiai+1,k

(
SRr

i+1 + αi+1

)
A
r

i+1

+ (1 + τiSRr
i+1)

〈
Zk, A

r

i+1

〉
+ (τi − τi+r)

〈
Zk, P i+r+1

〉
(15)

with 〈
Zk, P i

〉
=
〈
Zk, P i+r

〉
+ aik

(
SRr

i + αi
)
A
r

i

+ SRr
i

〈
Zk, A

r

i

〉
(16)

under the terminal bond measure.

Proof. We note that we can use (9) to compute the
cross variation derivatives for the last r swap-rates.
Now, from (13) and the linearity property of cross
variation derivatives:〈

Zk, A
r

i

〉
=
〈
Zk, A

r

i+1

〉
+ τi

〈
Zk, P i+1

〉
− τi+r

〈
Zk, P i+r+1

〉
. (17)

From (14), the linearity property and the product rule
for cross variation derivatives:〈

Zk, P i+1

〉
=
〈
Zk, P i+r+1

〉
+ ai+1,k

(
SRr

i+1 + αi+1

)
A
r

i+1

+
〈
Zk, A

r

i+1

〉
SRr

i+1. (18)

Substituting (18) into (17) gives the result.
If τi = τ , for i = 0, 1, . . . , n − 1, then we can see

that the final term in (15) will become zero so that the
recursive formula can be simplified to〈

Zk, A
r

i

〉
= τai+1,k

(
SRr

i+1 + αi+1

)
A
r

i+1

+ (1 + τSRr
i+1)

〈
Zk, A

r

i+1

〉
, (19)
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which is the same as the recursive formula (7) in the
DDctSMM.

2.6. Co-initial swap-rate market model

The DDciSMM is characterized by the set of swap-
rates

SR0i =
1− P i
A0i

, i = 1, 2, . . . , n, (20)

where P i = Pi/P0 and A0i = A0i/P0.

2.6.1. Bond and annuity ratios
Joshi and Liesch (2007) developed the following

algorithm to compute annuity ratios:

A0i = A0,i−1 + τi−1P i (21)

where the bond ratios are given by

P i =
1− SR0iA0,i−1

1 + τi−1SR0i
. (22)

2.6.2. Recursive formula for the cross variation
derivatives

Proposition 2.4. The cross variation derivatives for
the co-initial swap-rates in (5) are given by

〈
Zk, A0i

〉
=

〈
Zk, A0,i−1

〉
− aikτi−1

(
SRi + αi

)
A0i

1 + τi−1SR0i

(23)

under the spot measure.

Proof. From (21) and the linearity property of cross
variation derivatives:〈

Zk, A0i

〉
=
〈
Zk, A0,i−1

〉
+ τi−1

〈
Zk, P i

〉
. (24)

From (22) and the product rule of cross variation
derivatives, the second term on the right hand side of
(24) is given by

〈
Zk, P i

〉
= −

[
aik
(
SRi+αi

)
A0i+SR0i

〈
Zk, A0i

〉]
.

(25)

Substituting (25) into (24) gives the result.

3. Delta estimation in swap-rate market models

3.1. Set-up

Assume that the market model has n underlying
rates with the tenor structure {Tj}nj=0, and each rate is
driven by F factors. We denote the pseudo-root square
root matrix over the period [Tj−1, Tj ] by A(Tj) =
{aik(Tj−1)}.

3.1.1. Numerical scheme
To evolve the swap-rates step by step (i.e., from

Tj−1 to Tj), we use the simple log-Euler scheme: for
i = j, j + 1, . . . , n− 1, we set

SRi

(
Tj
)

=
(

SRi

(
Tj−1

)
+ αi

)
exp
(
µ

(N)
i

(
SR(Tj−1)

)
− Cii(Tj−1)

2
+

F∑
k=1

aik(Tj−1)Zk

)
− αi,

(26)

where Cii =
∑F
k=1 a

2
ik, {Zk} is a sequence of

independent normal variates and the discretized drift

µ
(N)
i

(
SR(Tj−1)

)
= − 1

Aij
(
Tj−1

) F∑
k=1

aik
(
Tj−1

)〈
Zk, Aij

(
Tj−1

)〉
.,

(27)

depends on all the alive rates at time Tj−1 under the
bond measure PN .

3.1.2. Deflated pay-off and deltas
Let f(Tm) denote the pay-off of an IRD maturing at

time Tm, m ≤ n. The discounted pay-off is given by

g = PN (0)
f(Tm)
PN (Tm)

. (28)

It is trivial to cope with multiple cash-flows (i.e., path-
dependent IRDs with early exercise features) in this
setting, we simply rewrite (28) as

g = PN (0)
M∑
m=0

f(Tm)
PN (Tm)

. (29)

However, we shall concentrate on computing Greeks
of IRDs with a single cash-flow in this section.
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The vector of Deltas (gradient vector) of the IRD is
given by

∆ =
∂E
(
g
)

∂SR(0)
=
∂PN (0)
∂SR(0)

E
(
f(Tm)

)
+ PN (0)

∂

∂SR(0)
E
(
f(Tm)

)
, (30)

where f(Tm) = f(Tm)/PN (Tm). If f is assumed
to be Lipschitz-continuous, then the differentiation
operator and the expectation operator in (30) can be
interchanged

∆ =
∂PN (0)
∂SR(0)

E
(
f(Tm)

)
+ PN (0)E

(
∂f(Tm)
∂SR(0)

)
,

(31)

The first gradient vector in (31) is easy to compute,
and we will compute the second gradient vector using
the adjoint method on a pathwise basis in a Monte
Carlo simulation.

3.2. General pathwise adjoint method

We will consider the following mappings in the
adjoint method:

SR(0) F0−−→ SR(T0) F1−−→ · · · Fm−−→ SR(Tm)

F−→ f(Tm), (32)

where Fi and F are vector functions, then it follows
from the chain rule that

∂f(Tm)
∂SR(0)

= F′F′mF′m−1 · · ·F′0, (33)

where F′i are Jacobian matrices and F is a gradient
vector. Now, if we define an adjoint relation as follows{

V(Tm) = F′F′m,
V(Tk−1) = V(Tk)F′k−1,

(34)

then the gradient vector (33) is equal to V(0). The
elements of the adjoints V(Tk−1) can be computed
from V(Tk) via

Vi(Tk−1) = Vi(Tk)
SRi(Tk)

SRi(Tk−1)

+
∑
j≥i

Vj(Tk)SRj(Tk)
∂µ

(N)
j

(
SR(Tk−1)

)
∂SRi(Tk−1)

.

If we proceed naïvely, the computational complex-
ity of the adjoint method will be O(n2) per step since
we are multiplying a vector, V(Tk), by a Jacobian
matrix, F′k. However, it is possible to reduce the
complexity to O(nF ) per step. Consequently, if n is
large and F is small, the reduction in order will result
in substantial time-savings.

3.3. Efficient adjoint method

Joshi and Yang (2011a) decomposed the vector
functions in (32), Fk, into a number of sub-mappings,
Fk,i, to an extent such that all vector operations consist
of simple functions and the corresponding Jacobian
matrices become sparse matrices. We then identify the
non-zero elements of the Jacobian matrices F′k,i, and
only carry out the multiplications of the corresponding
non-zero entries in the operation

v = wF′k,i.

Thus the computational order of the adjoint relations
in (34) can be reduced to O(nF ) per step.

In this paper, we consider the following sub-
mappings for the various market models:

SR(Tk−1)
Fk,0−−−→

[
SR(Tk−1)
A(Tk−1)

]
Fk,1−−−→

[
SR(Tk−1)
µ(N)(Tk−1)

]
Fk,2−−−→ SR(Tk), (35)

where the sub-mappings satisfy

Fk = Fk,0 ◦ Fk,1 ◦ Fk,2, k = 0, 1, . . . ,m.

Therefore the adjoint relation in (34) is equivalent to

V(Tk−1) = V(Tk)F′k,2F
′
k,1F

′
k,0, k = 0, 1, . . . ,m.

(36)

We illustrate how to implement the efficient adjoint
method in the DDcmSMM and the DDciSMM in the
following two sections.

4. Delta estimation in the constant maturity
swap-rate market model

Proposition 4.1. In the DDcmSMM, the adjoint oper-
ation (36) can be implemented with a computational
order of O(nF ) per step.
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Proof. For concreteness and readability, we will only
show the computational order of the operations

V(0) = V(T0)F′0,2F
′
0,1F

′
0,0 = V(T0)F′0. (37)

i.e. the adjoint operations for the first step. The adjoint
operations when k = 1, . . . ,m, are essentially the
same: the only real difference is that certain rates
will have fixed and therefore will have zero volatility
during these steps. We show the detailed proofs in the
following sub-sections.

4.1. Computational order of wF′0,0

We divide the mapping

SR(0)
F0,0−−−→

[
SR(0)
A(0)

]
into the following sub-mappings

SR(0)
G0,0−−−→

 SR(0)
A
r

n−1(0){
P(0)

}n
i=n

 G0,1−−−→

 SR(0)
A
r

n−1(0){
P(0)

}n
i=n−1


G0,2−−−→

 SR(0)
A
r

n−2(0){
P(0)

}n
i=n−1

 G0,3−−−→

 SR(0)
A
r

n−2(0){
P(0)

}n
i=n−2


G0,4−−−→

 SR(0)
A
r

n−3(0){
P(0)

}n
i=n−2

 · · · G0,2n−2−−−−−→

 SR(0)
A
r

0(0){
P(0)

}n
i=1


G0,2n−1−−−−−→

[
SR(0)
P(0)

]
G0−−→

[
SR(0)
A(0)

]
(38)

The even-numbered mappings G0,j update the
annuity ratios using the given set of inputs, and the
odd-numbered mappings G0,j computes a new bond
ratio using the given set of inputs.

4.1.1. Jacobian matrix of G0,j where j is even
From (13), we can see thatA

r

i , when i ≥ n−r, only
depends on A

r

i+1 and P i+1, then{
∂A

r
i

∂A
r
i+1

= 1, ∂A
r
i

∂P i+1
= τi. (39)

The Jacobian matrix G′0,j has 1s on the diagonal,
one entry equal to τ on the last column, and 0s
elsewhere. Therefore the operation v = wG′0,j has
one computation.

From (13), we can see that A
r

i , when i < n − r,
depends on A

r

i+1, P i+1 and P i+r+1, then
∂A

r
i

∂A
r
i+1

= 1,

∂A
r
i

∂P i+1
= τi,

∂A
r
i

∂P i+r+1
= −τi+r.

(40)

The Jacobian matrix G′0,j has 1s on the diagonal, one
entry equal to τ on the last column, one entry equal
to −τ and 0s elsewhere. Therefore the operation v =
wG′0,j has two computations.

4.1.2. Jacobian matrix of G0,j where j is odd
From (14), we can see that P i when i ≥ n− r only

depends on A
r

i and SRr
i , then

∂P i

∂A
r
i

= SRr
i ,

∂P i

∂SRr
i

= A
r

i .
(41)

The Jacobian matrix G′0,j has 1s on the diagonal, two
entries equal to SRi and αi on the last row. Therefore
the operation v = wG′0,j has two computations.

From (14), we can see that P i when i < n− r only
depends on A

r

i , P i+r and SRr
i , then

∂P i

∂A
r
i

= SRr
i ,

∂P i

∂P i+r
= 1,

∂P i

∂SRr
i

= A
r

i .

(42)

The Jacobian matrix G′0,j has 1s on the diagonal,
three entries equal to SRr

i , 1 and A
r

i on the last
row. Therefore the operation v = wG′0,j has three
computations.

4.1.3. Jacobian matrix of G0

For i ≥ n− r,

∂A
r

i

∂P j
= τj−1, j > i.

However, for i < n− r,

∂A
r

i

∂P j
= τj−1, i+ r ≥ j > i.

Fortunately, the order of the operation v = wG′0 can
be reduced to O(n). We define a sum variable, and
carry out the following algorithm:

• Set vj = wj for j = 0, . . . , n− 1.
• Set sum equal to τ0wn in loop 0.
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• Set sum = sum + τjwn+j in loop j for j =
1, . . . , r − 1.
• Set sum = sum+ τj(wn+j −wn+j−r) in loop
j for j = r, . . . , n− 1.

If we add the updated sum to v2n−j in the jth loop,
then we have executed the operation v = wG′0.
Hence, the order of the operation is O(n).

4.1.4. Total computational order
Since the number of sub-mappings G0,j depends on

n, the computational order of the operation

v = wG′0,2n−1G
′
0,2n−2 · · ·G′0,1

is O(n) since each operation has a constant compu-
tational order. We ignore the Jacobian matrix G′0,0 as
A
r

n−1 is a constant so that G′0,0 is equivalent to an
identity matrix. Hence the operation v = wF′0,0 has
order O(n).

4.2. Computational order of wF′0,1

We divide the mapping[
SR(0)
A(0)

]
F0,1−−−→

[
SR(0)
µ(n)(0)

]
into the following sub-mappings

[
SR(0)
A(0)

]
H0,0−−−→

 SR(0)
A(0){

〈Zk, P
r

i 〉
}n−1

i=n−1



H0,1−−−→


SR(0)
A(0){

〈Zk, P
r

i 〉
}n−1

i=n−1{
〈Zk, A

r

i 〉
}n−2

i=n−2



H0,2−−−→


SR(0)
A(0){

〈Zk, P
r

i 〉
}n−1

i=n−2{
〈Zk, A

r

i 〉
}n−2

i=n−2



H0,3−−−→


SR(0)
A(0){

〈Zk, P
r

i 〉
}n−1

i=n−2{
〈Zk, A

r

i 〉
}n−3

i=n−2



· · ·
H0,2(n−2)+1−−−−−−−−→


SR(0)
A(0){

〈Zk, P
r

i 〉
}n−1

i=1{
〈Zk, A

r

i 〉
}n−2

i=0

 H0−−→
[
SR(0)
µ(n)(0)

]

(43)

The even-numbered mappings H0,j update the cross
variation derivatives 〈Zk, P

r

i 〉, and the odd-numbered
mappings H0,j update the cross variation derivatives
〈Zk, A

r

i 〉.

4.2.1. Jacobian matrix of H0,j where j is even
From (18), we have the following non-zero partial

derivatives: for j ≥ n− r
∂

∂SRr
j
〈Zk, P j〉 = ajkA

r

j + 〈Zk, A
r

j〉,
∂
∂A

r
j

〈Zk, P j〉 = ajk(SRr
j + αj),

∂
∂〈Zk,A

r
j 〉
〈Zk, P j〉 = SRr

j .

(44)

For j ≤ n − r, we have an extra partial derivative in
addition to the three in (44):

∂〈Zk, P j〉
∂〈Zk, P j+r〉

= 1. (45)

4.2.2. Jacobian matrix of H0,j where j is odd
From (15), we have the following non-zero partial

derivatives: for j ≥ n− r


∂

∂SRr
j+1
〈Zk, A

r

j〉 = τj
[
aj+1,kA

r

j+1 + 〈Zk, A
r

j+1〉
]
,

∂
∂A

r
j+1
〈Zk, A

r

j〉 = τjaj+1,kSRr
j+1,

∂
∂〈Zk,A

r
j+1〉
〈Zk, A

r

j〉 = 1 + τjSRr
j+1.

(46)

For j ≤ n − r, we have an extra partial derivative in
addition to the three in (46):

∂〈Zk, A
r

j〉
∂〈Zk, P j+r+1〉

= τj − τj+r. (47)

Therefore H′0,j has 1s on the diagonals, and either 3 or
4 entries on each of the last F rows. Therefore each of
the operations

v = wH′0,j , j = 0, 1, . . . , 2(n−2), 2(n−2)+1,

has computational order of O(F ).
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4.2.3. Jacobian matrix of H0

The drifts of the constant maturity swap-rates under
the Euler scheme are given by

µ
(n)
j = − 1

A
r

j

F∑
k=1

ajk

〈
Zk, A

r

j

〉
. (48)

We can see that each µ
(n)
j depends on A

r

j and〈
Zk, A

r

j

〉
, then
∂
∂Ar

j
µ

(n)
j = − 1

A
r
j

µ
(n)
j ,

∂
∂〈Zk,A

r
j 〉
µ

(n)
j = − 1

A
r
j

ajk,
(49)

for j = 0, . . . , n − 2 and k = 1, . . . , F . The Jacobian
matrix H′0 has n − 1 partial derivatives equal to
∂µ

(n)
j /∂Arj , and (n− 1)F partial derivatives equal to

∂µ
(n)
j /∂

〈
Zk, A

r

j

〉
. Therefore the operation v = wH ′0

has order O(nF ).

4.2.4. Total computational order
The number of mappings H0,j whose order is

constant, j > 0, depends on n. Therefore the order of
the operation

v = wH′0H
′
0,2(n−2)+1 · · ·H

′
0,0 = wF′0,1

is O(nF ).

4.3. Computational order of wF′0,2

We use the following Euler scheme to simulate
constant-maturity swap-rates

SRr
j(T0) =

(
SRr

j(0) + αj
)

exp
[
µ

(n)
j − 1

2

F∑
k=1

a2
jk

+
F∑
k=1

ajkZk

]
− αj , (50)

where µ(n)
j is given in (48). It follows that the non-

zero partial derivatives of F′0,2 are


∂SRr

j (T0)

∂SRr
j (0) = SRr

j (T0)+αj

SRr
j (0)+αj

, j = 0, . . . , n− 1.

∂SRr
j (T0)

∂µ
(n)
j

= SRr
j(T0) + αj , j = 0, . . . , n− 2.

(51)

Thus, F′0,3 has the general form
×× ×

. . . . . .
×× ×
×× 0

 ,
where ×× = (SRr

j(T0) + αj)/(SRr
j(0) + αj), × =

SRr
j(T0) + αj and the blanks are zero. Note that the

0 indicates that the swap-rate SRr
n−1 is driftless under

the terminal measure. The Jacobian matrix F′0,3 has
2n − 1 non-zero entries. Hence the operation v =
wF′0,3 has 2n − 1 computations so that its order is
O(n).

4.4. Computational order of wF′

Similar to the case of ctSMM in Joshi and Yang
(in press a): the gradient F′ can be computed in order
O(n). We divide the mapping F in (32) into the
following sub-mappings:

SR(Tm) I0−→
[
SR(Tm)
A(Tm)

]
I1−→ f(Tm). (52)

We have shown in section 4.1 that the operations v =
wI′0 has order O(n). The computation of the gradient
I′1 isO(n) (by assumption), so the order of computing
F′ is O(n).

4.5. Summary

We have shown that the computational order of
wF′0,i is either O(n) or O(nF ). Hence the total
computational order of

V(0) = V(T0)F′0,2F
′
0,1F

′
0,0 = V(T0)F′0

is O(nF ). Since the computational order of wF′k,i
is similar to that of wF′0,i, we have shown that the
operation

V(Tk−1) = V(Tk)F′k,2F
′
k,1F

′
k,0 = V(Tk)F′k

is O(nF ) for each step.

4.6. Delta computation in co-terminal swap-rate and
LIBOR market models

Since the ctSMM (r = n) and the LMM (r = 1)
are special cases of the cmSMM. Delta computations
in these two market models have computational order
equal to O(nF ) per step.
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5. Delta estimation in the co-initial swap-rate
market model

Proposition 5.1. In the DDciSMM, the adjoint oper-
ation (36) can be implemented with a computational
order of O(nF ) per step.

Proof. In the one-period DDciSMM, we will consider
the following mappings

SR(0)
F0,0−−−→

[
SR(0)
A(0)

]
F0,1−−−→

[
SR(0)
µ(0)(0)

]
F0,2−−−→ SR(T0)

F1,0−−−→
[
SR(T0)
A(T0)

]
F−→ f(T0). (53)

We will prove in the following sub-sections that the
computational order of the following operation

V(0) = F′F′1,0F
′
0,2F

′
0,1F

′
0,0 (54)

is O(nF ).

5.1. Computational order of wF′0,0

We divide the mapping

SR(0)
F0,0−−−→

[
SR(0)
A(0)

]
into the following sub-mappings

SR(0)
G0,0−−−→

[
SR(0)
P 1(0)

]
G0,1−−−→

 SR(0)
P 1(0){

A0i(0)
}1

i=1


G0,2−−−→

 SR(0)
P 2(0){

A0i(0)
}1

i=1

 G0,3−−−→

 SR(0)
P 2(0){

A0i(0)
}2

i=1



· · · G0,2n−2−−−−−→

 SR(0)
Pn(0){

A0i(0)
}n−1

i=1

 G0,2n−1−−−−−→
[
SR(0)
A(0)

]
(55)

The even-numbered mappings G0,j update a bond
ratio using the given set of inputs, and the odd-
numbered mappings G0,j computes a new annuity
ratio using the given set of inputs.

5.1.1. Jacobian matrix of G0,j where j is even
From (22), we can see that P i depends on Ai−1 and

SR0,i, then
∂P i

∂A0,i−1
= − A0,i−1+τi−1

(1+τi−1SR0i)2
,

∂P i

∂SR0i
= SR0i

1+τi−1SR0i
.

(56)

The existence of two non-zero partial derivatives
implies that the operation v = wG′0,j has two
computations.

5.1.2. Jacobian matrix of G0,j where j is odd
From (21), we can see that A0i only depends on

A0,i−1 and P i, then
∂A0i

∂A0,i−1
= 1,

∂A0i

∂P i
= τi−1.

(57)

Then the Jacobian matrix G′0,j has 1s on the diagonal,
one entry equal to τ on the last row. Therefore the
operation v = wG′0,j has one computation.

5.1.3. Total computational order
Similar to the case of DDcmSMM: The number of

sub-mappings G0,j depends on n, thus the computa-
tional order of the operation

v = wG′0,2n−1G
′
0,2n−2 · · ·G′0,0 = wF′0,0

is O(n) since each operation has a constant computa-
tional order.

5.2. Computational order of wF′0,1

We divide the mapping[
SR(0)
A(0)

]
F0,1−−−→

[
SR(0)
µ(0)(0)

]
into the following sub-mappings

[
SR(0)
A(0)

]
H0,0−−−→

 SR(0)
A(0){

〈Zk, Ai〉
}1

i=1


H0,1−−−→

 SR(0)
A(0){

〈Zk, Ai〉
}2

i=1



· · · H0,n−1−−−−−→

 SR(0)
A(0){

〈Zk, Ai〉
}n
i=1

 H0−−→
[
SR(0)
µ(0)(0)

]
(58)

In contrast to the DDcmSMM where we only need
to compute (n − 1)F cross variation derivatives, we
need to compute nF cross variation derivatives in the
DDciSMM since all rates have a drift term under the
spot measure.
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5.2.1. Jacobian matrix of H0,j

From (23), we can see that
〈
Zk, A0j

〉
depend on

SR0j , A0j and
〈
Zk, A0,j−1

〉
, then the non-zero partial

derivatives are:
∂

∂SR0j

〈
Zk, A0j

〉
= − τj−1[〈Zk,A0j〉+ajkA0j ]

1+τj−1SR0j
,

∂
∂A0j

〈
Zk, A0j

〉
= − τj−1(SR0j+αj)ajk

1+τj−1SR0j
,

∂
∂〈Zk,A0,j−1〉

〈
Zk, A0j

〉
= 1

1+τj−1SR0j
,

(59)

for k = 1, . . . , F . Therefore H′0,j has 1s on the
diagonals, and 3 entries equal to the above partial
derivatives on each of the last F rows. Therefore each
of the operations

v = wH′0,j , j = 0, 1, . . . , n− 1

has 3F computations.

5.2.2. Jacobian matrix of H0

The drifts of SR0j under the Euler are given by

µ
(0)
j = − 1

A0j

F∑
k=1

ajk
〈
Zk, A0j

〉
. (60)

We can see that each µ
(0)
j depends on A0j and〈

Zk, A0j

〉
, then ∂

∂A0j
µ

(0)
j = −µ

(0)
j

A0j
,

∂
∂〈Zk,A0j〉

µ
(0)
j = − ajk

A0j
,

(61)

for j = 1, . . . , n and k = 1, . . . , F . H′0 has n partial
derivatives equal to ∂µ

(0)
j /∂A0j , and nF partial

derivatives equal to ∂µ(0)
j /∂

〈
Zk, A0j

〉
. Therefore the

operation v = wH ′0 has order O(nF ).

5.2.3. Total computational order
The number of mappings H0,j whose order is

constant depends on n, therefore the order of

v = wH′0H
′
0,n−1 · · ·H′0,0 = wF′0,2

is O(nF ).

5.3. Computational order of wF′0,2

We have the following Euler scheme to simulate co-
initial swap-rates

SR0j(T0) =
(
SR0j(0) + αj

)
exp

[
µ

(0)
j −

1
2

F∑
k=1

a2
jk

+
F∑
k=1

aj,kZk

]
− αj , (62)

where µ(0)
j is given in (60). It follows that the non-

zero partial derivatives of F′0,2 are
∂SR0j(T0)
∂SR0j(0)

= SR0j(T0)+αj

SR0j(0)+αj
,

∂SR0j(T0)

∂µ
(0)
j

= SR0j(T0) + αj ,
(63)

for j = 1, . . . , n. Thus, the Jacobian matrix F′0,3 has
the general form×× ×

. . . . . .
×× ×

 ,
where ×× = ∂SR0j(T0)/∂SR0j(0), × =
∂SR0j(T0)/∂µ(0)

j and the blanks are zero. The
Jacobian matrix F′0,3 has 2n non-zero entries. Hence
the operation v = wF′0,3 has 2n computations so that
its order is O(n).

5.4. Computational order of wF′

We divide the mapping F in (53) into the following
sub-mappings:

SR(T0) I0−→
[
SR(T0)
A(T0)

]
I1−→ f(T0). (64)

We have shown in sections 5.1 that the operation v =
wI′0 has order O(n). The computation of the gradient
I′1 is trivial (by assumption). Therefore, the order of
computing F′ is O(n).

6. Vega estimation

6.1. Model elementary vegas

Assume that the set of swap-rates at time Tr is given
by a vector function with the following inputs: the
rates at time Tr−1, the set of pseudo-root elements
{aik(Tr−1)} over the step (Tr−1, Tr), and a set of
random variates Z

SR(Tr) = Fr
(
SR(Tr−1),

{
aik
(
Tr−1

)}
,Z
)
, (65)

as seen from equation (26).
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Definition 6.1. We define the model elementary Vegas
of an IRD with discounted price g to be the following
partial derivatives

∂g

∂aik(Tr−1)
= PN (0)

∂f(Tm)
∂aik(Tr−1)

,

for i = 0, . . . , n− 1, k = 1, . . . , F and r = 0, . . . , m.

6.1.1. Adjoint method
From (65) and using the chain rule,

∂f(Tm)
∂aik(Tr−1)

=
∂f(Tm)
∂SR(Tm)

∂SR(Tm)
∂SR(Tm−1)

· · · ∂SR(Tr+1)
∂SR(Tr)

∂SR(Tr)
∂aik(Tr−1)

= V(Tr)
∂Fr

∂aik(Tr−1)
, (66)

where V(Tr) is the adjoint vector defined in (34). In
order to compute model elementary Vegas, we only
need to compute the gradient ∂Fr/∂aik(Tr−1) since
the adjoint vectors have already been computed in
the Delta calculations. From (26), the ith entry of the
gradient ∂Fr/∂aik(Tr−1) is given by

∂SRi(Tr)
∂aik(Tr−1)

=
(
SRi(Tr) + αi

)[ ∂µ
(N)
i

∂aik(Tr−1)

+
(
Zk − aik(Tr−1)

)
δij

]
, (67)

where δij is Kronecker’s delta. Similar to the compu-
tation of Deltas, there is no closed-form solutions for
(67) due to the complicated form of the drifts.

6.1.2. Sub-mappings
However, if we modify the mappings in (35) to{aik(Tr−1)}
SR(Tr−1)
A(Tr−1)

 Jr,1−−→

{aik(Tr−1)}
SR(Tr−1)
µ(N)(Tr−1)

 Jr,2−−→ SR(Tr),

(68)

then the first nF entries of the vector, V(Tr)J′r,2J
′
r,1,

will be equal to

V(Tr)
∂Fr

∂aik(Tr−1)
,

for j = 0, . . . , n− 1 and k = 1, . . . , F . If each of the
vector multiplications has orderO(nF ), then the order
to compute model elementary Vegas will be O(nF )

per step. We show how to carry out efficient Vega
computations in the DDcmSMM and the DDciSMM
in the following sub-sections.

6.2. Adjoint method in the DDcmSMM

For concreteness and readability, we will only show
the computational order of the operations

V(T0)J′0,2J
′
0,1. (69)

i.e. the adjoint operations for the first step. We omit the
superscript 0 in a0

jk as it causes no confusion.

6.2.1. Computational order of wJ′0,1
We divide the mapping {ajk}SR(0)

A(0)

 J0,1−−→

 {ajk}SR(0)
µ(n)(0)


into the following sub-mappings

 {ajk}SR(0)
A(0)

 K0,0−−−→


{ajk}
SR(0)
A(0){

〈Zk, P
r

i 〉
}n−1

i=n−1



K0,1−−−→


{ajk}
SR(0)
A(0){

〈Zk, P
r

i 〉
}n−1

i=n−1{
〈Zk, A

r

i 〉
}n−2

i=n−2



K0,2−−−→


{ajk}
SR(0)
A(0){

〈Zk, P
r

i 〉
}n−1

i=n−2{
〈Zk, A

r

i 〉
}n−2

i=n−2



K0,3−−−→


{ajk}
SR(0)
A(0){

〈Zk, P
r

i 〉
}n−1

i=n−2{
〈Zk, A

r

i 〉
}n−2

i=n−3



· · ·
K0,2(n−2)+1−−−−−−−−→


{ajk}
SR(0)
A(0){

〈Zk, P
r

i 〉
}n−1

i=1{
〈Zk, A

r

i 〉
}n−2

i=0


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K0−−→

 {ajk}SR(0)
µ(n)(0)

 (70)

The Jacobian matrices K0,i and K0 have similar
structures to the Jacobian matrices H0,i and H0 as in
(43):

1. In addition to the non-zero partial derivatives in
section 4.2.1, K0,j when j is even has an extra
partial derivative with respect to ajk equal to

∂

∂ajk

〈
Zk, P j

〉
=
(
SRr

j + αj
)
A
r

j . (71)

2. In addition to the non-zero partial derivatives in
section 4.2.2, K0,j when j is odd has an extra
partial derivative with respect to ajk equal to

∂

∂ajk

〈
Zk, A

r

j

〉
= τj

(
SRr

j+1 + αj+1

)
A
r

j+1.

(72)

3. In addition to the non-zero partial derivatives in
section 4.2.3, K0 has an extra partial derivative
with respect to ajk equal to

∂

∂ajk
µ

(n)
j = − 1

A
r

j

〈
Zk, A

r

j

〉
. (73)

The number of mappings K0,j depends on n, and each
operation v = wK ′0,j , j = 0, . . . , 2(n − 2) + 1, has
a constant order. Similar to the Delta computations,
the operation v = wK ′0 has order O(nF ). Hence, the
order of the operation

v = wK′0K
′
0,2(n−2)+1 · · ·K

′
0,0 = wJ′0,1

is O(nF ).

6.2.2. Computational order of wJ′0,2
We use (50) to evolve the constant maturity swap-

rates. The non-zero partial derivatives of J′0,2 are

∂SRr
j (T0)

∂ajk
=
[
SRr

j(T0) + αj
](
Zk − ajk

)
,

∂SRr
j (T0)

∂SRr
j (0) = SRr

j (T0)+αj

SRr
j (0)+αj

,

∂SRr
j (T0)

∂µ
(n)
j

= SRr
j(T0) + αj ,

(74)

for j = 0, . . . , n − 1 and k = 1, . . . , F . Hence the
operation v = wJ′0,2 has 2n − 1 + nF computations
so that its order is O(nF ).

6.2.3. Total computational order
Given that the computational orders of

v = wJ′0,1 and v = wJ′0,2

are O(nF ). Hence the adjoint operation

V(T0)J′0,2J
′
0,1

has order O(nF ).

6.3. Adjoint method in the DDctSMM

If we set r = n in the DDcmSMM, we then have
the DDctSMM. Thus we discuss Vega computations in
the DDctSMM no further as it is a special case of the
more general DDcmSMM.

6.4. Adjoint method in the DDciSMM

The DDciSMM is a one-period model, we consider
the following mappings {ajk}SR(0)

A(0)

 J0,1−−→

 {ajk}SR(0)
µ(0)(0)

 J0,2−−→ SR(T0). (75)

We will show that the following operation

V(T0)J′0,2J
′
0,1

has order O(nF ) to prove that the adjoint operations
needed to compute model Vegas has order O(nF ).

6.4.1. Computational order of wJ′0,1
We divide the mapping {ajk}SR(0)

A(0)

 J0,1−−→

 {ajk}SR(0)
µ(0)(0)


into the following sub-mappings

 {ajk}SR(0)
A(0)

 K0,0−−−→


{ajk}
SR(0)
A(0){

〈Zk, A0i〉
}1

i=1



K0,1−−−→


{ajk}
SR(0)
A(0){

〈Zk, A0i〉
}2

i=1


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· · · K0,n−1−−−−−→


{ajk}
SR(0)
A(0){

〈Zk, A0i〉
}n
i=1

 K0−−→

 {ajk}SR(0)
µ(0)(0)


(76)

The Jacobian matrices K0,i and K0 have similar
structures to the Jacobian matrices H0,i and H0 in
(58):

1. In addition to the three non-zero partial deriva-
tives in section 5.2.1, K0,i has an extra partial
derivative with respect to ajk equal to

∂

∂ajk

〈
Zk, A0j

〉
= −

τj−1

(
SR0j + αj

)
A0j

1 + τj−1SR0j
.

(77)

Thus the operation v = wK0,j has 4F com-
putations.

2. In addition to the three non-zero partial deriva-
tives in section 5.2.2, K0 has an extra partial
derivative with respect to ajk equal to

∂µ
(0)
j

∂ajk
= − 1

A0j

〈
Zk, A0j

〉
. (78)

Thus K′0 has an additional nF partial derivatives
equal to ∂µ(0)

j /∂ajk compared with H′0. There-
fore the operation v = wK ′0 has order O(nF ).

The number of mappings K0,j , whose operation has
a constant order, is equal to n. Hence, the order of
the operation v = wK′0K

′
0,n−1 · · ·K′0,0 = wJ′0,1 is

O(nF ).

6.4.2. Computational order of wJ′0,2
We use (62) to evolve the co-initial swap-rates. The

non-zero partial derivatives of J′0,2 are
∂SR0j(T0)
∂ajk

=
[
SR0j(T0) + αj

](
Zk − ajk

)
,

∂SR0j(T0)
∂SR0j(0)

= SR0j(T0)+αj

SR0j(0)+αj
,

∂SR0j(T0)

∂µ
(0)
j

= SR0j(T0) + αj ,

(79)

for j = 1, . . . , n and k = 1, . . . , F . Hence the
operation v = wJ′0,2 has 2n + nF computations so
that its order is O(nF ).

6.4.3. Total computational order
Similar to the case of DDcmSMM, given the adjoint

vector V(T0), the operation V(T0)J′0,2J
′
0,1 has order

O(nF ).

6.5. Market vegas

Traders and quants are not interested in the sensitiv-
ities to model parameters such as model Vegas, they
are interested in the sensitivities to market observable
interest rates and interest rate derivatives. The problem
of converting model elementary Vegas to market
Vegas in the LMM has been addressed in Joshi and
Kwon (2009).

Suppose we evolve the model m steps in the
simulation. The methods discussed in this section will
produce an n × F matrix of model elementary Vegas
at each step so that we have m matrices overall. Joshi
and Kwon (2009) show that the market Vegas can
be computed as linear combinations of the m × n ×
F numbers, ∂F/∂arjk. Similar approaches will apply
to generic market models, we leave this for future
research.

7. Numerical testing

7.1. Market data

The tenor structure is: Tj = (j + 1) × 0.5, j =
0, . . . , n. The zero-coupon bond prices are given by
Pj(0) = e−0.05·Tj . This corresponds to swap-rates all
being equal to 5.063%. A flat volatility structure with
log-volatility σi = 10% is used. The instantaneous
correlations are given by ρij = e−0.1|Ti−Tj |. We fix
the number of factors (F ) to be 3.

7.2. Timing tests for deltas

We have shown that the order of the adjoint
method is O(nF ) per step in the DDcmSMM and the
DDciSMM. If we carry out the algorithm for 1 step,
we should obtain timings that are linear in n and F .
If we carry out the algorithm for n steps, we should
obtain timings that are parabolic in n.

In each of the following cases, we ran 163,840
paths on a European swaption and estimate Deltas and
model Vegas using the efficient algorithms discussed
in this paper. We ran the Monte Carlo simulations on a
computer with an Intel Core 2 1.6GHz CPU and 1GB
RAM, using single-threaded C++ code.

7.2.1. Computational order
• In the DDcmSMM: We set r = 3. We plot time

required to compute the Deltas of a European
swaption maturing at Tn against n and we fit a
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parabola to the graph in figure 1. Note that similar
timing results are obtained for different values of
r in SRj,j+r.
• In the DDciSMM: We plot time required to

compute the Deltas of a European swaption
maturing at T0 against n, and we fit a line to the
graph in figure 2.

These results show that the computational order of
Delta computations is O(nF ) per step.

7.2.2. Ratio of delta time to pricing time
We list the computational times required to compute

prices, Deltas and their ratios in the DDcmSMM in
table 1. We see that it does not take an excessive
amount of extra time to compute all the (model)
Deltas.

7.3. Timing tests for vegas

Sensitivities of IRDs to constant volatility
parameters are given by linear combination of model
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Fig. 1. Graphs of number of rates against the time required to
compute Deltas of a Tn European swaption with F = 3 in the
cmSMM (r = 3).
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Fig. 2. Graphs of number of rates against the time required to
compute Deltas of a T0 European swaption with F = 3 in the
ciSMM.

elementary Vegas via

∂g

∂σαi
=
∑
r,k

∂g

∂arik

arik
σαi

. (80)

7.3.1. Model elementary vegas
Similar to the timing tests for Deltas, we com-

pute model elementary Vegas in the DDctSMM,
DDcmSMM and DDciSMM.

1. We estimate n× n×F model elementary Vegas
in DDcmSMM. We plot time against n and fit a
parabola to the graph in figure 3.

2. Since the DDctSMM is a special case of the
DDcmSMM, similar results are obtained for the
DDctSMM.

3. We estimate n × F model elementary Vegas in
DDciSMM. We plot time against n and fit a line
to the graph in figure 4.

Furthermore, we can see that the time required to
compute model Vegas only exceeds the time required
to compute Deltas by a small proportion.

7.3.2. Market vegas
As mentioned in section 6.4: we compute all the

model elementary Vegas first, then we use linear

Table 1
Ratios of the time required to compute Deltas to the time required to
compute prices in the DDcmSMM (r = 3).

n Pricing Delta Ratio

5 0.91 1.34 1.48
10 4.20 5.24 1.25
15 8.83 11.86 1.34
20 15.20 20.59 1.35
25 23.39 32.42 1.39
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Fig. 3. Graphs of number of rates against the time required to
compute Vegas of a Tn European swaption with F = 3 in the
cmSMM (r = 3).
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Fig. 4. Graphs of number of rates against the time required to
compute Vegas of a T0 European swaption with F = 3 in the
ciSMM.

Table 2
Ratios of the time required to compute market Vegas only to the time
required to compute Deltas only in the DDcmSMM (r = 3)

Number of market Vegas 5 10 20 40 60

Ratio 1.4 1.4 1.3 1.4 1.4

combinations of those to calculate market Vegas. We
compute market Vegas using the model elementary
Vegas computed in a DDcmSMM with 60 rates across
60 steps. We compute the ratios of the time required to
compute the market Vegas only to the time required to
compute Deltas only in table 2.

Since we carry out the linear combinations outside
the main simulation loop so that computing market
Vegas costs little extra time compared with computing
model elementary Vegas. In particular, if we compute
60 market Vegas, the ratio is no greater than 1.4.

7.4. Extension to path-dependent and
early-exercisable IRDs

For the case of computing Greeks of path-dependent
products, it is necessary to introduce additional auxil-
iary variables which encapsulate the path-dependence
– e.g. the current coupon in a ratchet, or the
running maximum in a look-back. This extension is
straight-forward: the main effect is to increase the
dimensionality of the state-space and therefore the
Jacobians by the number of state-variables.

For Bermudan-type products, Joshi and Yang
(in press a) shows how to compute Deltas of
Bermudan swaptions in a DDctSMM. It is trivial to
extend the technique to compute Deltas and Vegas
of Bermudan-type IRDs in other swap-rate market
models. We refer interested readers to that paper and
Leclerc et al. (2009). More efficient approaches for
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ctSMM corresponding to 3 sets of flat volatility parameters.
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Greeking Bermudan options using adjoint methods
were later introduced in Denson and Joshi (in press).

7.5. Effects of different model parameters on deltas
and vegas

Deltas and Vegas (computed using equation (80)) of
an at-the-money Bermudan swaption corresponding to
three sets of flat volatility parameters in the DDctSMM
are given in figures 5 and 6. The main observation is
that the magnitude of Deltas and Vegas do not vary
substantially even though we increase flat volatility
from 5% to 20%.

8. Conclusion

We have presented efficient algorithms to imple-
ment the adjoint method to estimate Deltas of IRDs
in the DDcmSMM and the DDciSMM. We have also
shown how to extend the method to compute Vegas of
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IRDs in several generic market models including the
DDctSMM.

The timing tests confirm that the computational
complexity is O(nF ) per step in generic market
models, and that it does not take substantial additional
time to compute Vegas once all the adjoint vectors
have been computed in the Delta computations.
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