Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Bhatia, Navninaa; * | Tisseur, Davida | Létang, Jean Michelb
Affiliations: [a] CEA, LIST, F-91191, Gif-sur-Yvette, France | [b] Univ Lyon, INSA-Lyon, Université Lyon 1, UJM-Saint Etienne, CNRS, Inserm, Centre Léon Bérard, CREATIS UMR 5520 U1206, F-69373 Lyon, France
Correspondence: [*] Corresponding author: Bhatia Navnina, CEA, LIST, F-91191, Gif-sur-Yvette, France. Tel.: +33 1 69 08 78 63; E-mail: [email protected]..
Abstract: One of the well-recognized challenge of Cone-Beam Computed Tomography (CBCT) is scatter contamination within the projection images. Scatter degrades the image quality by decreasing the contrast, introducing cupping and shading artifacts and thus leading to inaccuracies in the reconstructed values. The higher scatter to primary ratio experienced in industrial applications leads to even more important artifacts. Various strategies have been investigated to manage the scatter signal in CBCT projection data. One of these strategies is to calculate the scatter intensity by deconvolution of primary intensity using Scatter Kernel Superposition (SKS). In this paper, we present an approach combining experimental measurements and Monte Carlo simulations to estimate the scatter kernels for industrial applications based on the continuously thickness-adapted kernels strategy with a four-Gaussian modeling of kernels. We compare this approach with an experimental technique based on a two-Gaussian modeling of the kernels. The results obtained prove the superiority of a four-Gaussian model to effectively take into account both the contribution of object and detector scattering as compared to a two-Gaussian approach. We also present the parameterisation of the scatter kernels with respect to object to detector distance. This approach facilitates the use of a single geometry for calculation of scatter kernels over the whole magnification range of the acquisition setup.
Keywords: CBCT, Scatter correction, CIVA, industrial NDT
DOI: 10.3233/XST-16185
Journal: Journal of X-Ray Science and Technology, vol. 25, no. 4, pp. 613-628, 2017
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]