You are viewing a javascript disabled version of the site. Please enable Javascript for this site to function properly.
Go to headerGo to navigationGo to searchGo to contentsGo to footer
In content section. Select this link to jump to navigation

Evaluation of deformable image registration for contour propagation between CT and cone-beam CT images in adaptive head and neck radiotherapy

Abstract

Deformable image registration (DIR) is a critical technic in adaptive radiotherapy (ART) to propagate contours between planning computerized tomography (CT) images and treatment CT/Cone-beam CT (CBCT) image to account for organ deformation for treatment re-planning. To validate the ability and accuracy of DIR algorithms in organ at risk (OAR) contours mapping, seven intensity-based DIR strategies are tested on the planning CT and weekly CBCT images from six Head & Neck cancer patients who underwent a 6 ∼ 7 weeks intensity-modulated radiation therapy (IMRT). Three similarity metrics, i.e. the Dice similarity coefficient (DSC), the percentage error (PE) and the Hausdorff distance (HD), are employed to measure the agreement between the propagated contours and the physician delineated ground truths. It is found that the performance of all the evaluated DIR algorithms declines as the treatment proceeds. No statistically significant performance difference is observed between different DIR algorithms (p> 0.05), except for the double force demons (DFD) which yields the worst result in terms of DSC and PE. For the metric HD, all the DIR algorithms behaved unsatisfactorily with no statistically significant performance difference (p= 0.273). These findings suggested that special care should be taken when utilizing the intensity-based DIR algorithms involved in this study to deform OAR contours between CT and CBCT, especially for those organs with low contrast.

References

[1] 

Marta G.N., , Silva V., , de Andrade Carvalho H., , de Arruda F.F., , Hanna S.A., , Gadia R., , da Silva J.L., , Correa S.F., , Vita Abreu C.E., and Riera R., Intensity-modulated radiation therapy for head and neck cancer: Systematic review and meta-analysis. Radiother Oncol. 110, 9 (2014).

[2] 

Beadle B.M., , Liao K.P., , Elting L.S., , Buchholz T.A., , Ang K.K., , Garden A.S., and Guadagnolo B.A., Improved survival using intensity-modulated radiation therapy in head and neck cancers: A SEER-Medicare analysis. Cancer. 120, 702 (2014).

[3] 

Barker Jr J.L., , Garden A.S., , Ang K.K., , O'Daniel J.C., , Wang H., , Court L.E., , Morrison W.H., , Rosenthal D.I., , Chao K.S.C., , Tucker S.L., , Mohan R., and Dong L., Quantification of volumetric and geometric changes occurring during fractionated radiotherapy for head-and-neck cancer using an integrated CT/linear accelerator system. International Journal of Radiation Oncology Biology Physics. 59, 960 (2004).

[4] 

Yan D., , Vicini F., , Wong J., and Martinez A., Adaptive radiation therapy. Phys. Med. Biol. 42, 123 (1997).

[5] 

Schwartz D.L., , Garden A.S., , Shah S.J., , Chronowski G., , Sejpal S., , Rosenthal D.I., , Chen Y., , Zhang Y., , Zhang L., , Wong P.F., , Garcia J.A., , Kian Ang K., and Dong L., Adaptive radiotherapy for head and neck cancer-dosimetric results from a prospective clinical trial. Radiotherapy and Oncology: Journal of the European Society for Therapeutic Radiology and Oncology. 106, 80 (2013).

[6] 

Thor M., , Petersen J.B., , Bentzen L., , Hoyer M., and Muren L.P., Deformable image registration for contour propagation from CT to cone-beam CT scans in radiotherapy of prostate cancer. Acta Oncol. 50, 918 (2011).

[7] 

Wen N., , Glide-Hurst C., , Nurushev T., , Xing L., , Kim J., , Zhong H., , Liu D., , Liu M., , Burmeister J., , Movsas B., and Chetty I.J., Evaluation of the deformation and corresponding dosimetric implications in prostate cancer treatment. Physics in Medicine and Biology. 57, 5361 (2012).

[8] 

Castadot P., , Lee J.A., , Parraga A., , Geets X., , Macq B., and Gregoire V., Comparison of 12 deformable registration strategies in adaptive radiation therapy for the treatment of head and neck tumors. Radiotherapy and Oncology: Journal of the European Society for Therapeutic Radiology and Oncology. 89, 1 (2008).

[9] 

Hardcastle N., , Tome W.A., , Cannon D.M., , Brouwer C.L., , Wittendorp P.W., , Dogan N., , Guckenberger M., , Allaire S., , Mallya Y., , Kumar P., , Oechsner M., , Richter A., , Song S., , Myers M., , Polat B., and Bzdusek K., A multi-institution evaluation of deformable image registration algorithms for automatic organ delineation in adaptive head and neck radiotherapy. Radiat. Oncol. 7, 90 (2012).

[10] 

Mohamed A.S., , Ruangskul M.N., , Awan M.J., , Baron C.A., , Kalpathy-Cramer J., , Castillo R., , Castillo E., , Guerrero T.M., , Kocak-Uzel E., , Yang J., , Court L.E., , Kantor M.E., , Gunn G.B., , Colen R.R., , Frank S.J., , Garden A.S., , Rosenthal D.I., and Fuller C.D., Quality assurance assessment of diagnostic and radiation therapy-simulation CT image registration for head and neck radiation therapy: Anatomic region of interest-based comparison of rigid and deformable algorithms. Radiology. 274, 752 (2015).

[11] 

Hou J., , Guerrero M., , Chen W., and D'Souza W.D., Deformable planning CT to cone-beam CT image registration in head-and-neck cancer. Medical Physics. 38, 2088 (2011).

[12] 

Zhen X., , Gu X., , Yan H., , Zhou L., , Jia X., and Jiang S.B., CT to cone-beam CT deformable registration with simultaneous intensity correction. Phys. Med. Biol. 57, 6807 (2012).

[13] 

Lou Y., , Niu T., , Jia X., , Vela P.A., , Zhu L., and Tannenbaum A.R., Joint CT/CBCT deformable registration and CBCT enhancement for cancer radiotherapy. Med. Image Anal. 17, 387 (2013).

[14] 

Nithiananthan S., , Brock K.K., , Daly M.J., , Chan H., , Irish J.C., and Siewerdsen J.H., Demons deformable registration for CBCT-guided procedures in the head and neck: convergence and accuracy. Medical Physics. 36, 4755 (2009).

[15] 

Hardcastle N., , van Elmpt W., , De Ruysscher D., , Bzdusek K., and Tome W.A., Accuracy of deformable image registration for contour propagation in adaptive lung radiotherapy. Radiat. Oncol. 8, 243 (2013).

[16] 

Fedorov A., , Beichel R., , Kalpathy-Cramer J., , Finet J., , Fillion-Robin J.C., , Pujol S., , Bauer C., , Jennings D., , Fennessy F., , Sonka M., , Buatti J., , Aylward S., , Miller J.V., , Pieper S., and Kikinis R., 3D Slicer as an image computing platform for the quantitative imaging network. Magn. Reson. Imaging. 30, 1323 (2012).

[17] 

Yang D., , Brame S., , El Naqa I., , Aditya A., , Wu Y., , Goddu S.M., , Mutic S., , Deasy J.O., and Low D.A., Technical note: DIRART-A software suite for deformable image registration and adaptive radiotherapy research. Medical Physics. 38, 67 (2011).

[18] 

Robar J.L., , Day A., , Clancey J., , Kelly R., , Yewondwossen M., , Hollenhorst H., , Rajaraman M., and Wilke D., Spatial and dosimetric variability of organs at risk in head-and-neck intensity-modulated radiotherapy. International Journal of Radiation Oncology, Biology, Physics. 68, 1121 (2007).

[19] 

Han C., , Chen Y.J., , Liu A., , Schultheiss T.E., and Wong J.Y., Actual dose variation of parotid glands and spinal cord for nasopharyngeal cancer patients during radiotherapy. International Journal of Radiation Oncology, Biology, Physics. 70, 1256 (2008).

[20] 

Lee C., , Langen K.M., , Lu W., , Haimerl J., , Schnarr E., , Ruchala K.J., , Olivera G.H., , Meeks S.L., , Kupelian P.A., , Shellenberger T.D., and Manon R.R., Evaluation of geometric changes of parotid glands during head and neck cancer radiotherapy using daily MVCT and automatic deformable registration. Radiotherapy and Oncology: Journal of the European Society for Therapeutic Radiology and Oncology. 89, 81 (2008).

[21] 

Jin X., , Hu W., , Shang H., , Han C., , Yi J., , Zhou Y., and Xie C., CBCT-based volumetric and dosimetric variation evaluation of volumetric modulated arc radiotherapy in the treatment of nasopharyngeal cancer patients. Radiat Oncol. 8, 279 (2013).

[22] 

Rigaud B., , Simon A., , Castelli J., , Gobeli M., , Ospina Arango J.D., , Cazoulat G., , Henry O., , Haigron P., and De Crevoisier R., Evaluation of deformable image registration methods for dose monitoring in head and neck radiotherapy. BioMed Research International. 2015, 726268 (2015).

[23] 

Huger S., , Graff P., , Harter V., , Marchesi V., , Royer P., , Diaz J.C., , Aouadi S., , Wolf D., , Peiffert D., and Noel A., Evaluation of the block matching deformable registration algorithm in the field of head-and-neck adaptive radiotherapy. Physica Medica: An International Journal Devoted to the Applications of Physics to Medicine and Biology: Official Journal of the Italian Association of Biomedical Physics. 30, 301 (2014).

[24] 

Veiga C., , McClelland J., , Moinuddin S., , Lourenco A., , Ricketts K., , Annkah J., , Modat M., , Ourselin S., , D'Souza D., and Royle G., Toward adaptive radiotherapy for head and neck patients: Feasibility study on using CT-to-CBCT deformable registration for ``dose of the day'' calculations. Medical Physics 41, 031703 (2014).