Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: d'Amato, Claudia | Fanizzi, Nicola | Esposito, Floriana
Affiliations: Department of Computer Science, University of Bari, Italy. E-mail: [email protected], [email protected], [email protected]
Note: [] Corresponding author.
Abstract: Nowadays, building ontologies is a time consuming task since they are mainly manually built. This makes hard the full realization of the Semantic Web view. In order to overcome this issue, machine learning techniques, and specifically inductive learning methods, could be fruitfully exploited for learning models from existing Web data. In this paper we survey methods for (semi-)automatically building and enriching ontologies from existing sources of information such as Linked Data, tagged data, social networks, ontologies. In this way, a large amount of ontologies could be quickly available and possibly only refined by the knowledge engineers. Furthermore, inductive incremental learning techniques could be adopted to perform reasoning at large scale, for which the deductive approach has showed its limitations. Indeed, incremental methods allow to learn models from samples of data and then to refine/enrich the model when new (samples of) data are available. If on one hand this means to abandon sound and complete reasoning procedures for the advantage of uncertain conclusions, on the other hand this could allow to reason on the entire Web. Besides, the adoption of inductive learning methods could make also possible to dial with the intrinsic uncertainty characterizing the Web, that, for its nature, could have incomplete and/or contradictory information.
Keywords: Ontology mining, inductive learning, uncertainty
DOI: 10.3233/SW-2010-0007
Journal: Semantic Web, vol. 1, no. 1-2, pp. 53-59, 2010
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]