You are viewing a javascript disabled version of the site. Please enable Javascript for this site to function properly.
Go to headerGo to navigationGo to searchGo to contentsGo to footer
In content section. Select this link to jump to navigation

Caffeoylquinic acid induces ATP production and energy metabolism in human neurotypic SH-SY5Y cells

Abstract

Caffeoylquinic acid (CQA) derivatives are polyphenolic compounds found in wide variety of plants. Previously, we have demonstrated that di-CQA and tri-CQA may be neuroprotective through their ability to promote intracellular adenosine-5-triphosphate (ATP) generation and by up-regulation of glycolytic enzyme expression. In the present study we have investigated the effect of di-CQA and tri-CQA on energy metabolism in SH-SY5Y cells using a metabolomic approach. Results indicate that di-CQA treatment of SH-SY5Y cells significantly increases the production of an array of glycolysis metabolites and tricarboxylic acid (TCA) cycle metabolites, including acetyl-CoA, succinic acid, fumaric acid, and malic acid. Tri-CQA treatment was also observed to increase the levels of all glycolysis and TCA cycle metabolites and evoked a stronger effect than that of di-CQA. In addition to their effects on glycolytic metabolites, di-CQA and tri-CQA exposure also induced a significant increase in the production of ATP, ADP, GTP, and GDP. Our results suggest that CQA-induction of intracellular ATP synthesis is mediated by the activation of central metabolic pathways including the activation of glycolysis and the TCA cycle.