Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Issue title: Mercury and Other Trace Elements in Fuel: Emissions and Control
Article type: Research Article
Authors: Li, Huixing; | Monnell, Jason D.; | Alvin, Maryanne | Vidic, Radisav D.;
Affiliations: National Energy Technology Laboratory, Pittsburgh, PA, USA | Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, PA, USA
Note: [] Corresponding author. Email: [email protected]
Note: [] Corresponding author. Email: [email protected]
Abstract: The primary product of coal gasification processes is synthesis gas (syngas), a mixture of CO, H2, CO2, H2O and a number of minor components. Among the most significant minor components in syngas is hydrogen sulfide (H2S). In addition to its adverse environmental impact, H2S poisons the catalysts and hydrogen purification membranes, and causes severe corrosion in gas turbines. Technologies that can remove H2S from syngas and related process streams are, therefore, of considerable practical interest. To meet this need, we work towards understanding the mechanism by which prospective H2S catalysts perform in simulated fuel gas conditions. Specifically, we show that for low-temperature gas clean-up (˜40°C) using activated carbon fibers and water plays a significant role in H2S binding and helps to prolong the lifetime of the material. Basic surface functional groups were found to be imperative for significant conversion of H2S to daughter compounds, whereas metal oxides (La and Ce) did little to enhance this catalysis. We show that although thermal regeneration of the material is possible, the regenerated material has a substantially lower catalytic and sorption capacity.
Keywords: hydrogen sulfide, oxidation catalyst, activated carbon, IGCC, syngas clean-up, coal gasification
DOI: 10.1080/10241220802509796
Journal: Main Group Chemistry, vol. 7, no. 3, pp. 239-250, 2008
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]