Searching for just a few words should be enough to get started. If you need to make more complex queries, use the tips below to guide you.
Article type: Research Article
Authors: Long, Huimina | Zheng, Hangb; * | Chen, Mingb | Liu, Chengjianb
Affiliations: [a] Southwest China Institute of Electronic Technology, Chengdu, China | [b] Department of Electrical engineering, Sichuan University, Chengdu, China
Correspondence: [*] Corresponding author. Hang Zheng, Department of Electrical engineering, Sichuan University, Chengdu 610064, China. E-mail: [email protected].
Abstract: The detection of communication signals in heterogeneous electromagnetic environments currently relies primarily on a one-dimensional statistical feature threshold method. However, this approach is highly sensitive to dynamic changes in the environment, fluctuations in signal-to-noise ratios, and complex noise. To address these limitations, this paper proposes a novel time-frequency diagram based on high-order accumulation for signal detection. Traditional time-frequency diagrams suffer from poor noise suppression ability and unclear features. However, higher-order cumulants can effectively overcome these shortcomings. Currently, methods based on higher-order cumulants are typically limited to one-dimensional signals. Yet, two-dimensional time-frequency signal diagrams can represent a broader array of features. This paper employs higher-order accumulation to extract time-frequency features from the received signal, thereby transforming the conventional radio detection problem into an image recognition challenge. By merging the advantages of higher-order accumulations and time-frequency diagrams, we propose the use of higher-order accumulation time-frequency diagrams for signal detection. Extensive experimental simulations demonstrate that the proposed time-frequency diagram exhibits strong anti-noise performance and effectively suppresses frequency bias from multiple perspectives. The performance of the Higher-Order Cumulant-Time Frequency (HOC-TF) indicated lower Root Mean Square Error (RMSE) compared with the Short-Time Fourier Transform-Time Frequency (STFT-TF) and Wavelet Transform-Time Frequency (WT-TF). Additionally, compared to the STFT-TF and WT-TF methodologies, the novel time-frequency diagram introduced demonstrates superior stability using the Singular Value Decomposition (SVD) method. Moreover, by combining the new time-frequency diagram with the deep learning YOLOV5 network, signal detection and modulation identification of communication signals can be achieved.
Keywords: Signal detection, higher-order cumulant, novel time-frequency diagram
DOI: 10.3233/JIFS-237988
Journal: Journal of Intelligent & Fuzzy Systems, vol. Pre-press, no. Pre-press, pp. 1-12, 2024
IOS Press, Inc.
6751 Tepper Drive
Clifton, VA 20124
USA
Tel: +1 703 830 6300
Fax: +1 703 830 2300
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
IOS Press
Nieuwe Hemweg 6B
1013 BG Amsterdam
The Netherlands
Tel: +31 20 688 3355
Fax: +31 20 687 0091
[email protected]
For editorial issues, permissions, book requests, submissions and proceedings, contact the Amsterdam office [email protected]
Inspirees International (China Office)
Ciyunsi Beili 207(CapitaLand), Bld 1, 7-901
100025, Beijing
China
Free service line: 400 661 8717
Fax: +86 10 8446 7947
[email protected]
For editorial issues, like the status of your submitted paper or proposals, write to [email protected]
如果您在出版方面需要帮助或有任何建, 件至: [email protected]