Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Rakshit, Debopama; b | Paul, Ranjit Kumarc; *
Affiliations: [a] The Graduate School, ICAR-Indian Agricultural Research Institute, New Delhi, India | [b] ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, UP, India | [c] ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
Correspondence: [*] Corresponding author: Ranjit Kumar Paul, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India. E-mail: [email protected].
Abstract: Volatility is a matter of concern for time series modeling. It provides valuable insights into the fluctuation and stability of concerning variables over time. Volatility patterns in historical data can provide valuable information for predicting future behaviour. Nonlinear time series models such as the autoregressive conditional heteroscedastic (ARCH) and the generalized version of the ARCH model, i.e. generalized ARCH (GARCH) models are popularly used for capturing the volatility of a time series. The realization of any time series may have significant statistical dependencies on its distant counterpart. This phenomenon is known as the long memory process. Long memory structure can also be present in volatility. Fractionally integrated volatility models such as the fractionally integrated GARCH (FIGARCH) model can be used to capture the long memory in volatility. In this paper, we derived the out-of-sample forecast formulae along with the forecast error variances for the AR (1) -FIGARCH (1, d, 1) model by recursive use of conditional expectations and conditional variances. For empirical illustration, the modal spot prices of onion for Delhi, Lasalgaon and Bengaluru markets, India and S&P 500 index (close) data are used.
Keywords: Long memory, nonlinear time series models, GARCH, volatility
DOI: 10.3233/MAS-241510
Journal: Model Assisted Statistics and Applications, vol. 19, no. 2, pp. 133-143, 2024
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]