Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Sheikh, A.H. | Haldar, S. | Sengupta, D.
Affiliations: Department of Ocean Engineering and Naval Architecture, Indian Institute of Technology, Kharagpur – 721 302, India | Department of Applied Mechanics, Bengal Engineering College (Deemed University), Howrah – 7111 103, India
Note: [] Corresponding author. Tel.: +91 3222 83790; Fax: +91 3222 55303; E-mail: [email protected]
Abstract: A high precision triangular shallow shell element is proposed and it is applied to free vibration analysis of composite and isotropic shells. The Mindlin's hypothesis is followed to include the effect of shear deformation. The formulation is made in an efficient manner to make the element free from shear locking problem. The element has some internal nodes, which are eliminated through static condensation technique to improve the computational elegance of the element. In the present vibration problem, the implementation of the static condensation became possible with the help of an efficient mass lumping scheme. It is quite interesting that the effect of rotary inertia can be included in the recommended scheme for lumped mass matrix. Numerical examples covering a wide range of problems are solved and the results obtained are compared with the published results in many cases, which show the precision and range of applicability of the proposed element. The performance of the proposed technique for rotary inertia is found to be excellent. Some new results are produced, which may be useful in future research.
Journal: Shock and Vibration, vol. 11, no. 5-6, pp. 585-596, 2004
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]