Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Sharma, Suyash* | Kalra, Mansha | Sharma, Ashu
Affiliations: SBM, NMIMS, Mumbai, India
Correspondence: [*] Corresponding author: Suyash Sharma, SBM, NMIMS, Mumbai, India. E-mail: [email protected].
Abstract: “Amazon Big Data”, conducts a thorough analysis on the e-commerce industry using big data and how certain trends can affect the functioning of the organizations delving in the field. With the growth of e-commerce, there has been a significant rise of the online consumers’ footprint. Companies such as Amazon, Flipkart and other e-commercial platforms have accrued huge chunks of consumer information, especially since the start of the pandemic. In this industry, reviews and ratings given to a product play a crucial role in determining the sentiments of the customers associated towards making the final purchase. Such factors account for the brand’s sales and image. In today’s landscape, a careful customer goes through the ratings of the product, its reviews which serve as a medium of screening. In a tie between two similar products, customers purchase a product with higher ratings and better reviews. Therefore, this leads us to the development of an ideal rating metric that is significant for the sales of the product. Moreover, become a tool for product differentiation. This manuscript is a method to standardize the ratings of customers and preserve the sanctity of the data. We discuss models which are an amalgamation of customer ratings, their respective reviews and a sentiment scored derived from the same review. These models also help us define customer clusters with different personalities based on their reviews and ratings. In addition to this, customer segmentation is a future scope to deep dive into the sales data and understand the financial behavior of a customer.
Keywords: Curve Fitting Model, Google Cloud Platform, text analytics
DOI: 10.3233/MAS-220403
Journal: Model Assisted Statistics and Applications, vol. 17, no. 4, pp. 231-237, 2022
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]