Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: AlKubeyyer, Atheera | Ben Ismail, Mohamed Mahera; * | Bchir, Ouiema | Alkubeyyer, Metabb
Affiliations: [a] Computer Science Department, College of Computer and Information Sciences, King Saud University, Riyadh, Saudi Arabia | [b] Department of Radiology and Medical Imaging, King Khalid University Hospital., King Saud University, Riyadh, Saudi Arabia
Correspondence: [*] Corresponding author: Mohamed Maher Ben Ismail, Computer Science Department, College of Computer and Information Sciences, King Saud University, Riyadh 11451, Saudi Arabia. E-mail: [email protected].
Abstract: Meningioma is among the most common primary tumors of the brain. The firmness of Meningioma is a critical factor that influences operative strategy and patient counseling. Conventional methods to predict the tumor firmness rely on the correlation between the consistency of Meningioma and their preoperative MRI findings such as the signal intensity ratio between the tumor and the normal grey matter of the brain. Machine learning techniques have not been investigated yet to address the Meningioma firmness detection problem. The main purpose of this research is to couple supervised learning algorithms with typical descriptors for developing a computer-aided detection (CAD) of the Meningioma tumor firmness in MRI images. Specifically, Local Binary Patterns (LBP), Gray Level Co-occurrence Matrix (GLCM) and Discrete Wavelet Transform (DWT) are extracted from real labeled MRI-T2 weighted images and fed into classifiers, namely support vector machine (SVM) and k-nearest neighbor (KNN) algorithm to learn association between the visual properties of the region of interest and the pre-defined firm and soft classes. The learned model is then used to classify unlabeled MRI-T2 weighted images. This paper represents a baseline comparison of different features used in CAD system that intends to accurately recognize the Meningioma tumor firmness. The proposed system was implemented and assessed using a clinical dataset. Using LBP feature yielded the best performance with 95% of F-score, 87% of balanced accuracy and 0.87 of the area under ROC curve (AUC) when coupled with KNN classifier, respectively.
Keywords: Meningioma, tumor firmness, visual features, supervised learning
DOI: 10.3233/XST-200644
Journal: Journal of X-Ray Science and Technology, vol. 28, no. 4, pp. 659-682, 2020
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]