Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Yang, Yia; b | Huang, Huilingb | Wu, FeiBinb | Han, Juna; b; * | Ma, Mengyuanb | Zhang, Yantonga; b | Feng, Yanbingb
Affiliations: [a] College of Computer and Cyber Security, Fujian Normal University, Fuzhou, Fujian, China | [b] Quanzhou Institute of Equipment Manufacturing, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Quanzhou, Fujian, China
Correspondence: [*] Corresponding author. Jun Han, E-mail:[email protected].
Abstract: This paper introduces a novel neural network architecture and an enhanced data synthesis method that significantly boost the performance in removing complex smoke from images. The architecture features a multi-branch and multi-scale feature fusion design, which effectively integrates multiple feature streams and adaptively restores the background by identifying specific smoke characteristics within the image. A newly designed Fourier residual block is incorporated to capture frequency domain information, enabling the network to process and transform information across both spatial and frequency domains. To improve the network’s generalization ability and robustness, an in-depth analysis of the imaging process in smoky environments was conducted, leading to an improved method for synthesizing smoke images. This methodology facilitates the creation of a more varied and realistic training dataset, substantially enhancing the neural network’s capabilities in image restoration. Experimental results show that this approach is highly effective on both synthetic and real-world smoke datasets, outperforming existing image de-smoking methods in terms of quantitative metrics and visual perception. The code for this method is available at https://github.com/Exiagit/MFSR.
Keywords: Single image smoke removal, frequency domain learning, data synthesis method
DOI: 10.3233/JIFS-239146
Journal: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-15, 2024
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]