Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Babitha, M.N.* | Siddappa, M.
Affiliations: Computer Science and Engineering, Sri Siddhartha Institute of Technology, Sri Siddhartha Academy of Higher Education, Tumkur, Karnataka, India
Correspondence: [*] Corresponding author: M.N. Babitha, Computer Science and Engineering, Sri Siddhartha Institute of Technology, Sri Siddhartha Academy of Higher Education, Tumkur, Karnataka, India. E-mail: [email protected].
Abstract: The data integrity verification process in cloud has become more promising research area in several Internet of Things (IoT) applications. The traditional data verification approaches use encryption in order to preserve data. Moreover, fog computing is considered as extensively employed virtualized platform and it affords various services including storage as well as services interconnected to computing and networking between user and data center based on standard cloud computing. Moreover, fog computing is an extensive description of cloud computing. Thus, fog servers effectively decrease the latency by integrating fog servers. In this paper, novel model for data integrity authentication and protection is designed in IoT cloud-fog model. This method mainly comprises fog nodes, cloud server, IoT nodes, and key distribution center. Here, dynamic and secure key is produced based on the request to key distribution center based on hashing, Exclusive OR (XOR), homomorphic encryption and polynomial. The fog nodes are employed to encrypt the data gathered from IoT nodes as well as allocate the nearby nodes based on Artificial Bee Colony-based Fuzzy-C-Means (ABC FCM) – based partitioning approach. The proposed data integrity authentication approach in IoT fog cloud system outperformed than other existing methods with respect to detection rate, computational time and memory usage of 0.8541, 34.25 s, and 54.8 MB, respectively.
Keywords: Data integrity, authentication, fog computing, key distribution center, artificial bee colony-based fuzzy-c-means
DOI: 10.3233/MGS-220210
Journal: Multiagent and Grid Systems, vol. 18, no. 2, pp. 87-105, 2022
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]