Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Liu, Penga; b | Fang, Chenyuna | Qiao, Zhiweia; *
Affiliations: [a] School of Computer and Information Technology, Shanxi University, Taiyuan, China | [b] Department of Big Data and Intelligent Engineering, Shanxi Institute of Technology, Yangquan, China
Correspondence: [*] Corresponding author: Zhiwei Qiao, School of Computer and Information Technology, Shanxi University, Taiyuan, China E-mail: [email protected].
Abstract: OBJECTIVE:CT image reconstruction from sparse-view projections is an important imaging configuration for low-dose CT, as it can reduce radiation dose. However, the CT images reconstructed from sparse-view projections by traditional analytic algorithms suffer from severe sparse artifacts. Therefore, it is of great value to develop advanced methods to suppress these artifacts. In this work, we aim to use a deep learning (DL)-based method to suppress sparse artifacts. METHODS:Inspired by the good performance of DenseNet and Transformer architecture in computer vision tasks, we propose a Dense U-shaped Transformer (D-U-Transformer) to suppress sparse artifacts. This architecture exploits the advantages of densely connected convolutions in capturing local context and Transformer in modelling long-range dependencies, and applies channel attention to fusion features. Moreover, we design a dual-domain multi-loss function with learned weights for the optimization of the model to further improve image quality. RESULTS:Experimental results of our proposed D-U-Transformer yield performance improvements on the well-known Mayo Clinic LDCT dataset over several representative DL-based models in terms of artifact suppression and image feature preservation. Extensive internal ablation experiments demonstrate the effectiveness of the components in the proposed model for sparse-view computed tomography (SVCT) reconstruction. SIGNIFICANCE:The proposed method can effectively suppress sparse artifacts and achieve high-precision SVCT reconstruction, thus promoting clinical CT scanning towards low-dose radiation and high-quality imaging. The findings of this work can be applied to denoising and artifact removal tasks in CT and other medical images.
Keywords: Computed tomography, sparse-view reconstruction, deep convolutional network, Transformer, multi-loss function
DOI: 10.3233/XST-230184
Journal: Journal of X-Ray Science and Technology, vol. 32, no. 2, pp. 207-228, 2024
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]